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Abstract. We propose the realized systemic risk beta as a measure of financial companies’ contribu-
tion to systemic risk, given network interdependence between firms’ tail risk exposures. Conditional
on statistically pre-identified network spillover effects and market and balance sheet information, we
define the realized systemic risk beta as the total time-varying marginal effect of a firm’s Value-at-risk
(VaR) on the system’s VaR. Statistical inference reveals a multitude of relevant risk spillover channels
and determines companies’ systemic importance in the U.S. financial system. Our approach can be
used to monitor companies’ systemic importance, enabling transparent macroprudential supervision.
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1. Introduction

The financial crisis of 2007-2009 has shown that cross-sectional dependencies between assets and
credit exposure can cause risks of individual banks to cascade, ultimately substantially threatening
the stability of the entire financial system.1 Under certain economic conditions, company-specific
risk cannot be appropriately assessed in isolation without accounting for potential risk spillover ef-
fects from other firms. Indeed, it is not merely the size and idiosyncratic risk of a firm but also its
interconnectedness with other firms that determines its systemic relevance. The latter is a firm’s po-
tential to increase the risk of failure of the entire system – which we denote as systemic risk.2 There
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1 For a thorough description of the financial crisis, see, e.g., Brunnermeier (2009).
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is a broad consensus that any prudential regulatory policy should account for the consequences of
network interdependencies in the financial system. In practice, however, any attempt at transparent
implementation of such a policy must fail, as long as suitable empirical measures of firms’ indi-
vidual risk, risk spillovers and systemic relevance are not available. In particular, how to quantify
individual risk exposure and systemic risk contributions in an appropriate but parsimonious and em-
pirically tractable way, given the prevailing underlying network structure, remains an open question.
Moreover, there is need for empirically feasible measures that rely only on available data of publicly
disclosed balance sheets and market information but still account for the complexity of the financial
system.

A general empirical assessment of systemic relevance cannot build on the vast theoretical litera-
ture on financial network models and financial contagion, as such studies typically require detailed
information on intra-bank asset and liability exposures (see, e.g., Allen and Gale, 2000; Freixas et al.,
2000; Leitner, 2005). Such data are generally not publicly disclosed, and even supervisory authorities
can only collect partial information on inter-bank linkages. Available empirical studies linked to this
literature can therefore only partially contribute to a full picture of companies’ systemic relevance,
as these studies focus on particular parts of specific markets at particular times under particular fi-
nancial conditions (see, e.g., Upper and Worms, 2004; Furfine, 2003, for Germany and the U.S.,
respectively).3 Furthermore, assessing risk interconnections on the basis of multivariate failure prob-
ability distributions has proven to be statistically complex in the absence of restrictive assumptions
(see, e.g., Boss et al., 2004, or Zhou, 2009, and references therein). Finally, for banking regulators, it
is often unclear how complex structures eventually translate into dynamic and predictable measures
of systemic relevance.

The objective of this paper is to develop an applicable measure of a firm’s systemic relevance,
explicitly accounting for the company’s interconnectedness within the financial sector. We assess
companies’ risk of financial distress on the basis of share price information, publicly accessible mar-
ket data and balance sheet data. Our measure quantifies the risk of distress of individual companies
and of the entire system, using tails of the corresponding asset return distributions. Consequently, it
builds on extreme conditional quantiles and thus the concept of conditional Value-at-Risk (VaR), a
popular and widely accepted measure of tail risk.4 For each firm, we identify its so-called relevant
(tail) risk drivers as the set of macroeconomic fundamentals, firm-specific characteristics and risk
spillovers from other institutions driving the company’s VaR. Such a conditional VaR specification
yields a reliable measure of a firm’s idiosyncratic risk in the presence of network effects. Moreover,
detecting which firms an institution is connected with and measuring the strengths of these connec-
tions enables us to construct a tail risk network for the financial system. A company’s contribution
to systemic risk is then defined as the effect of an increase in its individual tail risk on the VaR of the
financial system.

The underlying statistical setting is a two-stage quantile regression approach: In the first step,
firm-specific VaRs are estimated as functions of firm characteristics, macroeconomic state variables
and tail risk spillovers of other banks captured as loss exceedances. The major challenge is to shrink
the high-dimensional set of possible cross-linkages between all firms to a feasible number of relevant

3 See also Cocco et al. (2009) on parts of the financial sector in Portugal, Elsinger et al. (2006) for
Austria and Degryse and Nguyen (2007) for Belgium. A rare exception is the unique data set for
India with full information on the intra-banking market studied in Iyer and Peydrió (2011).
4 In principle, our methodology could also be adapted to other tail risk measures such as, e.g., ex-
pected shortfall. Such a setting, however, would involve additional estimation steps and compli-
cations, probably inducing an overall loss of accuracy in our results, given the limited amount of
available data.
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risk connections. We address this issue statistically as a model selection problem in individual institu-
tion’s VaR specifications, a problem that we solve in the first step. Specifically, we use a novel Least
Absolute Shrinkage and Selection Operator (LASSO) technique (see Belloni and Chernozhukov,
2011), which allows for identification of the relevant tail risk drivers for each company in a data-
driven way. The resulting risk interconnections are represented in a network graph, as illustrated,
e.g., in Figure 1 for the system of the 57 largest U.S. financial companies. In the second step, to

Fig. 1. Risk network of the U.S. financial system schematically highlighting key companies
in the system in 2000-2008. Details on all firms in the system that appear as unlabeled shaded
nodes will be provided later in the paper. Depositories are marked in red, broker dealers in
green, insurance companies in black, and other firms in blue. An arrow pointing from firm j
to firm i reflects the impact of extreme returns of j on the VaR of i (V aRi), a connection that
is identified as relevant through the statistical selection techniques presented in the remain-
der of the paper. VaRs are measured in terms of 5%-quantiles of the return distribution. The
effect of j on i is measured in terms of the impact of an increase of the return Xj on V aRi,
given that Xi is below its 10% quantile, i.e., i’s so-called loss exceedance. The size of the
respective increase in V aRj , given a 1% increase in the loss exceedance of i, is reflected in
the thickness of the respective arrowhead, whereby we distinguish between three categories:
thin arrowheads indicate an increase of up to 0.4, medium sized arrowheads indicate an in-
crease of 0.4-0.8, and thick arrowheads indicate an increase greater than 0.8. The thickness
of the line of an arrow reflects these same categories. If an arrow points in both directions,
the thickness of the line corresponds to the larger of the two effects. The graph is constructed
so that the total length of all arrows in the system is minimized. Accordingly, more highly
interconnected firms are located in the center.

measure a firm’s systemic impact, we individually estimate the VaR of a value-weighted index of
the financial sector as a function of the firm’s estimated VaR while controlling for the pre-identified
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company-specific risk drivers and the macroeconomic state variables. We derive standard errors that
explicitly account for estimation errors that arise in the first estimation step. Additionally, we utilize
bootstrap methods needed for accurate parameter tests in finite samples.

We determine a company as systemically relevant if the marginal effect of the firm’s VaR on the
VaR of the system is statistically significant and nonnegative. In analogy to an (inverted) asset pricing
relationship in quantiles, we call this marginal effect systemic risk beta. It is modeled as a function
of firm-specific characteristics, such as leverage, maturity mismatch and size, while controlling for
macroeconomic conditions and the firm’s network position. Thus, a firm’s marginal systemic impact
can change due to varying market or balance sheet conditions, although its individual risk level might
be identical at different points in time. The total increase in the system VaR due to a change in a firm-
specific VaR is obtained as the product of the firm’s systemic risk beta and its VaR. The latter, called
the ”realized” systemic risk beta, rises with increases in the firm’s VaR. We use it to compare the
levels of systemic importance of different companies and thus rank them across the system.
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Fig. 2. Systemic importance of five exemplary firms in the U.S. financial system at two
points in time before and at the height of the financial crisis, 2008. Systemic relevance is
determined by the statistical significance and positivity of ”systemic risk betas” quantifying
the marginal increase of the VaR of the system, given an increase in a bank’s VaR, while
controlling for the bank’s (pre-identified) risk drivers. All VaRs are computed at the 5% level
and are by definition positive. We depict the degree of systemic relevance by the size of the
respective “realized” version of the systemic risk beta, i.e., the product of the risk beta and
the corresponding VaR of a company, representing the company’s total effect on systemic
risk. Connecting lines are added to graphically highlight changes between the two points in
time but do not represent actual evolutionary paths. The size of each element in the graph
reflects the size of the VaR of the respective company at each of the two points in time. We
use the following scale: the element is k times the standard size with k = 1 for V aR ≤ 0.05,
k = 1.5 for V aR ∈ (0.05, 0.1], k = 2 for V aR ∈ (0.1, 0.15], k = 3 for V aR ∈ (0.2, 0.25]
and k = 5.5 for V aR ∈ (0.65, 0.7]. Attached numbers inside the figure mark the position of
the respective company in an overall ranking of the 57 largest U.S. financial companies for
each of the two time points.
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Our empirical results reveal a high degree of tail risk interconnectedness among U.S. financial
institutions, network effects that are dominant drivers of firms’ individual risk. Detected spillover
channels can be largely attributed to direct credit or liquidity exposure, although in some cases, they
may also result from common factors, e.g., factors specific to the sector or the business model, which
are not covered by our firm- specific control variables. Generally, these links contain fundamental
information for supervisory authorities but also for company risk managers. Based on the topology
of the systemic risk network, we categorize firms into three broad groups, according to their type
and extent of connectedness with other companies: main risk transmitters, risk recipients and com-
panies that both receive and transmit tail risk. From a supervisory point of view, the second group
has the least systemic impact. Monitoring this group, however, may nevertheless convey important
information on hidden risks and possible threats induced by a high degree of interconnectedness. The
highest attention of supervisory authorities should be directed toward firms that mainly act as risk
drivers or are highly interconnected risk transmitters within the system. These are firms, labeled “too
interconnected to fail”, in the center of the network, but also risk producers at the network periphery
that are linked to only a few heavily connected risk transmitters.

While the systemic risk network yields qualitative information regarding risk channels and the
roles of companies within the financial system, estimates of systemic risk betas allow us to quantify
the systemic relevance of individual firms and thus complement the full picture. Ranking companies
based on (realized) systemic risk betas shows that large depositories are particularly risky. After con-
trolling for relevant network effects, these firms have overall the strongest impact on systemic risk
and should be regulated accordingly. Time series patterns of (realized) systemic risk betas indicate
that most companies’ systemic risk contributions sharply increased during the 2007/08 financial cri-
sis, effects that were particularly pronounced for firms that experienced financial distress during the
crisis and are (ex post) identified as clearly systemically risky under our approach. Figure 2 illustrates
the paths of their marginal systemic contributions, as reflected in their systemic risk betas and their
exposures to idiosyncratic tail risk, as quantified by their VaRs. A pre-crisis case study confirms the
validity of our methodology, as firms such as, e.g., Lehman Brothers are ex-ante identified as highly
systemically relevant. It is well-known that the subsequent failure of this firm indeed had a huge
impact on the stability of the entire financial system. Similarly, the extensive bail-outs of American
International Group (AIG), Freddie Mac and Fannie Mae can be justified, given their high systemic
risk betas and high interconnectedness as of the end of 2007.

The remainder of the paper is structured as follows. Section 2. describes the paper’s links with
related literature and presents the underlying data. In Section 3., we present the model and the proce-
dure used to estimate individual companies’ VaRs, which are the basis for determining the systemic
tail-risk network structure. The notion of a realized systemic risk beta is formally introduced in
Section 4., and realized systemic risk betas are identified for each firm in an individually tailored
parsimonious partial equilibrium setting. This section also presents the corresponding estimation
procedure and valid inference for a two-step quantile regression setting. Our empirical results are
presented in the form of systemic risk rankings. In Section 5., we validate our model and results. In
particular, in a case study that uses only pre-crisis data, we illustrate that realized systemic risk betas
are effective in predicting the distress and systemic relevance of five large financial institutions that
were affected by the financial crisis. Section 6. concludes the paper.
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2. Literature and data

2.1 RELATION TO THE RECENT EMPIRICAL LITERATURE

Our paper relates to several strands of recent empirical literature on systemic risk contributions.
Building on the concept of VaR, Adrian and Brunnermeier (2011) were the first to model systemic
risk contributions based on balance sheet characteristics. They introduce the so-called CoVaR as a
firm’s (conditional) VaR, given that some other firm’s stock return takes a certain benchmark value
(e.g., the individual VaR). There are, however, substantial conceptional differences between their ap-
proach and ours: The realized systemic risk beta in our approach is the direct marginal effect of an
individual VaR on the VaR of the system. Conversely, CoVaR builds on the marginal effect of the re-
turn and is only evaluated at the value of the (pre-estimated) VaR. As returns are below their VaR(q)
(1− q)% of the time5, the estimated marginal systemic importance of CoVaR tends to systematically
overrate firms with lower average returns for identical risk levels. Furthermore, CoVaR can by defi-
nition only vary over time through the channel of individual VaRs. Due to multicollinearity, however,
it cannot be modeled in terms of firm-specific variables. Thus, changes in firms’ systemic relevance
only result from variations in underlying macroeconomic factors, while variations in firms’ leverage
and interdependence with other institutions have no direct effect. Under our approach, by contrast,
we identify network spillovers as crucial elements in measuring individual risk and in unbiased esti-
mation of systemic relevance. This is illustrated in a robustness study in Subsection 3.3.1. Moreover,
the proposed realized systemic risk beta captures variations in firms’ marginal systemic importance
driven by changes in firm-specific characteristics.

Our work also complements papers, such as Acharya et al. (2010), Brownlees and Engle (2012)
and Acharya et al. (2012), that measure a company’s systemic relevance in terms of the size of po-
tential bail-out costs. Such approaches cannot detect spillover effects driven by the topology of the
risk network and may tend to under-estimate the systemic importance of highly interconnected com-
panies. While Brownlees and Engle (2012) study an individual firm’s conditionally expected asset
return given distress of the system, we investigate the reverse relation and measure the effect on the
system given a firm is in financial trouble. Taking complementary perspectives, the two approaches
measure different dimensions of systemic risk. However, as our model is based on economic state
variables and loss exceedances, it automatically adjusts and prevails in distress scenarios under ex-
ternal shocks. This is a clear advantage of our approach compared with pure time series approaches
(cp. e.g., White et al., 2010; Brownlees and Engle, 2012). As illustrated in the validity case study
in Section 5.2, the estimated systemic risk betas indicate an increase in systemic relevance of some
companies earlier than in competing settings.

Our work also augments research of Billio et al. (2012), who present a collection of different sys-
temic risk measures. These measures mainly build on regressions of (conditional) means of returns.
However, assessing and predicting systemic and firm-specific risk requires regression in the (left)
tails of asset return distributions rather than the center. Hence, our approach focuses on extreme
quantiles and thus substantially differs from a correlation type analysis, as in Billio et al. (2012).
Moreover, in contrast to our approach, the latter authors’ determination of causality is based only
on pairwise relations. Such a setting, however, produces misleading results in a high-dimensional
interconnected system, as it is impossible to identify whether one firm drives another or if both are
driven by a third company. Our results are also complementary to network analysis based on volatil-
ity spillovers in vector autoregressive systems, for example, Diebold and Yilmaz (2012) and Diebold
and Yilmaz (2013).

5 The VaR(q) is defined as the negative q-conditional return quantile.
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Finally, we contribute to macroeconomic approaches that take a more aggregated view, e.g., the
literature on systemic risk indicators (e.g., Segoviano and Goodhart, 2009; Giesecke and Kim, 2011)
or papers on early warning signals (e.g., Schwaab et al., 2011; Koopman et al., 2011).

2.2 DATA

Our analysis focuses on publicly traded U.S. financial institutions. The list of included companies
in Table 1 in the Appendix comprises depositories, broker dealers, insurance companies and other
firms.6 To assess a firm’s systemic relevance, we use publicly accessible market and balance sheet
data. The forward-looking nature and real-time availability of equity market data serves well in pro-
viding an immediate and transparent measure of systemic risk. The advantage of timeliness is ev-
ident, even if new financial regulations compel institutions to reveal information on mutual credit
linkages and leverage to supervisory authorities. Currently, however, data on connections between
firms’ assets and obligations is largely proprietary and far from comprehensive, even for supervisors.

Daily equity prices are obtained from Datastream and are converted to weekly log returns. To
account for the general state of the economy, we use weekly observations of seven lagged macroeco-
nomic variables, M t−1, as suggested and used by Adrian and Brunnermeier (2011) (abbreviations
used in the remainder of the paper are given in brackets): the implied volatility index, VIX, as com-
puted by the Chicago Board Options Exchange (vix), a short term ”liquidity spread”, computed as
the difference of the 3-month collateral repo rate (available on Bloomberg) and the 3-month Treasury
bill rate from the Federal Reserve Bank of New York (repo), the change in the 3-month Treasury bill
rate (yield3m) and the change in the slope of the yield curve, corresponding to the spread between
the 10-year and 3-month Treasury bill rate (term). Additionally, we utilize changes in credit spreads
between BAA rated bonds and the Treasury bill rate (both at 10 year maturity) (credit), the weekly
equity market return from CRSP (marketret) and the one-year cumulative real estate sector return,
computed as the value-weighted average of real estate companies, available in the CRSP data base
(housing).7 Analyzing the time series properties of the variables reveals that, with the exceptions of
vix and housing, they are stationary. Applying the Engle and Granger (1987) two-step procedure,
however, we find evidence of cointegration between the two variables, which implies that their joint
explanation in the model is stationary and that inference thus remains valid (see Pagan and Wickens,
1989). Therefore, to maintain the comparability of our results with those in the literature, we use the
two regressors in levels.

To capture characteristics of individual institutions that predict a bank’s propensity to become
financially distressed, Ci

t−1, we follow Adrian and Brunnermeier (2011) and use (i) leverage, cal-
culated as the value of total assets divided by total equity (in book values) (LEV), (ii) maturity
mismatch, measuring short-term refinancing risk, calculated as short term debt net of cash divided
by total liabilities (MMM), (iii) market-to-book value, defined as the ratio of the market value to the
book value of total equity (BM), (iv) market capitalization, defined as the logarithm of market valued
total assets (SIZE) and (v) equity return volatility, computed from daily equity return data (VOL).

6 Companies are classified into these groups according to their two-digit SIC codes, following the
categorization in Adrian and Brunnermeier (2011), Appendix C.
7 We found that this set of aggregate financial market variables provides sufficient explanatory power
that is not further increased by additional controls such as, e.g., Fama-French type factors (see Sub-
section 3.3.1 for details).
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The system return is chosen as the return on the financial sector index provided by Datastream. It is
computed as the value-weighted average of prices of 190 U.S. financial institutions.8

As balance sheets are available only on a quarterly basis, we interpolate the quarterly data to
daily level, using cubic splines, and then aggregate them back to calendar weeks.9 We focus on 57
financial institutions that existed throughout the period from the beginning of 2000 to the end of
2008, resulting in 467 weekly observations of individual returns. This criterion excludes companies
that defaulted during the financial crisis. The latter are analyzed separately in a shorter sample case
study.

3. A tail risk network

3.1 DETERMINING DRIVERS OF FIRM-SPECIFIC TAIL RISK

We measure the tail risk of a company with asset return Xi
t at time t as its conditional Value-at-Risk

(VaR), V aRi
q,t, given a set of company-specific tail risk drivers W(i)

t :

Pr(−Xi
t ≥ V aRi

q,t|W
(i)
t ) = Pr(Xi

t ≤ Qi
q,t|W

(i)
t ) = q (1)

with V aRi
q,t = V aRi

q,t(W
(i)
t ) = −Qi

q,t denoting the (negative) conditional q-quantile of Xi
t .10

The relevant i-specific tail risk drivers are determined out of a large set of potential regressors Wt

containing lagged macroeconomic state variables Mt−1, lagged firm-specific characteristics Ci
t−1,

the i-specific lagged return Xi
t−1 and influences of companies other than i, E−it = (Ej

t )j 6=i. We
capture these network dependencies in terms of so-called loss exceedances, defined (for firm j)
as Ej

t = Xj
t 1(Xj

t ≤ Q̂
j
0.1), where Q̂0.1 is the unconditional 10% sample quantile of Xj . Hence,

company j only affects the VaR of company i if the former is in distress.
We model the conditional VaR of firm i at time t = 1, . . . , T as a linear function of the i-specific

tail risk drivers W(i)
t ,

V aRi
q = W(i) ′ξiq . (2)

This relation could be estimated using a corresponding linear model in the corresponding return
quantile

Xi
t = −W(i)

t

′
ξiq + εit, with Qq(εit|W

(i)
t ) = 0 (3)

if we knew the i-relevant risk drivers W(i) selected from W. Then the estimates ξ̂iq of ξiq could be
obtained from the standard linear quantile regression (Koenker and Bassett, 1978) by minimizing

1

T

T∑
t=1

ρq

(
Xi

t + W(i)
t

′
ξiq

)
(4)

8 See Adrian and Brunnermeier (2011), Appendix C, who explicitly show that this variable induces
no inherent endogeneity in the model.
9 For in-sample estimation, this interpolation step captures changes in balance sheet characteristics
in a smoother way than the use of plain data. For forecasting purposes, however, interpolation is not
possible. See Hautsch et al. (2014) for details.
10 Defining VaR as the negative p-quantile ensures that the VaR is positive and is interpreted as a
loss position.
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with loss function ρq(u) = u(q − I(u < 0)), where the indicator I(·) is 1 for u < 0 and zero other-
wise, and

V̂ aR
i

q,t = W(i)
t

′
ξ̂
i

q . (5)

The relevant risk drivers W(i) for firm i, however, are unknown and must be determined from W in
advance. Appropriate model selection techniques are not straightforward in the given setting, as tests
of the individual significance of single variables do not account for the (possibly high) collinear-
ity between the covariates. Similarly, sequences of joint significance tests have too many possible
variations to be easily checked in cases of more than 60 variables. Therefore, we choose the rele-
vant covariates in a data-driven way by employing a statistical shrinkage technique known as the
least absolute shrinkage and selection operator (LASSO). LASSO methods are standard for high-
dimensional conditional mean regression problems (see Tibshirani, 1996) and have recently been
adapted to quantile regression by Belloni and Chernozhukov (2011). Accordingly, we run an l1-
penalized quantile regression and calculate, for a fixed individual penalty parameter λi,

ξ̃
i

q = argminξi
1

T

T∑
t=1

ρq
(
Xi

t + W′
tξ

i
)

+ λi

√
q(1− q)
T

K∑
k=1

σ̂k|ξik| , (6)

with the set of potentially relevant regressors Wt = (Wt,k)Kk=1, which are demeaned, component-
wise variation σ̂2

k = 1
T

∑T

t=1
(Wt,k)2, and the loss function ρq as in (4). The key idea is to select

relevant regressors according to the absolute values of their estimated marginal effects (scaled by the
regressor’s variation) in the penalized VaR regression (6). Regressors are eliminated if their shrunken

coefficients are sufficiently close to zero. Here, all firms in W with absolute marginal effects |ξ̃
i
| be-

low a threshold τ = 0.0001 are excluded, and only the K(i) remaining relevant regressors W(i) are
retained. Hence, LASSO de-selects regressors that contribute only small amounts of variation. Due

to the additional penalty term in (6), all coefficients ξ̃
i

q are generally downwardly biased in finite
samples. Therefore, we re-estimate the unrestricted model (4) only with the selected relevant regres-

sors W(i), yielding the final estimates ξ̂iq . This post-LASSO step produces finite sample estimates of
the coefficients ξiq , estimates that are superior to the original LASSO estimates or plain quantile re-
gression results without penalization, which suffer from overidentification problems (see the original
paper by Belloni and Chernozhukov, 2011 for the consistency proof of the post LASSO step).

The selection of relevant risk drivers via LASSO crucially depends on the choice of the company-
specific penalty parameter λi. The larger is the chosen value of λi, the more regressors are eliminated.
Conversely, in case of λi = 0, we are back in the standard quantile regression setting (4) without any
de-selection. For each institution, we determine the appropriate penalty level λi in a completely
data-driven way by using the supremum norm of a rescaled gradient of the sample criterion function,
evaluated at the true parameter value, as in Belloni and Chernozhukov (2011)11. Consequently, the
number and set of relevant risk drivers are determined only from the data, without any restrictive
pre-assumptions. For further details on this empirical procedure, see (A5) in the Appendix.

Evaluating the goodness of fit of the resulting conditional VaR specifications requires quantifying
how well the model captures the specific percentile of the return distribution and how well the model
predicts the size and frequency of losses. With respect to the latter issue, it is not sufficient to use
a simple quantile-based modification of the conventional R2 statistic. We therefore consider a VaR
specification as inadequate if it either fails to produce the correct empirical level of VaR exceedances
or the sequence of exceedances is not independently and identically distributed. This ensures that VaR

11 See Step 1 for (A5) in the Appendix for the scaling and the exact formula.
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violations today do not contain information about VaR violations in the future and that both occur
according to the same distribution. This can be formally tested using a likelihood ratio (LR) version
of the dynamic quantile (DQ) test developed in Engle and Manganelli (2004) which is described in
detail in (A7) in the Appendix. Berkowitz et al. (2011) show that this LR test has superior size and
power properties compared with competing conditional VaR backtesting methods, which dominate
plain unconditional level tests (as e.g. Kupiec (1995)).

Using the LASSO selection procedure described above, we estimate VaR specifications for
q = 0.05 for all individual companies.12 Table 2 provides exemplary V aRi (post-)LASSO regres-
sion results for firms in four industry sectors: depositories, insurance companies, broker dealers and
others. We find that the dominant drivers of company-specific VaRs are loss exceedances of other
firms. In their presence, macroeconomic variables and firm-specific characteristics often do not have
any statistically significant influence and are not selected by the LASSO procedure. In Table 2, for
instance, VaR specifications for Goldman Sachs (GS), Morgan Stanley (MS), JP Morgan (JPM) and
AIG exclusively contain loss exceedances of other firms. The importance of cross-firm effects as
drivers of individual tail risk is confirmed by a joint significance test of the individually selected
loss exceedances E−it and the superiority of resulting VaR forecasts. The latter aspect is analyzed in
Subsection 3.3.

As a result of our estimation procedure, we not only detect “relevant” risk connections but can
assign directions thereof. Selecting Ej as a relevant risk driver of V aRi implies a directed link from
j to i. If, in addition, Ei significantly affects V aRj , we observe a bi-directional relation, which is,
however, not symmetric13. Note that our analysis, thus, is not affected by simultaneity biases. For
instance, a highly negative return of company j increases the conditional loss quantile and thus the
VaR of firm i. The latter, however, does not necessarily imply a higher (realized) loss exceedance
of i, as the relationship between a specific conditional quantile and the conditional distribution of
exceedances (for a fixed threshold) is generally unknown. Even if quantiles and exceedances are
positively related, an increase in V aRi may only induce an increase in the expected loss exceedance,
not necessarily in the realized loss exceedance. Consequently, the potential effect of a simultaneity
bias (if it exists at all) is expected to be much weaker than in classical mean regressions and thus can
be safely ignored. We consider it an advantage of our approach that it addresses network dependen-
cies in a parsimonious way, avoiding infeasible treatment of an explicit large system of conditional
quantiles.14

There may be several economic reasons for linkages between two companies – reasons, how-
ever, that cannot be empirically identified from publicly disclosed market data.15 By including firm-
specific characteristics and macroeconomic state variables in our model, we do, however, prevent
that determined identified risk connections result from common (risk) factors. Hence, we rule out the
possibility that tail dependencies are driven, for instance, by periods of high volatility, the flattening

12 Due to the limited number of observations, we refrain from considering more extreme probabili-
ties.
13 For the significance of effects, see Subsection 3.3.1
14 Statistically, it is an open question how to generally handle such a system of conditional quantiles.
In contrast to relations in (conditional) means, it is unclear how marginal q-quantiles constitute the
corresponding quantile in the joint distribution under appropriate independence assumptions. Only in
lags, restricted to very small dimensions and under strong assumptions, have solutions been obtained
via CaViAR type structures (see White et al., 2010).
15 Note that a valid empirical classification into different types of linkages would require compre-
hensive data on the credit and liquidity exposures of firms. Such information, however, is largely not
publicly available.
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of yield curves or declining overall credit quality. Accordingly, the identified risk connections are
likely to be attributable to remaining factors, such as credit or liquidity exposure, business model
commonalities or sector-specific risk factors. In this sense, connections between close competitors
such as Goldman Sachs and Morgan Stanley or the influence of the mortgage company Freddie Mac
(FRE) on AIG confirm market evidence.

3.2 NETWORK MODEL AND STRUCTURE

We construct a tail risk network of the system, using individually selected loss exceedances.16 Taking
all firms as nodes in such a network, there is an influence of firm j on firm i, ifEj is LASSO-selected
in (6) as a relevant driver of V aRi

q . Let Ej be the k-th component of W(i). Then the corresponding
coefficient ξiq,k in ξiq marks the impact of firm j on firm i in the network. If Ej is not selected as a
relevant risk driver of firm i, there is no network arrow from firm j to firm i.

An overview of the identified tail risk connections between all companies (based on VaR specifi-
cations with q = 0.05) is provided in Table 3.17 The number of risk connections substantially varies
over the cross-section of companies. To effectively illustrate identified risk connections and direc-
tions, we graphically depict the resulting network of companies in Figure 6. The layout of the net-
work is chosen so that the sum of cross-firm distances is minimized. Consequently, the most highly
connected firms are located in the center.

The resulting network topology allows us to distinguish between three major categories of firms:
The first group contains companies with only a few incoming arrows but many outgoing ones; hence,
such firms mainly act as risk drivers within the system. These are institutions whose failure may
affect many others, while they themselves would be relatively unaffected by the distress of others.
Such firms should be closely monitored by supervisory authorities, as the failure of such a bank could
have widespread consequences. An example of such a bank is State Street Corporation (STT), one
of the top ten U.S. banks and a firm whose failure would affect financial services companies such
as American Express and Northern Trust (NTRS), Bank of New York Mellon and Morgan Stanley.
Another example is the financial services firm SEI Investments, which has links to various large
institutions such as Bank of America, American Express, Morgan Stanley and the online broker TD
Ameritrade (AMTD).

The second group contains companies that mainly act as risk takers. These companies are not
necessarily systemically risky, but they may suffer severely from the distress of others and should
account for such spillover effects in their internal risk management. According to Table 3 and Figure
6, such firms are primarily insurance companies.

The third group is the largest category. It consists of companies that serve as both risk recipients
and risk transmitters that amplify tail risk spillovers by further disseminating risk into new chan-
nels. Due to their role as risk distributors, such companies are key systemic players and should be
supervised accordingly. Examples of strongly connected companies in this category are Goldman
Sachs, Citigroup, Morgan Stanley, AON Corporation (AON), Bank of America, American Express

16 In the Bayesian network literature, a network that builds on direct one-step influences constitutes
a so-called Markov blanket, which is assumed to contain all relevant information needed to predict a
node’s role in the network (see Friedman et al., 1997).
17 More extreme probabilities are theoretically feasible but require a larger number of observations
for sufficient statistical precision. We also used alternative thresholds for loss exceedances but found
that the 10% (unconditional) quantile optimally balances the trade-off between sufficient numbers of
nonzero observations in E−it and sufficiently many extreme losses.
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and Freddie Mac. The latter was particularly affected by the 2008 credit crunch in the mortgage sec-
tor. Details on the specific roles of Citigroup and Morgan Stanley within the system are highlighted in
Figure 7. Examples of firms with risk connections with only a few other institutions are Fannie Mae
and AIG. Fannie Mae exhibits significant bilateral risk connections with its main competitor Freddie
Mac. AIG holds significant positions in mortgage backed securities and thus is closely connected to
both Fannie Mae and Freddie Mac. Although the numbers of their relevant risk connections within
the network are limited, such firms can nevertheless critically impact the overall system. In the 2008
financial crisis, the dependence between Freddie Mac and Fannie Mae and their interactions with
AIG had severe systemic consequences.

Figure 8 indicates that it is not sufficient to focus exclusively on sector-specific subnetworks,
as interconnectedness of institutions is widespread between industry sectors. We observe that tail
risks of depositories, insurance companies and other firms are relatively evenly distributed among
all industry groups. Depositories are the most strongly connected industry sector and exhibit their
strongest connections among themselves. This contrasts with the other industries, where cross-firm
connections within groups are less intense. In addition, broker dealers differ from other industry
categories in that they display a much more concentrated risk outflow.

3.3 ROBUSTNESS

3.3.1 Network model validity

The validity of the network identified is confirmed by four analyses: First, the significance of net-
work effects in the individual VaR specifications are formally tested using a joint significance test of
the individually selected loss exceedances E−it in (2). We conduct this analysis based on a quantile
regression version of the F -test for joint linear hypotheses developed by Koenker and Bassett (1982).
Our results show that the selected tail risk spillovers are highly significant in all but a few cases. See
Table 3 for an overview of all cross-effects. Detailed test results are available from the authors upon
request.
Second, the importance of including other companies’ loss exceedances as risk drivers for company
i is further supported by comparing the (in-sample) forecast performance of our specifications with
corresponding models of V aRi, using macroeconomic variables only (as in Adrian and Brunner-
meier (2011)). According to the employed backtests, specifications allowing for cross-firm depen-
dencies have strong predictive ability and are significantly superior to models that ignore network
linkages. Figure 3 shows the distributions of the backtesting p-values implied by both models. Hence,
inter-company linkages add crucial explanatory power in VaR specifications.

Third, network effects remain important when we alter the set of economic state variables M
by adding asset pricing factors such as the three Fama-French factors and the momentum factor of
Carhart (1997).18 We find that in the presence of network exceedances, these factors are de-selected
in all cases by the LASSO method and thus have no additional explanatory power. Hence, tails of
asset returns are driven by factors other than the equity risk premium (associated with conditional
means of returns).

Finally, our results show that the most significant information about cross-company dependencies
in tail risk is primarily contained in contemporaneous loss exceedances E−it . In contrast, alternative
VaR specifications that utilize contemporaneous returns X−jt or lagged loss exceedances E−it−1 yield

18 The data are downloaded from the website of Kenneth French at
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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Fig. 3. Boxplots of backtesting p-values indicating the in-sample model fit (i.e., testing the
null hypothesis of formal statistical adequacy) of VaR specifications including macroeco-
nomic regressors only (left) and VaR specifications resulting from the LASSO selection pro-
cedure (6) (right).

significantly inferior backtest performance, with the regressors mostly found to be insignificant in
joint F-tests.19

3.3.2 Accuracy of the LASSO selection step

The firm-specific LASSO penalty parameter λi is a crucial coefficient under our approach, as it de-
termines the denseness of the risk network and influences the selection of control variables when
estimating systemic risk betas in Section 4.. It is chosen in a data-driven way, optimizing a backtest
criterion (see Sections 3.1 and 6.). To validate this model selection step and to assess whether the
procedure prevents overfitting, we analyze the consequences of increasing the LASSO penalty pa-
rameter. Note that higher values of λi lead to the selection of smaller models. If our procedure had
a tendency to overfit the tails, the overall goodness of fit would increase for higher values of λi. We
check for this by increasing all penalty parameters by 10% and 20%.20 We show that, based on back-
test performance, overall goodness of fit deteriorates substantially. This is demonstrated by the three
boxplots and illustrations of individual p-values in Figure 12. For higher values of λi, the p-values
decrease, and thus statistical support for the null hypothesis of a good model fit declines. Likewise,
joint significance tests do not support the exclusion of additional regressors due to higher penalties.
In particular, newly de-selected regressors are mostly significant (jointly with the selected ones). This
finding is confirmed by the Bayesian Information Criterion (BIC) for quantile models proposed by
Lee et al. (2013). As shown in Figure 12, the BIC is increasing, indicating a less favorable model
when the penalty parameter is increased. These evaluations support our choice of penalization and
indicate that there is no evidence of a tendency to overfit the tails.

19 The corresponding results are available upon request and are omitted here for brevity.
20 Increasing the penalties beyond 20% is not advisable because, for some VaRs, no regressors are
selected anymore.
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3.3.3 Network characteristics

In addition to providing a graphical illustration, standard network characteristics provide a more
comprehensive picture of the interconnectedness and the role of each network node in the system.
In Figure 4, we depict firms’ pagerank coefficient (see Brin and Page (1998)), a measure that does
not simply count links but empirically weights their importance in an iterative scheme.21 Confirming
the visual impression based on Figure 6, the most connected firms are Lincoln National Corporation,
AON, Bank of America, TD Ameritrade and Morgan Stanley. The graph also illustrates our above
finding that depositories tend to have somewhat stronger network effects than other industry groups.
Insurance companies divide into a group of highly connected firms, such as Lincoln National Corp.,
AON and MBI, and a group of less connected companies, such as AIG, Humana Incorp. , Unum
Group (UNM) and Cincinnati Financial Corp.
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Fig. 4. The upper figure displays pagerank coefficients based on the estimated tail risk net-
work, computed as in Berkhin (2005), with institutions ordered by sector. Below, pagerank
coefficients are plotted against realized systemic risk contributions measured as average real-
ized systemic risk betas according to (8) for all companies classified as systemically relevant,
according to Subsection 4.3, for the years 2000-2008. The regression line shows only a small
correlation between the pagerank coefficent and the realized systemic risk beta, a conclusion
supported by the R2 value of 0.0265. Colors and acronyms are as in Figure 1.

21 The idea is to assign to each node (i.e., company) a weight that is increasing in the number of
connections with other nodes and the relative importance thereof. The more connected a firm is, the
greater is its importance and thus the greater is the importance of its neighbor. The computation of
the pagerank coefficient can be viewed as an eigenvalue problem that can be solved iteratively. For
more details, see Berkhin (2005).



FINANCIAL NETWORK SYSTEMIC RISK CONTRIBUTIONS 15

The degree of firms’ interconnectedness and the specific topology of the network allow for the
identification of possible risk channels in the system. Pagerank coefficients, like other network met-
rics, however, can only be used to assess the local impact and centrality of firms in the network but
do not allow for a full quantitative assessment of the systemic relevance of a financial institution.
To address the latter issue, we propose the concept of (realized) systemic risk beta, presented in the
following section.

4. Quantifying systemic risk contributions

4.1 MEASURING AND ESTIMATING SYSTEMIC RISK BETAS

In addition to valuable information on financial network structures, supervisory authorities seek an
accurate but parsimonious measure of an institution’s systemic impact. We quantify the latter as the
effect of a marginal change in the tail risk of firm i on the tail risk of the system, given the underlying
network structure of the financial system. Similarly to a firm’s tail risk, as measured in equation (1),
system tail risk is measured as the Value-at-Risk V aRs

p,t of the system return Xs
t , conditional on

V aRi
q,t and other control variables. We then define the systemic risk beta as the marginal effect of

firm i’s VaR on the system VaR given by

∂V aRs
p,t(V

(i)
t , V aRi

q,t)

∂V aRi
q,t

= βs|i
p,q, (7)

where V(i)
t are firm-specific control variables.22 The systemic risk beta can be interpreted by analogy

with an inverse asset pricing relationship in quantiles, where bank i’s q-th return quantile drives the
p-th quantile of the system, given network-specific effects and firm-specific and macroeconomic state
variables. We classify the systemic relevance of institutions according to the statistical significance
of βs|i

p,q at a given level and magnitude of their total effects

β̄s|i
p,q := βs|i

p,qV aR
i
t , (8)

which we refer to as the realized systemic risk contribution. In contrast to the marginal systemic risk
beta, the realized system risk beta captures the full partial effect of an increase in V aRi on V aRs

t

and is thus cross-sectionally comparable across banks.
Producing unbiased estimates of a firm’s marginal effect βs|i

p,q requires accounting for i-specific
control variables in (7). Consequently, for each company i, we estimate an individual quantile re-
gression of V aRs of the form

V aRs
p,t = V(i)

t

′
γs

p + βs|i
p,qV aR

i
q,t, (9)

where the vector of regressors V(i)
t = (1,Mt−1,VaR(−i)

q,t ) includes a constant effect, lagged macroe-
conomic state variables and the VaRs of all companies that are identified as risk drivers for firm
i in Section 3.. The resulting specifications are parsimonious, as they contain the minimum set of
variables V(i)

t that are necessary but sufficient to guarantee unbiased estimates of βs|i
p,q .23 Therefore,

22 We only study immediate effects of risk shocks of company i on the system and do not infer
further steps. The latter would require additional dynamic modeling, which is beyond the scope of
this analysis.
23 Controlling for the relevant VaRs of other companies precludes simultaneity issues related to
potential effects of V aRs on V aRi. Therefore, any remaining “reverse causality” can only stem
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variables unrelated to V aRi do not affect firm i’s systemic risk contribution and can be omitted.24

We view this approach as a tractable alternative to a structural equilibrium model, which would re-
quire us to address involved specification issues. In addition, even if the latter model were correctly
specified, it would yield imprecise estimates due to the high dimensionality and interconnectedness
of the financial system, given limited data availability.

Systemic risk betas in (9) are allowed to be time-varying, accounting for periods of turbulence in
which not only banks’ risk exposures change, but also their marginal importance to the system may
vary. We model potential time variations of βs|i, using a linear model in lagged observable factors,
Zi

t−1, that characterize a bank’s propensity to experience financial distress,

β
s|i
p,q,t = β

s|i
0,p,q + Zi

t−1

′
ηs|i
p,q, (10)

where ηs|i
p,q are parameters. Including Zi in lagged form renders systemic risk betas predictable,

which is important for forward-looking monitoring and supervision of the financial system. Impos-
ing linearity on βs|i

p,q,t in Zi
t−1 yields stable estimates, given that these factors are updated only quar-

terly.25

The time-varying systemic risk betas βs|i
p,q,t are estimated using (9) and (10), with the (unknown)

VaR quantities V aRi
t and VaR(−i)

q,t replaced by the corresponding (post-LASSO) pre-estimates

V̂ aR
i

t and V̂aR
(−i)
q,t from (6).26 Hence,

Xs
t = −βs|i

0,p,qV̂ aR
i

q,t − (V̂ aR
i

q,t · Zi
t−1)

′
ηs|i
p,q − V̂(i)

′

tγ
s
p + εst , (11)

where Qp(εst |V̂ aR
i

q,t, V̂
(i)

t ,Zi
t−1) = 0. As in Section 3., estimates of all components of βs|i

p,q,t are
obtained via a quantile regression minimizing

1

T

T∑
t=1

ρp

(
Xs

t + B(i)
t

′
ξs
)

(12)

in the unknown parameters ξs, with B(i)
t ≡ (V aRi

t, V aR
i
t · Zi

t−1

′
,V(i)

t

′
)′. The resulting estimate of

the full time-varying marginal effect β̂s|i
p,q in (10) is then given by

β̂
s|i
p,q,t = β̂

s|i
0,p,q + Zi

t−1

′
η̂p,q

s|i
, (13)

from i-specific risk drivers that are not part of our sample but are constituents of the financial system
portfolio. While this possibility cannot be completely neglected, given the composition of our sample,
the remaining companies tend to be relatively small and unimportant. It thus appears quite unlikely
that reverse causality may arise through this channel.
24 See Angrist et al. (2006) for a simple Frisch-Waugh-type argument in quantile regressions.
25 More flexible functional forms (see e.g. Fan et al., 2013) would substantially increase the com-
putational burden and are not easily tractable, given the available data.
26 Note that a direct one-step estimation is not feasible, as the individual parameters βs|i

0,p,q and ηs|i
p,q

could not be identified without the additional identification condition Qq(εit|W
(i)
t ) = 0, implicitly

bringing back the first-step estimation and model selection step. Moreover, inserting the linear indi-
vidual VaR (2) into the linear sytem VaR model (9) yields a full model of the system’s tail risk in
observable characteristics. Model selection based on such a full model, however, is infeasible because
correlation effects among the large number of regressors would produce unreliable results.
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for given values Zi
t−1. Constant systemic risk betas occur as a special case under the restric-

tion ηs|i
p,q = 0, yielding β̂s|i

p,q,t = β̂
s|i
0,p,q = β̂

s|i
p,q . An estimate of the realized beta (8) is obtained aŝ̄βs|i

p,q,t := β̂
s|i
p,q,tV̂ aR

i

t.
The fact that certain regressors are not observed but only pre-estimated has crucial consequences

for statistical inference. The quantile regression asymptotic standard errors obtained with commonly-
used software packages based on Koenker and Bassett (1978) are generally too small, as they do not
account for the pre-step. In contrast to mean regressions, such two-step results are non-standard in
a quantile setting and are therefore provided in detail in (A3) in the Appendix. To the best of our
knowledge, these are new to the literature.

4.2 DETERMINING SYSTEMIC RELEVANCE

We determine a firm’s systemic relevance and the potential time variation thereof via formal statistical
significance tests. As quantile versions of asymptotic t- or F-tests are not valid in finite samples, and
simple direct bootstrap adaptations yield incorrect results for quantiles27, we perform finite-sample
inference for a linear hypothesis H on βs|i

p,q,t ∈ ξs based on the test statistic

ST = min
ξsunder H

T∑
t=1

ρp(Xs
t + B(i)

t

′
ξs)− min

ξsunrestricted

T∑
t=1

ρp(Xs
t + B(i)

t

′
ξs), (14)

where B(i)
t is as defined above, and ξs denotes the corresponding parameter vector.28 Note, however,

that the asymptotic distribution of ST involves unknown terms, so that a bootstrap procedure is
needed. Conventional re-sampling techniques remain inconsistent for ST , due to the non-smooth
objective function of the quantile regression. However, we can construct an adjusted “wild-type”
bootstrap method that yields valid inference. This is described in detail in the Appendix above (A9)
(compare Chen et al., 2008). For all tests below, we generally consider effects significant if p-values
are below 10%.

We define a company as systemically relevant if an increase in its potential loss position, given
economic state variables and i-specific risk inflows from other companies, entails significantly higher
potential systemic loss. This requires that its systemic risk beta is significant and non-negative.29

Accordingly, we test for the joint significance of all components of βs|i
t , using the hypothesis

H1 : β
s|i
0 = η

s|i
MMM = η

s|i
SIZE = η

s|i
LEV = η

s|i
BM = η

s|i
V OL = 0.

27 Generally, asymptotic distributions often only provide a poor approximation of the true distribu-
tion of the (scaled) difference between the estimator and the true value when sample sizes are not
sufficiently large. In the case of quantile regressions, this effect is even more pronounced, as valid
estimates of the asymptotic variance have poor non-parametric rates and thus require even larger
sample sizes to obtain the same precision.
28 This test is an adaptation to the quantile setting of a method proposed by Chen et al. (2008) for
median regressions.
29 Because we do not impose a priori non-negativity restrictions, systemic risk betas can become
negative at certain points in time. In a few cases, we can attribute these effects to sudden time varia-
tions in one of the (interpolated) company-specific characteristics Zi

t−1, driving systemic risk betas
temporarily into the negative region. These effects might be reduced by linking βs|i in (10) to (local)
time averages of Zi

t−1, which would stabilize systemic risk betas at the cost of a potentially substan-
tial loss of information. We see this as an alternative approach. However, we do not pursue it in the
present context.
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Testing whether marginal effects on the system are indeed time-varying in firm-specific charac-
teristics implies the joint hypothesis

H2 : η
s|i
MMM = η

s|i
SIZE = η

s|i
LEV = η

s|i
BM = η

s|i
V OL = 0.

If H2 is not rejected, we re-specify the systemic risk beta as a constant (βs|i
t = βs|i), re-estimate the

model without interaction variables and test the hypothesis H3 : βs|i = 0.

4.3 EMPIRICAL RESULTS AND ROBUSTNESS OF SYSTEMIC RISK BETAS

We estimate systemic risk betas according to the approach described in 4.1, based on q = 0.0530 and
using all firm-specific characteristics as potential drivers of time-variation in systemic risk betas, i.e.,
Zi

t = Ci
t. As a consequence, systemic risk contributions of two companies with the same exposure

to macroeconomic risk factors and financial network spillovers may still differ due to their balance
sheet structures.31

Table 4 reports the p-values of the test described in Section 4.2, which is performed using the
wild bootstrap procedure (illustrated above (A9) in the Appendix), based on 2, 000 re-samplings of
the test statistic.32 We find that the majority of firms have a significant time-varying systemic risk
beta. Conversely, for approximately 25% of the firms, systemic risk betas are insignificant. Table 5
ranks all systemically relevant companies for the period from 2000 to 2008, according to their aver-
age realized systemic risk contributions ˆ̄βs|i. The systemically most risky companies are found to be
JP Morgan, American Express, Bank of America and Citigroup. According to our network analysis
above, these firms are strongly interconnected and thus should be closely monitored. Realized sys-
temic risk betas, however, contain information on systemic relevance beyond a company’s network
interconnectedness. This is illustrated in Figure 4, which reveals only slightly positive dependencies
between pagerank coefficients and realized systemic risk betas. With an R2 of just 2%, this relation-
ship, however, is not very strong. Hence, firms’ interconnectedness is not sufficient to assess their
systemic relevance.

As a first rough validity benchmark of our assessment, we compare our results with the outcomes
of the Supervisory Capital Assessment Program (SCAP), conducted by the Federal Reserve in the
spring of 2009, just after the end of our sample period. While we rely exclusively on publicly avail-
able market data, the Fed could draw on extensive non-public confidential balance sheet information
that reveals credit and other risk interconnection channels among the 19 largest U.S. bank hold-
ing companies.33 The financial institution with the most severe shortcomings with respect to capital
buffer, according to the SCAP, was Bank of America, which ranks among our most highly systemi-
cally relevant companies, leading the ranking in June 2008 (Table 6 b). In addition, we identify six

30 As we set p = q, we suppress the quantile index.
31 Note that we keep the set of regressors M parsimonious, as described in Section 2.2 and justified
in Subsection 3.3.1.
32 Because of multi-collinearity effects, the interpretation of individual coefficients η might be mis-
leading. Therefore, we refrain from reporting corresponding estimates.
33 For details on SCAP, see Federal Reserve System (2009). To determine requested individual cap-
ital buffers under different market scenarios, the Fed’s measure of systemic relevance uses propri-
etary information regarding risk interconnections. According to Huang et al. (2010), the two network
based evaluations should be related, as companies with the highest detected systemic relevance in
2000-2008 should carry the highest shares of hypothetical loss insurance premia. Consequently, they
should face the highest requested increases in individual capital buffers in 2009.
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of eight banks in our database that, according to the SCAP results, were threatened by financial dis-
tress under more adverse market conditions.34 These results confirm the usefulness of our approach
in detecting systemically risky companies and as a monitoring tool for supervisory agencies. For a
more detailed validity study, see the next section below. Additionally, statistical robustness checks of
an adapted realized systemic risk beta in a forecasting setting are provided in Hautsch et al. (2014).

To illustrate the time evolution of systemic risk betas, we show systemic risk rankings at two
selected points in time: Table 6a provides the systemic risk ranking for the last week of March 2007,
which was a relatively ”calm” time before the start of the financial crisis. Table 6b, on the other
hand, shows the ranking at the end of June 2008, shortly before the collapse of Lehman Brothers.
Comparing the pre-crisis and crisis rankings, we observe that systemic risk betas generally increased
during the crisis, a trend that is particularly pronounced for American Express, Bank of America, JP
Morgan, Regions Financial and State Street. Exceptions are Citigroup and Morgan Stanley.

During the crisis, we detect Bank of America (BAC) as systemically most relevant. Among all
systemically relevant companies, it is also the most interconnected firm, according to the pagerank
coefficient in Figure 4, mutually influencing and influenced by other companies in the center of the
network (see Table 3). Figure 9 shows that BAC’s systemic risk beta was relatively stable before
the financial crisis but fell significantly following implementation of the Federal Reserve’s rescue
packages. Its realized systemic risk contribution, however, strongly increased during the crisis, a
development that can mainly be attributed to network effects. 35 This is, for instance, in contrast to
AIG, where network effects entering through increases in other firms’ VaR’s play a secondary role
during the crisis period. AIG’s systemic relevance, however, rapidly declined from the beginning
of 2008 until its government bailout (see Figure 9). Here, market data appear to have incorporated
bail-out information into the systemic risk beta well in advance, making both systemic risk betas and
realized betas appear to be forward-looking.36

By construction, realized systemic risk contributions vary over time through both βs|i
t and V aRi

t.
For selected companies, these effects are schematically depicted before and during the crisis in Figure
2 in the introduction. As for BAC, in many cases, as shown in Table 6, we observe increases of
realized systemic risk contributions that are mainly due to rising individual VaRs, while companies’
marginal contributions to the system VaR generally remain unchanged (see, e.g., American Express).
In most of these cases, the strong increase in VaR can mainly be attributed to tail risk spillovers in
the network (see also Table 2).

In several cases, increasing individual VaRs coincide with rising systemic risk betas. The most
pronounced effect can be observed for Wells Fargo, which was not even identified as systemically
relevant in 2007 but subsequently experienced a dramatic increase in both its systemic risk beta and
its idiosyncratic tail risk, rendering it highly systemically risky in 2008. Other examples include
State Street, Progressive Ohio and Marshall & Isley. Here, direct sources of increasing systemic
relevance can only be partially found in the network structure (see, e.g., State Street, which does
not face significant risk spillovers from other companies but has high systemic relevance). For two
central nodes in the network, Citigroup and Morgan Stanley, however, declining systemic risk betas

34 We detect Citigroup, FifthThird Bancorp, Morgan Stanley, PNC, Regions Financial and Wells
Fargo as systemically relevant. Due to a lack of data, we cannot include in our analysis KeyCorp and
GMAC, which have also been found to be financially distressed in critical macroeconomic environ-
ments.
35 The detailed BAC results for the post-LASSO coefficients in Table 2 are omitted for the sake of
brevity but are available upon request.
36 For details on the USD 150 billion rescue packages from the Federal Reserve, see Schich (2009).
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overcompensate for increasing VaRs, resulting in overall declining systemic relevance. Similarly to
AIG, for these firms, network effects play a minor (direct) role.

The above results show that realized systemic risk contributions conveniently condense infor-
mation on banks’ systemic importance, although the underlying forces driving variations in banks’
systemic relevance can be quite different. Therefore, simultaneously analyzing and monitoring (i)
network effects, (ii) sensitivity to micro- and macroeconomic conditions, and (iii) time-variations in
systemic risk betas provides a complete picture of companies’ specific roles in the network and thus
builds a solid basis for supervisory authorities to monitor systemic risk.

5. Model validation

5.1 A SIMPLISTIC BENCHMARK

In this subsection, we illustrate the advantage of our two-step quantile regression approach compared
with a one-step estimation of a ’global’ model of the system VaR. Under the two-step approach, we
model the system VaR as a function of all companies’ loss exceedances and the set of macroeconomic
state variables37, i.e.,

V aRs
p,t = αs

1 + E(s)
t

′
αs

2 + M(s)
t−1

′
αs

3, (15)

where E(s)
t and M(s)

t−1 are sets of loss exceedances and macroeconomic indicators, respectively,
selected by the LASSO method. Positive values of the unkonwn quantile-specific coefficients
(αs

1,α
s
2
′,αs

3
′)′ indicate the degree of systemic relevance of each firm. We use an adaptive version of

the LASSO procedure in (15), employing regressor-specific weights in the penalty.38 This makes the
procedure comparable to the use of firm-specific LASSO penalties in our two-step procedure.

Figure 11 summarizes how the group of systemically relevant companies identified by the sim-
plistic benchmark estimation compares with that determined by the two-step approach reported in
Table 5.39 First, there is considerable overlap of companies – mostly large depositories and insurance
companies (group 1) – found to be systemically relevant under both methods. In particular, 17 of 21
loss exceedances are selected under both approaches. Four remaining firms are identified as relevant
only in the benchmark case (group 2). These firms are relatively small companies that appear to be
“overweighted” under the simplistic approach. The fact that they have been selected may indicate
a spurious effect due to co-movements with others. The third group of companies comprises firms

37 LASSO selection in a global system VaR model, based on all institutions’ pre-estimated VaRs,
would yield imprecise results due to the vast amount of pre-estimated regressors and inherent
multicollinearity effects. We therefore do not include individual (pre-estimated) VaRs but loss ex-
ceedances.
38 The adaptive LASSO criterion thus minimizes
1
T

∑T

t=1
ρq (Xs

t + α1 + E′tα2 + M′
t−1α3) + λ

√
q(1−q)

T

∑65

k=1
wkσ̂k|αk|. The weights wk are

computed as inverses of the absolute values of coefficients from an unrestricted quantile regres-
sion, σ̂k is as in (6), and λ is determined as in Section A.2., where c is chosen via the in-sample VaR
backtest of Berkowitz et al. (2011) (see Section A.3.). For details on the adaptive LASSO, see Wu
and Liu (2009).
39 In the benchmark case, the change in the short-term interest rate (yield3m) was also used as a
regressor, in addition to the selected exceedances. The detailed results with the coefficients obtained
are available from the authors upon request.
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that are not identified as systemically relevant in the benchmark case but nevertheless have signifi-
cant positive systemic risk betas. Almost all of these are deeply interconnected with other companies
(see Table 3). 40 Hence, a one-step approach to determining the system VaR (15) may provide only
a rough tool that can be used to gain a first impression of systemically relevant firms in a moder-
ately interconnected system. However, as this approach cannot capture network linkages, it tends to
systematically falsely reject systemic relevance of firms that gain importance mainly through their
positions within the network. Conversely, it is likely to falsely attribute systemic relevance to firms
with insignificant marginal effects when controlling for the network.

5.2 CASE-STUDY: PRE-CRISIS PERIOD

The above study is based on data available over the entire period from the beginning of 2000 to
the end of 2008. Consequently, institutions that defaulted or were taken over by other firms are not
included. Nevertheless, to validate our findings, we perform a case study by re-estimating the model
for the time period of January 1, 2000, to June 30, 2007 and including the investment banks Lehman
Brothers and Merrill Lynch.

The use of a shorter estimation period (and thus less data) renders a sharp ranking of companies
less distinct and more difficult to interpret. Therefore, Table 7 categorizes firms into groups according
to quartiles of the distribution of realized systemic risk betas. The group of highest systemic impor-
tance consists of AIG, Lehman Brothers, Morgan Stanley, JP Morgan and Goldman Sachs, among
others. “Medium” systemic riskiness is observed for large depositories and investment banks, in-
cluding Bank of America, Merrill Lynch, Citigroup and Regions Financial but also for the mortgage
company Freddie Mac.

In this case study, we focus particularly on four companies that were massively affected by the
crisis: Lehman Brothers became insolvent on September 15, 2008 and was subsequently liquidated.
Merrill Lynch announced a merger with Bank of America in September 2008, which was executed
on January 1, 2009. Freddie Mac is closely connected to the second largest real estate financing
company Fannie Mae and was placed under conservatorship by the U.S. government during the
financial crisis. Finally, we investigate the systemic riskiness of AIG, which faced major distress
during the crisis and whose bailout was very costly to tax payers. As shown in Table 7 (with the
specific companies marked in bold), all of these firms belong to the group of systemically relevant
firms with high or mid-sized average systemic risk betas.

Table 8 summarizes the results of the network analysis of these four companies, using pre-crisis
data only. We observe that most of these institutions were subject to loss spillovers from direct
competitors. Observe, e.g., the strong interconnectedness of AIG, the mutual link between Freddie
Mac and Fannie Mae and the dependencies between Lehman Brothers and both Morgan Stanley and
Goldman Sachs.

Figure 10 shows the time evolution of the realized betas of the four companies under investigation.
The exemplary case of Merrill Lynch shows that, over a longer time horizon, the network based
idiosyncratic VaR gradually decreased, despite the firm’s increasing systemic importance, with its
realized risk beta rising by more than 100% between mid-2006 and mid-2007. Moreover, Figure 5
shows that the overall high systemic relevance of Lehmann and AIG can be attributed to very different
time evolutions of their realized systemic risk betas well in advance of the crisis. While the systemic
relevance of Lehman brothers grew almost monotonically towards the beginning of the crisis, the
realized beta of AIG was already high around 2005. At this time, the company was already highly

40 We categorize a company as deeply connected if it has six or more incoming and/or outgoing risk
links in Table 3.
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Fig. 5. Time evolution of systemic importance in terms of quarterly realized systemic risk
betas in 2004-2007 for two companies, AIG and Lehman Brothers (LEH), that are among
the most systemically risky companies. We depict quarterly averages, reflecting quarterly
observations of balance sheet characteristics, smoothing the exceedance effects in the VaR’s.

leveraged and was even downgraded. If we compare our results to the findings presented in Table 4
(page 45 in the Appendix) of Brownlees and Engle (2012), according to their SRISK measure, they
also find systemic relevance of LEH, FRE and ML. In contrast to their results, however, our measure
appears to incorporate important market information substantially more quickly, thus providing a
better forward-looking monitoring tool. Similarly, the high systemic relevance of JPM before the
crisis is detected by SRISK with a significant time delay.

Our findings clearly show that, in June 2007, all four companies were relevant to the stability
of the U.S. financial system. They indicate that bailouts during the crisis were justified for Freddie
Mac (and the closely-tied Fannie Mae) and AIG. In addition, a failure of Merrill Lynch would have
had harsh systemic consequences that could be prevented by its merger with Bank of America in
2008. Second, the increasing systemic importance of Lehman Brothers could have been monitored,
and thus, the impact of its bankruptcy could have been anticipated in some degree. The direct bi-
directional linkage of Lehman Brothers to JP Morgan as well as the connections to Morgan Stanley
and Goldman Sachs, which in turn are deeply interconnected, indicate a high risk of contagion in the
event of Lehman’s failure. Furthermore, our estimates show that Lehman’s systemic risk contribution
is only slightly lower than that of AIG, while it is substantially higher than that of, e.g., Freddie Mac.
Given these results, bailing out the latter but not the former is not necessarily justifiable from a
systemic risk management point of view.
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6. Conclusion

The global financial crisis of 2007-2009 has demonstrated the need for an improved understanding of
systemic risk. Particularly in situations of distress, it is the interconnectedness of financial companies
that plays a major role but challenges quantitative analysis and the construction of appropriate risk
measures.

In this paper, we propose a measure of firms’ systemic relevance that accounts for dependence
structures within the financial network, given market externalities. Our analysis allows us to statis-
tically identify relevant channels of potential tail risk spillovers between firms, where such chan-
nels constitute the topology of the financial network. Based on these relevant company-specific risk
drivers, we measure a firm’s idiosyncratic tail risk by explicitly accounting for its interconnectedness
with other institutions. Our measure of a company’s systemic risk contribution quantifies the impact
on the risk of distress of the system as a whole induced by an increase in the risk of an individ-
ual company in a network setting. Both measures exclusively rely on publicly observable balance
sheet and market characteristics and can thus be used in prudent supervisory decisions in a stress test
scenario.

Our empirical results show the interconnectedness of the U.S. financial system and clearly mark
channels of relevant potential risk spillovers. In particular, we classify companies into major risk
producers, transmitters or recipients within the system. Moreover, at any specific time, firms can be
ranked according to their estimated contribution to systemic risk, given their roles and positions in
the network. Monitoring companies’ systemic relevance over time thus allows us to detect those firms
that are most central to the stability of the system. In a case study, we highlight that our approach
could have served as a solid basis for a sensible forward-looking monitoring tool before the start of
the financial crisis in 2007.

Our approach is readily extendable in several directions. In particular, although the financial sys-
tem is dominated by the U.S, it truly is a global business with many firms operating internationally.
Detecting inter- and intra-country risk connections and measuring firms’ global systemic relevance
should be straightforward under our proposed methodology. Moreover, whenever additional (firm-
specific or market-wide) information becomes available, as, e.g., when new information is reported to
central banks, it can be directly incorporated into our measurement procedure. The data-driven selec-
tion step of relevant risk drivers then determines whether and how such information would increase
the precision of results.

Appendix

ECONOMETRIC METHODOLOGY

Asymptotic results for two-step quantile estimation

Under the adaptive choice of the penalty parameter, as described in the text, the LASSO selection

method is consistent with rate OP (

√
K(i)
T

log(max(K,T )) and with high probability the coeffi-
cients selected from W contain the true coefficients in finite samples. These results follow directly
from Belloni and Chernozhukov (2011). Furthermore, V aRi is consistently estimated, using the
post-LASSO method described in the text, which re-estimates the unrestricted model with W(i). In
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particular, for all q ∈ I , with I ∈ (0, 1) compact,

ξ̂
i

q − ξ
i
q ≤ OP (

√
K(i)

T
log(max(K,T ))), (A1)

as, in our setting, it is safe to assume that the number of wrongly selected components of W is
stochastically bounded by the number K(i) of components of W contained in the true model of
V aRi (see equation (2.16) in Belloni and Chernozhukov (2011)). Slightly abusing notation, we
write YT ≤ OP (rT ), with YT either OP (rT ) or even oP (rT ) for any random sequence YT and
deterministic rT → 0. Note that, in general, for T →∞, both K and K(i) might grow only very
slowly in T , such that they can be treated nearly as constants, implying the standard oracle bound

OP (

√
log(T )

T
) in (A1).

If the true model is selected, we find, for the asymptotic distribution of the individual VaR esti-
mates for any q ∈ [0, 1],41√

1

T

(
ξ̂
i

q − ξ
i
q

)′
→ N

(
0,

q(1− q)
g2(G−1(q))

E[W(i)W(i) ′]−1

)
, (A2)

where g(G−1(q)) denotes the density of the corresponding error εi distribution at the qth quantile.
This result is standard (see Koenker and Bassett, 1978). For the second step estimates, we derive the
asymptotic distribution analogously to the two-step median results in Powell (1983)√

K(i)

T

(
(β̂

s|i
0,p,q, η̂

s|i
p,q, γ̂

s
p)
′
− (β

s|i
0,p,q,η

s|i
p,q,γ

s
p)
′)

(A3)

→ N
(

0, Q−1E
[

p(1− p)
f2(F−1(p))

ρp(εst )− p(1− p)
g2(G−1(p))

βs|i
p,q

′ (
ρp(εit), ρ

v
p(Zt−1ε

i
t)
)])

, (A4)

where in the scalar factor, f(F−1(p)) is the density of the corresponding error εs at the pth quantile,
the function ρvp of a vector applies ρp to each of its components, and βs|i

p,q = (β
s|i
0,p,q,η

s|i
p,q). The

remaining main part Q in the variance is given by Q = H ′E[AA′]H with A = (W(i), vec(Zt−1 ·
W(i) ′),VaR(−i)). Denote by I and 0 identity and null matrices, respectively, and by 1 a vector of
ones of appropriate dimension. Then,

H ′ =


diag(ξiq,2) 0 · · ·0 · · · · · ·0 · · ·

0 diag(ξiq,1) · · ·0 · · · · · ·0 · · ·
0 0 diag(vec(1dz · ξ

i
q

′
)) · · ·0 · · ·

I 0 · · ·0 · · · · · ·0 · · ·
0 0 · · ·0 · · · Id(−i)×d(−i)

 ,

where dZ is the dimension of Z, which is 3 in our application, d(−i) is the dimension of VaR(−i)
t , and

coefficients ξiq,2 are the components of ξiq for regressors that appear both in the first and second step.
Correspondingly, ξiq,1 are coefficients of regressors that appear only in the first step of the individual
VaR regression. Note that in the variance matrix, there is a distinction in γ for parts of V that are also
controls in V aRi and VaR(−i)

t , which only appear in V aRs.

41 Required assumptions of Belloni and Chernozhukov (2011) and quantile analogies to Powell
(1983) are fulfilled in our setting.
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Choice of the company-specific LASSO penalty parameter λi

We determine λi in a data-driven way following a bootstrap type procedure, as suggested by Belloni
and Chernozhukov (2011):

Step 1 Take T iid draws from U [0, 1] independent of W1, . . . ,WT denoted as U1, . . . , UT . Condi-
tional on observations of W, calculate the corresponding value of the random variable,

Λi = T max
1≤k≤K

1

T

∣∣∣∣∣
T∑

t=1

Wt,k(q − I(Ut ≤ q))
σ̂k

√
q(1− q)

∣∣∣∣∣ .
Step 2 Repeat step 1 for B=500 times, generating the empirical distribution of Λi, conditional on W

through Λi
1, . . . ,Λ

i
B . For the confidence level α ≤ 1/K in the selection, set

λi = c ·Q(Λi, 1− α|Wt), (A5)

where Q(Λi, 1− α|Wt) denotes the (1− α)-quantile of Λi, given Wt and where c ≤ 2 is
a constant.

The choice ofα is a trade-off between a high confidence level and a corresponding high regularization
bias from high penalty levels in (6). As in the simulation results in Belloni and Chernozhukov (2011),
we choose α = 0.1, which suffices to obtain optimal rates of the post-penalization estimators below.
Finally, the parameter c is selected in a data-dependent way, such that the in-sample predictive ability
of the resulting VaR specification is maximized. (Belloni and Chernozhukov, 2011 proceed in a
similar way). The latter is evaluated in terms of its best backtesting performance, according to the
procedure described in Subsection 6. below.

Backtest for the model fit for V aRi

As suggested by Berkowitz et al. (2011), for each institution i, we measure VaR exceedances as
Iit ≡ I(Xi

t < −V aRi
q,t). If the chosen model is correct, then,

E[Iit |Ωt] = q , (A6)

where Ωt is the information set up to t. The VaR is estimated correctly, if, independently for each day
of the covered period, the probability of exceeding the VaR is q. Similarly to Engle and Manganelli
(2004); Kuester et al. (2006); Taylor (2008), we include a constant, three lagged values of It and the
current VaR estimate in the information set Ωt. Then condition (A6) can be checked by estimating a
logistic regression model

Iit = α+ A′tθ + Ut,

with covariates At = (Iit−1, I
i
t−2, I

i
t−3, V̂ aR

i

t−1)′. Denote by Īi the sample mean of the binary re-
sponse Iit , and define Flog(·) as the cumulative distribution function of the logistic distribution. Then,
under the joint hypothesis

H0 : α = q and θ1 = · · ·θ4 = 0,

the asymptotic distribution of the corresponding likelihood ratio test statistic is

LR = −2(lnLr − lnLu)
a∼ χ2

5 . (A7)

Here, lnLu =
∑n

t=1
[Iit lnFlog(α+ A′tθ) + (1− Iit) ln (1− Flog(α+ A′tθ))] is the unrestricted

log likelihood function, which, under H0 simplifies to lnLr = nĪi ln(q) + n(1− Īi) ln(1− q).
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Bootstrap procedure for the joint significance test

The asymptotic distribution of the test statistic introduced in Subsection 4.1,

ST = min
ξs∈Ω0

T∑
t=1

ρp(Xs
t − B′tξ

s)− min
ξs∈RKB

T∑
t=1

ρp(Xs
t − B′tξ

s), (A8)

involves the probability density function of the underlying error terms and is not feasible. Further-
more, bootstrapping ST would directly yield inconsistent results. Therefore, we re-sample from the
adjusted statistic

S∗T = min
ξs∈Ω0

T∑
t=1

wtρp(Xs
t − B′tξ

s)− min
ξs∈RKB

T∑
t=1

wtρp(Xs
t − B′tξ

s)

−

(
T∑

t=1

wtρp(Xs
t − B′tξ̂

s

c)−
T∑

t=1

wtρp(Xs
t − B′tξ̂

s
)

)
, (A9)

where ξ̂
s

c denotes the constrained estimate of ξs, and {wt} is a sequence of standard exponentially
distributed random variables, with both mean and variance equal to one. According to Chen et al.
(2008), the empirical distribution of S∗T provides a good approximation of the distribution of ST .
Thus, if the test statistic ST exceeds some large quantile of the re-sampling distribution of S∗T , the
null hypothesis is rejected.

The proposed testing method does not require re-sampling of observations but is entirely based
on the original sample. This provides significant gains in accuracy in the two-step regression setting
relative to standard pairwise bootstrap techniques. A pre-analysis shows that this wild bootstrap type
procedure is valid in the presented form, as any serial dependence in the data is sufficiently captured
by the regressors in the reduced-form relation not requiring block-bootstrap techniques.42

42 Pairwise block-bootstrapping yields block lengths of one, according to the standard procedure of
Lahiri (2001). The results are available upon request.
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TABLES AND FIGURES

Table 1 Included financial institutions in alphabetical order within sectors
Depositories (21) Others (11) Insurance Comp. (20)
BB T Corp (BBT) American Express Co (AXP) AFLAC Inc (AFL)
Bank of New York Mellon (BK) Eaton Vance Corp (EV) Allstate Corp (ALL)
Bank of America Corp (BAC) Fed. Home Loan Mortg. Corp (FRE) American International Group (AIG)
Citigroup Inc (C) Fed. National Mortgage Assn (FNM) AON Corp (AON)
Comerica Inc (CMA) Fifth Third Bancorp (FITB) Berkley WR Corp (WRB)
Hudson City Bancorp Inc. (HCBK) Franklin Resources Inc (BEN) CIGNA Corp (CI)
Huntington Bancshares Inc. (HBAN) Legg Mason Inc (LM) C N A Financial Corp. (CNA)
JP Morgan Chase & Co (JPM) Leucadia National Corp (LUK) Chubb Corp (CB)
M & T Bank Corp. (MTB) SEI Investments Company (SEIC) Cincinnati Financial Corp (CINF)
Marshall & Ilsley Corp (MI) TD Ameritrade Holding Corp (AMTD) Coventry Health Care Inc (CVH)
NY Community Bankcorp (NYB) Union Pacific Corp (UNP) Hartford Financial (HIG)
Northern Trust Corp (NTRS) HEALTH NET INC (HNT)
Peoples United Financial Inc. (PBCT) Broker-Dealers (7) Humana Inc (HUM)
PNC Financial Services Group (PNC) E Trade Financial Corp (ETFC) Lincoln National Corp. (LNC)
Financial Corp New (RF) Goldman Sachs Group Inc (GS) Loews Corp (L)
S L M Corp. Lehman Brothers (LEH)∗ Marsh & McLennan Inc. (MMC)
State Street Corp (STT) Merrill Lynch (ML)∗ MBIA Inc (MBI)
Suntrust Banks Inc (STI) Morgan Stanley Dean Witter & Co (MS) Progressive Corp Ohio (PGR)
Synovus Financial Corp (SNV) Schwab Charles Corp New (SCHW) Torchmark Corp (TMK)
Wells Fargo & Co (WFC) T Rowe Price Group Inc. (TROW) Unum Group (UNM)
Zions Bancorp (ZION)

∗ included only in the case study
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Table 3 Tail risk cross dependencies: For each company i, we list direct risk drivers and risk re-
cipients within the network topology. The risk drivers are loss exceedances selected by the LASSO
technique (6) as “relevant” regressors for the V aRi model (q = 0.05) (’Influencing companies’).
Direct risk recipients (’Influenced companies’) are companies for which the loss exceedance of com-
pany i appears as relevant via LASSO in their corresponding V aRj .

Name Influencing companies Influenced companies
Broker Dealers

ETFC AMTD,GS,MS AMTD,C
GS C,JPM,LM,MS,SCHW BEN,C,ETFC,JPM,LM,MS,SCHW
MS AIG,AON,BAC,EV,GS,HBAN,HCBK,MTB,SCHW,SEIC,STT AMTD,BAC,EV,GS,HUM,LNC,ETFC,SEIC
SCHW AMTD,GS,JPM,NTRS,TROW AMTD,MS,GS,JPM
TROW AMTD,BEN,EV,JPM,LUK,NTRS,SEIC,SNV AON,MBI,MMC,AMTD,AXP,BEN,EV,NTRS,SCHW

Depositories
BAC AON,AXP,C,HBAN,LM,MS,MTB,PBCT,PNC,SEIC,STI,WFC AXP,BBT,C,CMA,HCBK,JPM,LM,MBI,MS,MTB,PNC,STI,WFC
BBT BAC,FITB,MTB,NTRS,STI,TMK,UNP,WFC AXP,BEN,CMA,FRE,MTB,RF,TMK,UNP,WFC,ZION
BK AXP,JPM,MTB,NTRS,SNV,STT,WFC CMA,JPM,NTRS,SEIC,SNV
C BAC,ETFC,FITB,GS,JPM,LNC,LUK,MBI,MTB BAC,GS,JPM,LUK
CMA AON,BAC,BBT,BK,HBAN,RF,SNV,WFC AON,PNC,SNV,ZION
HBAN AON,LNC,RF,STI,ZION AON,BAC,CMA,EV,LNC,MS,PBCT,RF,ZION
HCBK AON,BAC,MBI,MTB,NYB MS,MTB
JPM BAC,BK,C,GS,PNC,SCHW BK,C,GS,SCHW,SEIC,TROW
MI MMC,TMK HIG,MMC
MTB BAC,BBT,HCBK,NYB,SNV,ZION AON,BAC,BBT,BK,HCBK,MS,SNV,WFC,ZION,C
NTRS BEN,BK,LUK,MMC,SEIC,STT,TROW AFL,AMTD,BBT,BEN,BK,HIG,MMC,PGR,SCHW,TMK,TROW,LUK,STT
NYB PBCT,WFC MTB,SLM,WFC,HCBK,PBCT
PBCT HBAN,NYB AON,BAC,CB,NYB,RF
PNC BAC,CMA,STT,TMK,WFC,ZION BAC,JPM,ZION
RF AMTD,AON,BBT,FITB,HBAN,PBCT,STI,ZION AIG,AON,CMA,EV,FITB,HBAN,MBI,SNV,STI,ZION
SLM AON,AXP,FRE,MBI,NYB AON,AXP,BEN,EV,FITB,MBI
SNV BK,CMA,FITB,MTB,RF,ZION BEN,BK,CMA,FITB,MTB,TROW
STI AON,BAC,FITB,LNC,RF,WFC,ZION AFL,AON,BAC,BBT,FITB,HBAN,RF,ZION,CINF,HUM,UNM,WFC
STT AXP,NTRS AXP,BK,NTRS,PNC,MS
WFC BAC,BBT,CB,LNC,MTB,NYB,STI FITB,PNC,STI,AFL,BAC,BBT,BK,CMA,NYB
ZION BBT,CMA,HBAN,MTB,PNC,RF,STI AON,RF,FITB,HBAN,LNC,MTB,PNC,SNV,STI

Insurance Companies
AFL ALL,AON,CNA,EV,NTRS,SEIC,STI,TMK,WFC AXP,CB,EV,PGR,TMK,UNM
AIG FRE,MBI,RF,TMK FNM,MBI,MS
ALL CB,CNA,L,LNC,TMK AFL,PGR,TMK,UNM
AON CMA,HBAN,MBI,MTB,PBCT,RF,SLM,STI,TROW,ZION AFL,BAC,BEN,CMA,EV,FITB,HBAN,HCBK,LM,MBI,MS,RF,SLM,STI
CB AFL,L,LNC,PBCT,PGR ALL,CINF,EV,HIG,L,WFC,WRB
CI CNA,HNT,HUM,LNC HNT,HUM,LNC
CINF CB,MBI,STI AXP,LM
CNA EV,L,LNC,MBI AFL,ALL,CI,L,LNC,MBI
CVH HUM SEIC
HIG CB,L,LNC,MI,NTRS,TMK HUM,LNC,TMK
HNT CI,EV,HUM,LM,LNC,PGR CI,HUM,LM
HUM CI,HIG,HNT,MS,STI CI,HNT
L CB,CNA,LNC,TMK,UNP ALL,AXP,CB,CNA,HIG,LNC,UNM,UNP
LNC CI,CNA,EV,HBAN,HIG,L,MS,SEIC,TMK,ZION ALL,C,CB,CNA,HBAN,HIG,HNT,L,SEIC,STI,TMK,UNM,WFC,CI
MBI AIG,AON,BAC,BEN,CNA,FRE,RF,SLM,TROW AIG,AON,BEN,C,CINF,HCBK,SLM,CNA,LM
MMC MI,NTRS,PGR,SEIC,TROW,UNM MI,NTRS,UNM
PGR AFL,ALL,NTRS,WRB MMC,CB,HNT,WRB
TMK AFL,ALL,BBT,HIG,LNC,NTRS,SEIC,UNM,UNP AFL,BBT,EV,L,LNC,MI,PNC,AIG,ALL,HIG
UNM AFL,ALL,L,LNC,MMC,STI TMK,MMC
WRB BEN,CB,PGR PGR

Others
AMTD ETFC,MS,NTRS,SCHW,SEIC,TROW ETFC,RF,SCHW,TROW
AXP AFL,BAC,BBT,BEN,CINF,EV,L,SEIC,SLM,STT,TROW BAC,BEN,BK,EV,SLM,STT
BEN AON,AXP,BBT,EV,GS,LM,MBI,NTRS,SLM,SNV,TROW AXP,EV,LM,MBI,NTRS,TROW,WRB
EV AFL,AON,AXP,BEN,CB,HBAN,MS,RF,SEIC,SLM,TMK,TROW AFL,AXP,BEN,CNA,FRE,HNT,LM,LNC,MS,TROW
FITB AON,LUK,RF,SLM,SNV,STI,WFC,ZION BBT,C,FRE,RF,SNV,STI
FNM AIG,FRE FRE
FRE BBT,EV,FITB,FNM,LUK AIG,MBI,SLM,FNM
LM AON,BAC,BEN,CINF,EV,GS,HNT,MBI BAC,BEN,GS,HNT,LUK
LUK C,LM,NTRS C,FITB,FRE,NTRS,TROW
SEIC BK,CVH,JPM,LNC,MS AFL,AMTD,AXP,BAC,EV,LNC,MMC,MS,NTRS,TMK,TROW
UNP BBT,L BBT,TMK,L
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Table 4 Classification of companies with significant and/or time-varying systemic risk betas
according to p-values of the corresponding significance tests. In all cases, the test level is taken
as 10% and firms are in alphabetical order within each category. P-values pH1 for the test on
significance of systemic risk betas in the time period 2000-2008 are depicted in column one
(see Hypothesis H1 in Section 4.3). If β̂s|i is detected as being significant, a second test on
time-variation of β̂s|i in firm-specific characteristics Zi

t is performed yielding p-values pH2

(see Hypothesis H2 in Section 4.3). For firms with a significant but not a time-varying systemic
risk beta (lower panel on the left, marked with stars), we re-estimate the systemic risk beta
without time-varying interaction terms and test again for its significance. These results (pH3)
are included in parentheses in the second column (see Hypothesis H3 in Section 4.3).

Companies with significant βs|i

Name pH1 pH2 (pH3)
AMERICAN EXPRESS 0.001 0.006
AMERICAN INTL.GP. 0.002 0.000
BANK OF AMERICA 0.002 0.001
CHARLES SCHWAB 0.019 0.013
CHUBB 0.017 0.015
CIGNA 0.001 0.013
CINCINNATI FINL. 0.010 0.004
CITIGROUP 0.026 0.066
COMERICA 0.016 0.020
FANNIE MAE 0.001 0.000
FIFTH THIRD BANCORP 0.039 0.021
FRANKLIN RESOURCES 0.028 0.030
FREDDIE MAC 0.098 0.092
HARTFORD FINL.SVS.GP. 0.001 0.001
HUDSON CITY BANC. 0.043 0.035
HUNTINGTON BCSH. 0.010 0.011
LEGG MASON 0.026 0.060
LEUCADIA NATIONAL 0.041 0.016
LINCOLN NAT. 0.062 0.026
M & T BK. 0.033 0.021
MARSH & MCLENNAN 0.003 0.002
MARSHALL & ILSLEY 0.020 0.019
MORGAN STANLEY 0.041 0.095
PNC FINANCIAL SVS. GP 0.012 0.012
PROGRESSIVE OHIO 0.007 0.003
REGIONS FINANCIAL 0.034 0.029
STATE STREET 0.054 0.049
T ROWE PRICE GP. 0.090 0.076
TORCHMARK 0.002 0.001
UNION PACIFIC 0.040 0.035
UNUM GROUP 0.079 0.097
W R BERKLEY 0.007 0.037
WELLS FARGO & CO 0.015 0.027
ZIONS BANCORP. 0.095 0.100
AON* 0.063 0.192 (0.135)
E TRADE FINANCIAL* 0.072 0.160 (0.233)
JP MORGAN CHASE & CO.* 0.014 0.237 (0.047)
NY.CMTY.BANC.* 0.040 0.132 (0.088)
SEI INVESTMENTS* 0.014 0.115 (0.025)
TD AMERITRADE HOLDING* 0.049 0.131 (0.188)

Companies with insignificant βs|i

Name pH1
AFLAC 0.220
ALLSTATE 0.114
BANK OF NEW YORK MELLON 0.199
BB &T 0.120
CNA FINANCIAL 0.410
COVENTRY HEALTH CARE 0.257
EATON VANCE NV. 0.276
GOLDMAN SACHS GP. 0.667
HEALTH NET 0.371
HUMANA 0.189
LOEWS 0.276
MBIA 0.235
NORTHERN TRUST 0.305
PEOPLES UNITED FINANCIAL 0.105
SLM 0.391
SUNTRUST BANKS 0.213
SYNOVUS FINL. 0.289
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Table 5 Ranking of companies according to average realized systemic risk betas over the years
2000-2008 Q3. Most systemic risk contributions are detected as time-varying in systemic risk

betas - exceptions with constant ̂̄βs|i

av are marked by ∗. The underlying significance tests are per-
formed as described in Table 4. The third column lists relevant risk drivers for the corresponding
firm within the systemic tail risk network. They are determined through the LASSO selection
technique (6) as “relevant” loss exceedances to be included in the corresponding company’s
V aRi-regression.

Rank Name ̂̄βs|i
av · 102 influencing companies

1 JP MORGAN CHASE & CO 1.41∗ BAC,BK,C,GS,PNC,SCHW
2 AMERICAN EXPRESS 1.22 AFL,BAC,BBT,BEN,CINF,EV,L,SEIC,SLM,STT,TROW
3 BANK OF AMERICA 1.01 AON,AXP,C,HBAN,LM,MS,MTB,PBCT,PNC,SEIC,STI,WFC
4 CITIGROUP 0.87 BAC,ETFC,FITB,GS,JPM,LNC,LUK,MBI,MTB
5 LEGG MASON 0.83 AON,BAC,BEN,CINF,EV,GS,HNT,MBI
6 REGIONS FINANCIAL 0.72 AMTD,AON,BBT,FITB,HBAN,PBCT,STI,ZION„
7 MARSHALL & ILSLEY 0.65 MMC,TMK
8 MARSH & MCLENNAN 0.63 MI,NTRS,PGR,SEIC,TROW,UNM
9 MORGAN STANLEY 0.62 AIG,AON,BAC,EV,GS,HBAN,HCBK,MTB,SCHW,SEIC,STT
10 AMERICAN INTL.GP. 0.61 FRE,MBI,RF,TMK
11 PROGRESSIVE OHIO 0.58 AFL,ALL,NTRS,WRB
12 STATE STREET 0.55 AXP,NTRS
13 ZIONS BANCORP 0.51 BBT,CMA,HBAN,MTB,PNC,RF,STI,
14 FIFTH THIRD BANCORP 0.49 AON,LUK,RF,SLM,SNV,STI,WFC,ZION
15 NY.CMTY.BANC. 0.49∗ PBCT,WFC
16 PNC FINANCIAL SVS. GP 0.47 BAC,CMA,STT,TMK,WFC,ZION
17 FANNIE MAE 0.45 AIG,FRE
18 FRANKLIN RESOURCES 0.34 AON,AXP,BBT,EV,GS,LM,MBI,NTRS,SLM,SNV,TROW
19 CHARLES SCHWAB 0.33 AMTD,GS,JPM,NTRS,TROW
20 CHUBB 0.30 AFL,L,LNC,PBCT,PGR
21 WELLS FARGO & CO 0.28 BAC,BBT,CB,LNC,MTB,NYB,STI
22 FREDDIE MAC 0.19 BBT,EV,FITB,FNM,LUK
23 HARTFORD FINL.SVS.GP. 0.19 CB,L,LNC,MI,NTRS,TMK
24 CINCINNATI FINL. 0.16 CB,MBI,STI
25 TORCHMARK 0.12 AFL,ALL,BBT,HIG,LNC,NTRS,SEIC,UNM,UNP,
26 UNUM GROUP 0.04 AFL,ALL,L,LNC,MMC,STI
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Table 6 Rankings of relevant systemic risk contributions based on estimated realized

systemic risk betas ̂̄βs|i

t at two specific points in time. In addition, estimated systemic

risk betas and VaRs are listed, illustrating the different sources of variation in ̂̄βs|i

t . Most
systemic risk contributions are detected as being time-varying in systemic risk betas -

exceptions with constant ̂̄βs|i

t are marked by ∗. The underlying significance tests are per-
formed as described in Table 4.

a) End of March 2007 (before the beginning of the financial crisis)

Rank Name ̂̄βs|i
2007 · 102 β̂

s|i
2007 V̂ aR

i

2007

1 CITIGROUP 1.78 0.263 0.068
2 AMERICAN EXPRESS 1.35 0.387 0.035
3 BANK OF AMERICA 1.16 0.304 0.038
4 JP MORGAN CHASE & CO. 1.05∗ 0.265 0.040
5 MORGAN STANLEY 1.01 0.146 0.069
6 LEGG MASON 0.98 0.205 0.048
7 MARSH & MCLENNAN 0.83 0.222 0.037
8 REGIONS FINANCIAL 0.78 0.202 0.038
9 PNC FINANCIAL SVS. GP 0.77 0.248 0.031

10 CHUBB 0.74 0.240 0.031
11 AMERICAN INTL.GP. 0.61 0.143 0.043
12 FRANKLIN RESOURCES 0.60 0.143 0.042
13 STATE STREET 0.51 0.114 0.045
14 FIFTH THIRD BANCORP 0.50 0.104 0.048
15 PROGRESSIVE OHIO 0.42 0.092 0.046
16 NY.CMTY.BANC. 0.41∗ 0.090 0.045
17 MARSHALL & ILSLEY 0.40 0.088 0.045
18 TORCHMARK 0.39 0.173 0.023
19 HARTFORD FINL.SVS.GP. 0.38 0.099 0.039
20 ZIONS BANCORP. 0.26 0.115 0.054
21 CHARLES SCHWAB 0.25 0.042 0.060
22 FREDDIE MAC 0.23 0.057 0.041
23 LEUCADIA NATIONAL 0.19 0.057 0.033
24 CINCINNATI FINL. 0.13 0.026 0.050
25 FANNIE MAE 0.09 0.019 0.049
26 UNUM GROUP 0.23 0.045 0.051
27 T ROWE PRICE GP. 0.06 0.014 0.043
28 LINCOLN NAT. 0.04 0.010 0.036

b) End of June 2008 (during the financial crisis)

Rank Name ̂̄βs|i
2008 · 102 β̂

s|i
2008 V̂ aR

i

2008

1 BANK OF AMERICA 2.86 0.186 0.154
2 AMERICAN EXPRESS 2.78 0.278 0.100
3 WELLS FARGO & CO 2.51 0.186 0.135
4 MARSHALL & ILSLEY 2.31 0.516 0.045
5 JP MORGAN CHASE & CO. 2.22∗ 0.265 0.084
6 PROGRESSIVE OHIO 1.97 0.380 0.052
7 LEGG MASON 1.96 0.137 0.143
8 REGIONS FINANCIAL 1.86 0.107 0.173
9 MARSH & MCLENNAN 1.76 0.471 0.037

10 STATE STREET 1.44 0.171 0.084
11 NY.CMTY.BANC. 1.12∗ 0.090 0.125
12 PNC FINANCIAL SVS. GP 1.09 0.153 0.071
13 CHUBB 1.07 0.176 0.061
14 TORCHMARK 1.00 0.177 0.057
15 CHARLES SCHWAB 0.91 0.149 0.060
16 CITIGROUP 0.90 0.072 0.124
17 MORGAN STANLEY 0.61 0.074 0.083
18 ZIONS BANCORP. 0.58 0.058 0.100
19 UNUM GROUP 0.34 0.033 0.104
20 UNION PACIFIC 0.27 0.047 0.056
21 HARTFORD FINL.SVS.GP. 0.24 0.012 0.201
22 FRANKLIN RESOURCES 0.17 0.026 0.064
23 T ROWE PRICE GP. 0.01 0.001 0.102
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Table 7 Group ranking of systemic risk contributions for the pre-crisis period 2000 to
mid 2007. The upper part, group 1 (’high’), contains companies with significant average
realized systemic risk betas in the highest quartile: ˆ̄β

s|i
av · 100 ∈ [0.5, 1.3]. Group 2 refers

to the third quartile (’medium’) with ˆ̄β
s|i
av · 100 ∈ [0.03, 0.49] and Group 3 to realized

systemic risk betas lower than the median value (’small’), for which ˆ̄β
s|i
av · 100 < 0.01.

Group 4 includes companies not determined to be systemically risky during the estima-
tion period, i.e., those with insignificant systemic risk betas. Case study companies are
marked in bold.

Systemic risk contributions Companies
Group 1 ’high’ AIG, LEH, MS, JPM, GS,STT, CINF, LM, PBCT
Group 2 ’medium’ FRE, ML, BAC, C, RF, AXP, PNC,CNA, TROW, NTRS

Group 3 ’low’
FNM, WFC, EV, TMK, BBT, AFL, HUM, MI, CMA, BK,
LNC, ALL, HNT, CB, CVH, SLM, ETFC

Group 4
AMTD, AON, BEN, CI, FITB, HBAN, HCBK, HIG, L, LUK,
MBI, MMC, MTB, NYB, PGR, SCHW, SEIC, SNV, STI, UNM,
UNP, WRB, ZION

Table 8 Summary of estimation and test results for the four case study companies: loss exceedances
influencing each company’s VaR, the most important other VaRs influenced, joint significance tests
on βs|i

t = 0 and estimated average systemic risk contributions as well as betas. Estimation period:
January 2000 to June 2007.

Name influenced by mainly influencing overall sign. average ̂̄βs|i
t · 100 average β̂s|i

t
FRE AON, BBT, EV, FITB, FNM, HUM, MBI BBT, FNM 0.048 0.38 0.092∗
ML AMTD, CB, CNA, HCBK, L, NYB, WRB C 0.051 0.03 0.030∗
LEH AMTD, AON, BEN, GS, JPM, LM, LUK, MI, MS AIG, AXP, ETFC, JPM 0.041 0.79 0.176∗
AIG ALL, C, CB, CNA, ETFC, HIG, LEH, LNC, MBI, AFL, C, CNA, HIG, 0.026 0.73 0.210∗

MMC, SCHW, STT, TMK HUM, MMC, UNM
∗ time-varying betas
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Fig. 7. Full Network graphs of Citigroup (C) and Morgan Stanley (MS) highlighting risk
drivers and risk recipients directly connected to the respective companies with bold arrows,
according to the respective size of the effect. Arrows, colors and acronyms are as in Figure
6. For simplicity, all other links only indicate spillover effects without referring to size. The
list of firm acronyms is contained in Table 1.
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Fig. 9. For each of the two institutions, American International Group (AIG) and Bank of
America (BAC), the respective column comprises three time series panels, which depict,

from top to bottom, the time-varying systemic risk beta β̂s|i
t , the time-varying VaR V̂ aR
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and the realized systemic risk beta β̂s|i
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i

t of the firm.
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Fig. 10. Time evolution of systemic importance for all companies in the focus of the case
study. The left column of the panel depicts quarterly averaged realized systemic risk betas
of AIG, Freddie Mac (FRE) and Lehman Brothers (LEH) during the period immediately
preceding the crisis. The right column shows quarterly averaged realized systemic risk betas
of Merrill Lynch (ML) for the longer time period from 2004 onward in comparison with its
VaR.
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Fig. 11. The schematic figure depicts companies classified as systemically relevant, accord-
ing to our two-step network technique, in comparison with a simplistic one-step model, with
exceedances based on LASSO for (15). Companies in the dotted area are selected by the sim-
plistic model as systemically relevant, while firms in the gray area have a significant systemic
impact in our network model, according to Table 4. Denote the overlay region as group 1,
which includes companies whose tail risks are determined as relevant to the system’s risk in
both settings. Group 2 comprises companies in the dotted but non-gray area selected only by
the simplistic model. Systemically relevant firms in the gray non-dotted region can be classi-
fied as either group 3, as they are deeply interconnected with other companies through more
than six links, according to Table 3 (upper larger only gray set in the figure), or as group 4,
with few but crucial risk links, according to Table 3 (lower only gray set in the figure with
three elements).

● ●

●

64 68 72 76

0.
6

0.
8

1.
0

AFL

lambda

P
−

va
lu

es

●

●

●

68 72 76 80

0.
7

0.
8

0.
9

1.
0

AXP

lambda

P
−

va
lu

es

● ●

●

62 66 70

0.
90

0.
94

0.
98

GS

lambda

P
−

va
lu

es

●

● ●

54 56 58 60 62 64

0.
70

0.
72

0.
74

0.
76

RF

lambda

P
−

va
lu

es

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

original lambdas

P
−

va
lu

es

0.92331
average BIC:

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

10% higher lambdas

P
−

va
lu

es

0.94158
average BIC:

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

20% higher lambdas

P
−

va
lu

es

0.96259
average BIC:

Fig. 12. The left panel presents illustrative evolutionary paths of p-values from the V aRi

backtest described in Section 3.3.2 when individual-specific LASSO penalty parameters λi

are increased by 10% and 20%. The respective leftmost p-value corresponds to the original
choice. The right panel shows boxplots of all p-values obtained from backtesting all 57 VaR
time series. Higher p-values indicate better model fits. At the bottom of the right panel,
average values of an additional goodness-of-fit measure, the Bayesian Information Criterion
(BIC) for quantiles, are reported. Lower values imply better model fits.
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