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Abstract

We propose a framework for estimating time-varying systemic risk contributions that
is applicable to a high-dimensional and interconnected financial system. Tail risk
dependencies and contributions are estimated based on a penalized two-stage fixed-
effects quantile approach, which explicitly links time-varying interconnectedness to
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systemic risk contributions. For the purposes of surveillance and regulation of finan-
cial systems, network dependencies in extreme risks are much more relevant than
simple (mean) correlations. Thus, the framework provides a tool for supervisors,
reflecting market’s view of tail dependences and systemic risk contributions. The
framework is applied to a system of 51 large European banks and 17 sovereigns in
2006-13, utilizing both equity and CDS prices. We provide new evidence on how
banking sector fragmentation and sovereign-bank linkages evolved over the Euro-
pean sovereign debt crisis, and how it is reflected in estimated network statistics and
systemic risk measures. Finally, our evidence provides an indication that the frag-
mentation of the European financial system has peaked.

Keywords: systemic risk contribution; tail dependence; network topology; sovereign-
bank linkages; Value-at-Risk

JEL classification: G01, G18, G32, G38, C21, C51, C63

1 Introduction

A lesson from the global financial crisis has been the propensity for company-specific risk
to spill over to other firms. These spill-overs arise from contractual linkages in conjunc-
tion with heightened counterparty risk, but also from price effects generated, for instance,
by fire sales. The result of these externalities and spill-overs has been the freezing of in-
terbank markets observed at the height of the global financial crisis in October 2008. The
market freeze was followed by a much longer period of interbank market fragmentation
during European sovereign debt crisis, during which banks in core European countries
were no longer willing to finance banks in the periphery.

Another key feature, particularly salient during the European sovereign debt crisis, has
been the interplay between fiscally strained sovereigns and stressed banks. An impaired
banking sector has a limited ability to support economic activity, which in turn further
strains public finances, eventually putting in question the ability of the sovereign to clean
up the banking system. The ECB (2011, 2014) has continuously identified this adverse
feedback loop as one of the key risks to financial stability in the euro area. A better ability
to understand and monitor the fragmentation of European financial markets as well as the
interdependence between banks and sovereigns is thus of utmost importance for central
banks and policy makers.

Quantifying these relationships empirically is challenging due to (i) the high dimen-
sionality of the underlying financial and sovereign system, (ii) lack of public data on
cross-linkages and detailed individual characteristics for a large cross-section of financial
institutions and sovereigns, and (iii) the time-variability of network connections and sys-
temic risk contributions. Moreover, for purposes of surveillance and regulation of finan-
cial systems, network dependencies in extreme risks are much more relevant than simple
(mean) correlations. This requires focusing on connections between (time-varying) tails,
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as, e.g., represented by conditional quantiles, expected shortfall or related tail measures
of the underlying risk distributions. Finally, the empirical methodology should ideally
produce measures and estimates that are empirically tractable and easily interpretable.

In this paper, we address these challenges and contribute to the literature both method-
ologically and empirically. First, we further develop an econometric model that allows
handling the high dimensionality in tail risk networks while producing sufficiently precise
and robust estimates given the available data in rolling windows. Second, we provide new
empirical insights into the time-varying tail risk dependencies and spillovers between Eu-
ropean banks and sovereigns, particularly covering the 2008 global financial crisis and the
subsequent European sovereign debt crisis. We show how network interconnectedness,
fragmentation and interactions between European financial institutions and sovereigns
change over this time period and how the state of the financial system is reflected in the
topology of the underlying network.

Our methodology builds on the framework proposed by Hautsch, Schaumburg, and
Schienle (2015) (henceforth HSS2015) and Hautsch, Schaumburg, and Schienle (2014).
The underlying idea is to quantify the systemic impact of an individual company by the
marginal effect of a firm’s time-varying Value at Risk (VaR) on the VaR of the entire
system. To statistically identify the relevant tail risk drivers of a specific company out of
a high-dimensional set of potential characteristics (including the tail risk of other com-
panies), HSS2015 propose using a statistical regularization and shrinkage method. The
selection of individual-specific tail risk drivers gives rise to a risk network, determining
to what extent the VaR of a company is driven by the tail risk of other companies. This
information is then explicitly utilized in a second step, where the marginal systemic rele-
vance of an individual firm is quantified using a quantile regression of the system VaR on
the VaR of the respective company while controlling for the firm-specific risk drivers and
additional economic state variables.

The explicit quantification and utilization of network dependencies distinguishes HSS2015
from alternative methods for measuring and predicting systemic risk. Adrian and Brun-
nermeier (2011) propose the concept of CoVaR, corresponding to a company’s conditional
VaR, given that the return of some other company is on a certain benchmark value (e.g., its
individual VaR). As discussed in HSS2015, there is a major conceptual difference to our
methodology as the CoVaR does not measure the direct marginal effect of an individual
VaR on the VaR of the system, but is only evaluated of a pre-estimated VaR. Moreover,
the CoVaR does not capture any network spillovers and can only vary over time through
the effects of individual VaRs. Another complementary approach to quantify systemic
risk builds on Acharya, Pedersen, Philippon, and Richardson (2010). Here, systemic risk
is defined as the propensity of a financial institution being undercapitalized when the fi-
nancial system is under stress. This idea is put forward by Brownlees and Engle (2012) by
proposing an econometric approach to measure the so-called marginal expected shortfall
(MES), mainly building on time series (GARCH) methodology for asset returns. In the
same spirit, Engle, Jondeau, and Rockinger (2015) measure systemic risk by the expected
capital shortfall of a financial institution in case of a financial crisis and quantify it for a
wide range of non-U.S. equities. These approaches ultimately build on the conditional as-
set return distribution of an individual company given distress of the market and aim at the
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determination of capital surcharges of systemically important banks. Löffler and Raupach
(2013), however, argue that pure market-based measures’ ability to identify systemically
important banks is limited. On the one hand, this is due the fact that particularly extreme
risks are not easily assessed based on return data. On the other hand, concepts like the
CoVaR or the MES ignore tail risk dependencies induced by the underlying financial net-
work structure. An important advantage of our approach is to take these dependencies
explicitly account when constructing the measures for systemic risk contributions. This
information provides valuable additional insights into underlying tail risk connections and
risk channels as perceived by the market.

In this paper, we further develop the methodology introduced by HSS2015 in two di-
rections. First, we adapt the approach to make it feasible in situations, where the density
of the network is high and the underlying sample period is comparably short. In such a
situation, individual companies may face tail risk spillovers from many others, making
it necessary to account for large sets of individual-specific tail risk drivers when esti-
mating companies’ marginal systemic risk contribution in a quantile regression of the
system VaR. The requirement of controlling for a large number of different risk factors,
while having a comparably short estimation window, makes standard estimates inherently
inefficient and unstable and - in the extreme case – even infeasible. We therefore pro-
pose an adaptive version of the standard shrinkage technique for determining the relevant
risk drivers not only among other banks but also among sovereigns. The use of rela-
tively short estimation windows is driven by the need of accounting for time-variations in
companies’ systemic riskiness and underlying network connections. Accounting for time
variations via rolling window estimations, however, is crucial when the framework is used
for surveillance and monitoring of the system building the basis for macro-prudential reg-
ulation.

To overcome this empirical difficulty and to address the trade-off between estimation
robustness on the one hand and capturing time-variability of the underlying relationships
on the other hand, we propose combining the two-step quantile framework with a panel
fixed effects approach. While controlling for company-specific fixed effects, we keep the
model sufficiently parsimonious by imposing group-wise common parameters. In con-
trast to HSS2015, this reduces the dimensionality of the estimation problem and allows
estimating individual companies’ marginal effect on the system VaR in one step. We
show that this approach is empirically tractable and balances model flexibility and esti-
mation robustness in the given context where the financial network is of high dimension
and dense. Second, when estimating a company’s systemic relevance, we explicitly ac-
count for the interconnectedness of an institution, measured by its network centrality. In
particular, we allow an institution’s marginal systemic relevance to be time-varying and
depending – among others – on its interconnectedness. We empirically show that the
latter is a significant factor of a firm’s systemic risk contribution.

Empirically, we contribute to the literature in two major directions. First, focusing
on 51 large European banks allows us covering a substantial fraction of the European
banking system. Moreover, by analyzing data up to 2013, we are able to study the effects
of the global financial crisis, its aftermath and the transition into the European sovereign
debt crisis on the fragmentation and integration of the European financial system. Second,
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bringing together both banks and sovereigns in a network estimated based on CDS returns
yields novel insights on the interplay between banks and sovereigns. We quantify and
visualize time-varying tail dependencies, spillover directions and the density of networks,
and show how banking sector fragmentation and sovereign-bank linkages evolved over
the European sovereign debt crisis.

Beyond the growing literature on estimation of systemic risk contributions, our paper
is also related to the papers investigating the sovereign bank-interlinkages, such as Ejs-
ing and Lemke (2011), Alter and Schüler (2012), Arnold (2012), Bruyckere, Gerhardt,
Schepens, and Vennet (2013), Alter and Beyer (2014), and Correa, Lee, Sapriza, and
Suarez (2014). The key difference to the aforementioned papers, which mainly analyze
contagion or spillover effects between sovereign and bank CDS spreads or credit rating
downgrades, is the ability of our approach to incorporate both sovereigns and banks into
tail risk networks and to track how their interconnectedness evolves over time.

Furthermore, methodologically our paper is related to earlier studies analysing conta-
gion and co-movement in banks’ equity prices, in particular to Gropp and Vesala (2009),
who analyse cross-border contagion among European banks in 1994-2003 and to Bae
and Stulz (2003) and Hartmann and Vries (2004), who focus on cross-country spillovers.
Finally, our paper is closely related to the increasing literature analysing financial net-
works, contagion and systemic risk, see, e.g., Allen and Gale (2000) and Cont and Santos
(2013)1. A major difficulty in this literature is to identify connections between banks.
Unfortunately, detailed balance sheet information reflecting counterparty risk is rarely
available for a wide range of banks. Therefore, researchers seek for suitable proxies
which are widely available and sufficiently reflect network dependencies. For instance,
Minoiu, Kang, Subrahmanian, and Berea (2013) quantify the connectivity between banks
based on BIS bilateral locational statistics representing stocks of cross-border assets held
by banking systems. Alter, Craig, and Raupach (2015) utilize a dataset of credit expo-
sures of the German banking system. They study the effect of capital rules combining
individual bank characteristics and interconnectivity measures and show the usefulness of
capital rules based on eigenvectors of the adjacency matrix.

The key findings of our paper are as follows: We first document how the topology of
our tail-dependence networks evolves over time. In particular, we observe that the den-
sity of the tail dependence network based on equity prices increases from 2006 onwards,
peaks around the height of the global financial crisis and significantly declines thereafter.
We further show that during the European sovereign debt crisis in 2011-2013 financial
markets fragment along national borders as reflected by a strong increase of domestic
(within-country) linkages. This increase is more pronounced for economies engulfed
by the sovereign debt crisis. Third, the CDS price networks show that financial market
fragmentation during the sovereign credit crisis is accompanied by increased intercon-
nectedness between sovereigns and banks. Again, this increase is more pronounced in
economies at the center of the sovereign debt crisis.

We then present banks’ contribution to systemic risk at the height of the sovereign
debt crisis. Unsurprisingly, banks from EU-IMF programme countries exhibit on average

1see Chinazzi and Fagiolo (2013) for a recent review of this literature
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high contributions to systemic risk. We also document that marginal systemic relevance
increases with size, leverage, and interconnectedness. The systemic risk ranking at the
height of the sovereign debt crisis differs markedly from the one obtained during the
peak of the global financial crisis when large, international banking groups dominate the
ranking.

From a methodological point of view, we show the importance of explicitly linking
an entity’s (e.g. a bank or a sovereign) interconnectedness to its (time-varying) systemic
risk contribution. This information provides valuable additional insights into underlying
tail risk connections and risk channels as perceived by the market, and is an important
advantage of our approach compared to concepts like the CoVaR or MES, which do not
explicitly take into account interconnectedness. Second, our proposed method using the
combination of the two-stage panel framework with a panel fixed effects approach turns
out to provide sufficiently robust estimates given data availability and the need of address-
ing a dense tail risk network.

The remainder of the paper is organized as follows. Section 2 explains the estimation
methodology while Section 3 describes the dataset. Section 4 presents the results and is
divided into three subsections: Subsection 4.1 illustrates the estimated time-varying tail
risk networks, Subsection 4.2 describes the sovereign-bank interactions, while Subsection
4.3 presents the systemic risk contributions. Finally, Section 5 concludes.

2 Methodology

Our empirical methodology for estimating systemic risk contributions is based on two
steps. The first step is necessary for determining the time-varying topology of the under-
lying tail risk network of banks and sovereigns. While the risk network contains valuable
economic information on its own, it is indispensable for identifying the systemic risk con-
tribution of a bank in a densely interconnected system. The outcome of this step is the
estimated conditional VaR of each institution given the underlying network structure and
economic state variables. The second step explicitly utilizes information on the identified
network to estimate an individual institution’s marginal impact on the system VaR.

2.1 Time-Varying Bank-Sovereign Networks

We constitute generalized tail risk networks for the European bank-sovereign system
by adapting and extending the approach in Hautsch, Schaumburg, and Schienle (2015).
In particular, we account for potentially time-varying bank-sovereign spillovers and ex-
plicitly include sovereigns as important parts of the generalized European financial net-
work. The main idea is to empirically determine a network link from bank/sovereign j to
bank/sovereign i, whenever the tail risk of i is (positively) affected by the distress of j.
Denoting the equity or CDS return of bank/sovereign i by X i

t , the tail risk of i is reflected
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by its conditional Value-at-Risk (VaR), V aRi
q,t, given a set of i-specific risk drivers Ri

t,
i.e.,

Pr(−X i
t ≥ V aRi

q,t|Ri
t) = q, (1)

with V aRi
q,t denoting the (negative) conditional q-quantile of X i

t .
2 The distress of a

bank/sovereign is identified by the corresponding return being below its empirical 10%
quantile. Accordingly, we define a so-called loss exceedance byNt,j = Xj

t 1(Xj
t ≤ Q̂j

0.1),
where Q̂0.1 is the unconditional 10% sample quantile of Xj

t .

The entire set of tail risk drivers of a bank/sovereign i thus consists of loss exceedances
of banks/sovereigns other than i, captured by a vectorN i

t with elementsNt,j for j 6= i, and
additional observable control variables Zi

t . These externalities Zi
t contain lagged macro-

financial state variables, and, in case of banks, i-specific balance sheet characteristics.
Specifying V aRi

t as a linear function of the regressors yields

V aRi
t = αi0 + αi1Z

i
t + αi2N

i
t . (2)

In theory, it appears straightforward to estimate this model by standard linear quantile
regression techniques (see Koenker and Bassett (1978)) accounting for time variation in
the structural relation by rolling windows. In practice, however, this is infeasible as the
number of loss exceedances N i

t potentially affecting i is large. Including the entire set N i
t

as regressors in the model would result in highly imprecise and unstable estimates. More-
over, (sequential) tests on the statistical significance of individual variables are virtually
infeasible with outcomes hardly interpretable.

Following HSS2015, we therefore statistically identify the subset of relevant i-specific
loss exceedances, denoted by N (i)

t , from the full set of potential network influences N i
t

by a model shrinkage technique. In particular, we use a weighted version of the least
absolute shrinkage and selection operator (LASSO) approach for quantile regression as
introduced by Belloni and Chernozhukov (2011). The idea is to run a penalized quantile
regression to find the estimate α̂i of αi := (αi0, α

i
1, α

i
2) by

α̃i = argminαi

1

τ

τ∑
t=1

ρq

(
X i
t + αi0 + αi1Z̃

i
t + α2

iÑ i
t

)
+ λi

√
q(1− q)
τ

K∑
k=1

wikσ̂k|αi2,k| ,

(3)
where τ denotes the number of observations, Z̃i

t and Ñ i
t denote the set of potential (de-

meaned) regressorsZi
t andN i

t , ρq(u) is the quantile loss function ρq(u) = u(q−I(u < 0))
at level q with the indicator I(·) being one for u < 0 and zero otherwise, and σ̂k is the
empirical standard deviation of the k-th component in N i

t .

The coefficient λi is a penalty parameter, which penalizes regressors which do not suf-
ficiently contribute to the objective function, and thus are not relevant for the model. Due
to the penalization, the coefficients of these regressors are shrinked towards zero. Hence,
the penalization component allows identifying relevant loss exceedances as those regres-
sors with sufficiently large marginal effects. Correspondingly, a regressor is de-selected

2We use the convention that V aRq is defined as the negative conditional q-quantile such that higher
levels of risk are reflected by higher levels of VaR.
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if its (adaptive) LASSO estimate in α̃i2 is close to zero. The strength of the penalization is
therefore governed by λi with the number of eliminated regressors increasing in λi. For
instance, for λi = 0, we obtain the standard quantile regression problem according to
Koenker and Bassett (1978). As loss exceedances of banks and sovereigns might be of
quite different magnitudes, it is important to allow for regressor-specific penalizations wik.
Both λi and wik are chosen in a data-driven way, optimizing the score of (3) with remain-
ing constants, maximizing the in-sample predictive ability of the resulting post-LASSO
quantile specification. The quality of the in-sample fit is evaluated based on the model’s
backtesting performance. The details of this procedure are presented in the Appendix.
Finally, retaining only the regressors, which are not de-selected by the weighted LASSO
results into the corresponding ’post-LASSO’ VaR specification.

The weighted quantile LASSO approach is performed for each bank and sovereign
i. The final set of post-LASSO regressors yields the set of i-specific tail risk drivers.
Then, the weighted LASSO-selected i-specific loss exceedances N (i)

t constitute directed
network impacts to bank i. By moving through all banks in the system, we thus obtain
a network graph showing tail dependence relationships among banks conditional on the
control variables Zi

t .

In contrast to HSS2015 we allow for time-variations in network dependencies and
perform the analysis based on rolling windows, where sample windows of 24 months are
rolled over at a yearly frequency.3 In particular, at the beginning of each period, indexed
by t0, we determine relevant risk drivers based on the weighted LASSO approach utilizing
information from the previous two years. Networks are thus year-specific and can vary
on an annual basis. Correspondingly, the VaR of firm/sovereign i at time t in year t0 is
determined as

V̂ aR
i,t0

t = α̂i,t00 + α̂i,t01 Zi
t + α̂i,t02 N

(i,t0)
t , (4)

where N (i,t0)
t is the set of i-specific loss exceedances selected by the LASSO procedure

for the period indexed by year t0 and the coefficients α̂i,t00 , α̂i,t01 and α̂i,t02 are obtained by
the year-t0 post-LASSO quantile regression.

This approach is performed in Section 4 to estimate (i) tail risk networks of finan-
cial companies based on equity returns with sovereigns’ bond returns serving as (non-
penalized) state variables and (ii) joint tail risk networks of both banks and sovereigns
based on corresponding CDS returns. For all networks, we use a q = 5% VaR. For more
details on the choices of Zi

t and N i
t , see Section 4.

2.2 Evaluating Systemic Impact

We define the systemic risk contribution of a bank as the total realized impact of a change
in a bank’s VaR on the VaR of the entire system. Following HSS2015, we denote this
effect as realized systemic risk beta. To quantify this measure, the system VaR V aRs

t

3With an estimation window of 24 months, a sufficient amount of observations occur in the extreme 5
and 10% quantiles such that point estimates have an acceptable precision and are still based on the most
recent information only. In order to limit computational complexity but to gain an overall picture of the
time evolution of the network, we use yearly rolling windows.
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is defined as the VaR of a value-weighted portfolio of firms representing the financial
system. Moreover, as explained in more detail below, we build groups g = 1, . . . , G of
institutions, which allows us to estimate group-specific marginal effects of certain vari-
ables instead of individual-specific marginal effects.

Thus, the effect of the estimated V̂ aR
i,t0

t on V aRs
t in a dense network within a given

group g of banks at time point t in year t0 is obtained from

V aRs
t = βt0g (Bi

t, net
i,t0
t )V̂ aR

i,t0

t + γi,t0 + θt01 Z
s
t + θt02 R

(i,t0)
t , (5)

where the (time-varying) marginal effect βt0 is referred to as systemic risk beta. The
specification implied by (5) constitutes a major difference to HSS2015. In HSS2015, the
system VaR is linked to the VaR of each individual institution while controlling for its
specific tail risk drivers. This results into a set of equations for V aRs

t with i-specific
regressors. In a high-dimensional and dense network, however, this results into a high-
dimensional system of highly parameterized specifications which becomes practically in-
feasible and numerically instable if the sample size is not sufficiently high. To overcome
this problem and to make the approach feasible in high dimensions, we therefore propose
restricting several parameters to be common and group-specific and estimating V aRs

t in
one step.

Apart from time variations of βt0 arising from the rolling window estimation, we al-
low for additional variation within a two-year period (indexed by t0) by modeling βt0

as a function of firm-specific characteristics Bi
t and an i-specific local network measure,

neti,t0t , defined as the logarithm of one plus the out-degree of node i in the network topol-
ogy.4 The latter characterizes the firm’s interconnectedness in the corresponding year-t0
network topology at time t, and thus explicitly links a firm’s marginal systemic relevance
to its role in the underlying tail risk network. This specification extends the initial setting
by HSS2015 to explicitly allow for feedback effects between a firm’s interconnectedness
and its VaR’s marginal effect on the system VaR.

Furthermore, γi,t0 is a firm-specific fixed effect, R(i,t0) is a value-weighted index of the
VaRs of all banks selected as being relevant for bank i in the first step, and Zs contain
lagged macro-financial state variables. The inclusion of these i-specific control variables,
in particular the individual-specific fixed effect and the aggregated indicator for network
spillover influences on beta R(i,t0), provide a robust way to obtain unbiased estimates of
β. To keep the approach computationally tractable, we assume βt0 being linear in its
components within a group g ∈ {1, . . . , G} of similar institutions in a dense network, i.e.,

βt0g (Bi
t, net

i,t0
t ) = δt00,g + δt01,gB

i
t + δt02,gnet

i,t0
t . (6)

The grouping of institutions is necessary in order to balance robustness of the obtained
beta measure against the variability required for consistent estimation of the effect. Hence,
pooling together firms which are found as being similar in terms of their (average) marginal
systemic impact and their marginal effects with respect to the variablesBi

t , allows estimat-
ing the parameters in (6) group-wise instead of individual-specific. Though working with

4The specification neti = log(1+out-degreei) exploits the directed nature of the network. Conditioning
on the risk driver index R controls for incoming linkages.

9



only one large panel without subgroups for all institutions would induce too much rigid-
ity on the common parameters which we, however, find to differ substantially between
groups in our data. In practice, we suggest a simple and straightforward data-driven pro-
cedure to obtain adequate groups, which we outline below in the empirical section. Thus,
groups are objective and yield a stabilizing effect on the obtained systemic risk beta in a
dense network.

The full specification is then estimated by a single (pooled) quantile SUR system re-
gression with the inclusion of appropriate group and bank specific dummies. The system
is obtained analogously to a system formulation of a set of linear equations. The latter
are given by (5) for each company i. The system then gives rise to a vector contain-
ing (repeated) equation-specific realizations of V aRs

t , a block-diagonal regressor matrix
collecting equation-specific regressors in each block, and a stacked vector of parameters.
The latter, however, is restricted as the coefficients of control variables from the systemZs

and from the network R(i,t0) are common across all institutions, and influences of balance
sheet characteristics on βt0g () only vary across subgroups in estimates of δt01,g. Likewise
Zs is common across all equations. Note that despite group-specific common parameters
in (6), an individual bank’s systemic risk beta βt0g () still varies on an individual basis as
it depends on i-specific variables Bi

t and neti,t0t . Moreover, γi,t0 differs across all banks
and captures individual fixed effects. This model and estimation strategy yields stabilized
parameter estimates by exploiting as much cross-sectional variation as possible without
losing consistency of the estimate for βt0 . Moreover, we can estimate all coefficients of
(5) and (6) in one step, in contrast to a multiple-equation estimation as in HSS2015. Fi-
nally, the included fixed effects γi,t0 capture potentially neglected bank-specific covariates
making the approach more robust to potential misspecification.

Finally, we obtain an estimate of the realized systemic risk beta βs|i as

β̂
s|i
t := β̂t0(Bi

t, net
i,t0
t )V̂ aR

i,t0

t . (7)

Based on this measure we assess the overall systemic importance of institutions. It reflects
the total realized effect of an increase in a bank i risk level on the risk of the entire system.
This impact consists of the direct impact via the idiosyncratic VaR but also of a potential
change in the marginal systemic effect via βs|it . Our rankings in the following are based
on realized systemic risk betas in the 5%− V aRs.

3 Data

Our dataset consists of 51 large European banks, which we choose based on the following
criteria. First, we select the largest European banks, covering up to 90% of the European
banking system’s total assets (in 2010), which results in 74 banks. Second, as the empiri-
cal analysis requires equity price data, we keep only the publicly traded and listed banks in
the sample, which leaves us with 53 listed banks, covering 72.4% of the European banking
system’s total assets. Third, two further banks (Bankia and Österreichische Volksbanken)
are dropped from the sample due to data limitations. The list of 51 banks in the sample
is shown in Table 1. The financial system in the second stage is represented by the Stoxx

10



Europe 600 Financial Services index, where we use daily observations. For each institu-
tion, we use daily equity price returns and as bank specific risk drivers quarterly balance
sheet data covering the period from 01/07/2006 to 30/06/2013. For the CDS networks,
we employ available daily changes (first differences) in 5-year senior CDS spreads.

As V aRi-specific control variables Zi
t , we choose a set of bank-specific balance sheet

characteristics. These include leverage, measured as total assets over total equity, to cap-
ture the fragility of a bank, but also loan loss reserves and return on assets represent asset
quality, whereas the cost-to-income ratio and the price-to-book ratio measure manage-
ment quality. The return on equity measures a bank’s capacity to generate earnings, while
the ratio of net short-term borrowing to total liabilities and the loan-to-deposit ratio cap-
ture liquidity risk. The size, measured as total assets, proxies for the bank being too big
to fail. As all balance sheet data is available only quarterly whereas stock or CDS prices
are daily, each piece of balance sheet information enters the regression at its release date
to obtain results in real-time.

The dataset also includes macro-financial state variables which are all observed daily.
We use the Euribor-OIS spread as barometer of distress in money markets covering both
liquidity and credit risk. The VDAX index measures implied volatility in the German
stock market, proxying for investors’ risk appetite. The macro-financial state variables
listed above are also used as control variables Zs

t in the second stage regression. More-
over, as variables driving the time variability of systemic risk betas,Bi

t contains the subset
of balance sheet characteristics with a distinct macro-prudential interpretation, in this case
leverage and size as defined above.

To represent sovereign risk, we also collect data on the sovereigns of the countries
where the banks are headquartered. Thus, our sample includes the following sovereigns:
Austria, Belgium, Cyprus, Germany, Denmark, Spain, Finland, France, Greece, Hungary,
Ireland, Italy, the Netherlands, Poland, Portugal, Sweden and the UK. The data include
the daily yields on 10-year benchmarks bonds, the slope of the yield curve as measured by
the daily yield difference between 10-year and 2-year bonds as well as the daily changes
(first differences) of 5-year sovereign CDS spreads5.

Tables 1 and 2 provide basic summary statistics of the stock and CDS returns of the
banks and sovereigns in the sample. All financial variables as transformed and employed
in the analysis are tested to be stationary, as well as the regressors mentioned above. The
data source for all economic and financial variables is Bloomberg.

5Greece could not be included in the CDS network analysis as there was no trades of Greek CDS
following the Sovereign debt restructuring in March 2012 until May 2013.
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4 Results

4.1 Time-varying tail risk networks of banks

Figures 1 and 2 and Tables 3 and 4 visually and quantitatively characterize the evolution
of tail dependence networks of all financial companies for all six (overlapping) two-year
sub-periods. Here, the control variables Zi

t in (2) contain company-specific characteris-
tics and macroeconomic state variables as described in Section 3. We measure a bank’s
interconnectedness by its network degree and graphically illustrate it by the size of the
nodes in Figures 1 and 2. In the figures, we label all banks whose degree is above the
75th percentile of the degree distribution in the respective subperiod. The shape of each
network is obtained by minimizing the length of all aggregated network connections be-
tween all institutions. Correspondingly, the most connected firms are located in the center
of the network graph.

The main findings can be summarised as follows. First, the density of the network
increases between 2006 and 2008, peaks in the 2008-2010 period and declines thereafter.
At the height of the global financial crisis (2008/09), we observe the strongest estimated
interconnectedness between European banks, as reflected by the size of the nodes and
the number of identified linkages. The network structure in the subsequent periods (from
2010 onwards), however, indicates a clearly different picture. Here, the interconnect-
edness between the banks strongly declines and the European banking system becomes
more fragmented. This is most obvious in the period 2010-2012, reflecting the height of
the European sovereign debt crisis.

According to Figures 1 and 2, the density of the network clearly varies over time indi-
cating that the financial system is moving through different states. This is confirmed by
the corresponding network densities reported in Table 3.6 The network density increases
from 0.07 in the first subperiod to 0.08 at the height of the global financial crisis. In con-
trast, during the European sovereign debt crisis, the network density decreases to 0.04.
The pattern is intuitive as one would expect tail dependence between banks to increase
during a financial crisis. Conversely, a stronger role of sovereigns in transmitting shocks
should be reflected in sparser tail dependencies between banks. Since sovereign bond
returns serve as non-penalized control variables, a stronger impact thereof might be re-
sponsible for the decline of network density after 2008. Tail dependence networks where
sovereigns are not used as control variables but as risk drivers (see Section 4.2) confirm
the view that the decline of network densities in bank-only networks during the period
2010 to 2013 reflects mainly the increasing role of sovereigns. On the other hand, the
increase in network densities from 0.04 to 0.05 between the two last subperiods suggests
that the intensity of the sovereign debt crisis has to some extent receded.

The colour of the nodes, indicating the countries where the banks are headquartered,
illustrates the impact of country-specific developments on the network structure. While
during the 2006-2008 period, the most interconnected firms originate pre-dominantly

6The network density is calculated as the number of actually observed connections in the network di-
vided by the number of possible connections for the given nodes.
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from Spain, but also from France, Portugal and Ireland, in the subsequent period also
Italian and British banks move to the center of the network. Both network graphs depict
pronounced country-specific clusters with strong cross-country links, in particular, among
banks in the center of the network. These developments might already indicate upcoming
problems in the banking sector of these countries, partly driving the European sovereign
debt crisis in 2012/13. While these ’national clusters’ disappear in the height of the global
financial crisis (reflected by the 2008-2010 subgraph), they become very pronounced in
the aftermath.

The sovereign debt crisis in particular is characterized by a strong fragmentation of
the financial network with ’domestic’ linkages (i.e., linkages between companies within a
country) becoming increasingly prominent. This is confirmed by Table 3, showing that the
share of domestic linkages (relative to all linkages) has increased from 0.28 in the 2008-
2010 sub-period to 0.52 in the 2010-2012 sub-period. Again, the slight decrease to 0.45
in the latest sub-period might reflect a relaxation of the sovereign debt crisis. This is most
obvious for financial institutions in Greece and Cyprus, Italy, Spain and Portugal, and
(partly) France. Particularly Greece and Cyprus move towards the fringe of the network.
In the 2010-2013 sub-periods, they are totally disconnected from the rest of the network.
Also Spanish and Portuguese banks jointly leave the center of the network (2009-2011),
with in particular the Portuguese banks becoming increasingly disconnected to the rest of
the system.

Third, Table 4 provides the shares of domestic links separately for countries, which
have been particularly affected by the sovereign debt crisis (in particular, Cyprus, Greece,
Ireland, Italy, Portugal, and Spain) and all other countries. It turns out that countries af-
fected by the sovereign debt crisis display on average a higher share of domestic linkages.
This is most pronounced during the 2009-2011 and the 2010-2012 period, and is consis-
tent with the notion that financial fragmentation has primarily affected banking systems
in the European periphery.

Fourth, during the financial crisis periods (Figure 1), we observe that some banks are
particularly strongly interconnected. In the 2006-2008 sub-period, the Spanish banks
Banco Santander, Banco de Sabadell and Banco Popular Espanol are in the center of the
tail dependence network but also the French BNP Paribas, Credit Agricole and Societe
Generale, as well as the Portuguese Espirito Santo Financial Group, the Belgian Dexia,
Bank of Ireland, the Royal Bank of Scotland and German Commerzbank stand out as
strongly interconnected banks. In the 2007-2009 sub-period, the Spanish banks Banco
de Sabadell and Banco Popular Espanol are most strongly interconnected, while in 2008-
2010 this role is taken by the Italian Banco BPI. Banco de Sabadell and the Royal Bank
of Scotland constantly appear among the most interconnected banks in the first three of
the six subperiods. Also Credit Agricole belongs to this group at the very beginning and
at the height of the financial crisis.
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4.2 Sovereign-bank interaction

Complementing the analysis above by a corresponding analysis based on CDS data opens
up a valuable additional perspective. CDS prices reflect investors’ expectations on default
risks, and thus are explicitly connected to extreme market movements. Moreover, utilizing
CDS returns allows us constructing and analyzing a network of both financial companies
and underlying sovereigns. This complements the analysis above, where information on
sovereign risk enters the analysis only via respective bond returns used as economic state
variables. According to the ECB and the IMF7, the European sovereign debt crisis is char-
acterised by the interplay of fiscally constrained sovereigns and weak banking systems.
Exploiting CDS prices enables us to study to what extent this relationship is also reflected
in the tail dependence networks.

The network construction differs from the procedure explained in Section 4.1 in the
following way: First, instead of equity returns as underlying variables we utilize CDS
returns of both banks and sovereigns. Accordingly, bank and sovereign CDS returns
are both penalized in the weighted LASSO approach. As illustrated below, this leads
to an overall lower level of penalization, which is reflected in higher network densities.
Second, when modeling the VaR of a bank, Zi

t consists of bank-specific balance sheet
characteristics and macro-financial state variables (as described in Section 3). Conversely,
in case of a sovereign, we only include macro-financial state variables.

Figures 3 and Figure 4 present the corresponding CDS-based networks. The figures
reflect the implications of the sovereign debt crisis in the sense that some sovereigns (rep-
resented by square vertices), mostly those affected by the crisis, move towards the center
of the networks. This is particularly true in the aftermath of the global financial crisis and
the increase of the sovereign debt crisis (2010-2012). Particularly, the CDS tail risk of
France, Italy and Spain becomes deeply connected with the tail risk of financial compa-
nies. Italy stands out as the most important sovereign according to this topology, but also
France and Spain exhibit a high degree of interconnectedness in 2010-2012. This shape
persists also in 2011-2013, where also Portugal, Ireland and Austria gain importance. The
centrality of the German sovereign, on the other hand, is comparatively low, confirming
Germany’s role as anchor of stability as opposed to a transmitter of tail risk.

Table 5 shows that the evolution of network density over time resembles that of the
bank networks above until the period 2008-2010. In both cases, they peak during 2008-
2010. The CDS-based networks, however, reach another high during 2011-2013, where
the network density is equal to the crisis peak level. This suggests that tail dependence
as measured by network density in sovereign-bank networks can serve as an indicator for
the intensity of the crisis. While the 2010-2012 period was just as critical to the survival
of the European Monetary Union as the 2008-2010 period, the first was not detected as
problematic by pure bank networks.

The increase of sovereigns’ interconnectedness is particularly true for countries which
have been strongly affected by the sovereign debt crisis (so-called ’crisis countries’), i.e.,

7See, e.g., ECB Financial Stability Reviews (2011, 2012) or the IMF Global Financial Stability Reviews
(2011, 2012).
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Ireland, Italy, Portugal and Spain. According to Table 6, the interconnectedness of ’crisis
countries’ and ’non-crisis countries’ is relatively similar during the global financial crisis
(2006-2008).8 In the subsequent periods, however, we observe a clear increase of the
average centrality of ’crisis countries’, while others are only affected to a much smaller
extent. These results indicate that a simple network statistic, as the network degree, cap-
tures substantial information about the evolution of a sovereign’s contribution to systemic
risk.

The share of sovereign-bank linkages, as shown by Table 7, reveals supportive infor-
mation for this view. During the global financial crisis, ’crisis countries’ show, on average,
a slightly lower share of sovereign-bank linkages than the others. With the advent of the
European sovereign debt crisis, however, the picture strongly reverts with the share of
sovereign-bank linkages of ’crisis countries’ increasing, where that of the other countries
remains at about the same level. Hence, it is not only the increasing interconnectedness of
a sovereign, but obviously the increase of linkages to financial institutions. Italy displays
a particularly high share of sovereign-bank linkages, whereas that of Germany is compar-
atively low. In contrast, the time evolution of financial fragmentation, as represented by
the share of domestic linkages, resembles that of the bank networks analyzed in Section
4.1. Again, fragmentation peaks during 2010-2012 before receding slightly.

4.3 Systemic risk contributions

Building on the estimated banking network structure in Section 4.1, we estimate the sys-
temic risk contribution of a bank based on (5) and (6). The choice of the underlying
grouping follows two criteria: On the one hand, banks within a group should be preferably
similar in terms of their average marginal systemic impact and the way how characteris-
tics B influence this effect. In this case, the coefficients of components of the systemic
risk beta (6) are captured sufficiently well by corresponding common parameters within
the group. On the other hand, we aim at keeping the number of groups small to ensure
the availability of a sufficient number of observations per group and thus the precision
of the resulting estimates. Investigating different combinations and number of groups we
find a setting where the regressions are based on three groups as most appropriate: In
particular, where the first group contains all banks below the overall empirical median in
size and below median in leverage; the second is below median in size and above median
in leverage, or vice versa; and the last is above median in size and above the median in
leverage.

Figure 5 shows the estimated systemic risk network at the height of the European
sovereign debt crisis in June 2012. It stems from the baseline specification as used in Sec-
tion 4.1. While depicting the underlying network structure, we visualize the magnitude
of the estimated systemic risk beta, the corresponding VaR and the resulting total effect
corresponding to the product of the two and referred to as realized systemic risk. Again,
the node sizes reflect the quartiles of the corresponding underlying (cross-sectional) dis-
tributions with banks being in the respective top quartile explicitly labeled.

8The first period is discarded due to lack of data for Denmark, the Netherlands, Sweden and the UK.
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The first two plots of Figure 5 highlight the differences between the individual and the
systemic perspective. The banks that rank highly in the marginal systemic relevance dis-
tribution are comparatively large and well known entities, including BBVA and Santander
from Spain, or Barclays, HSBC, and Royal Bank of Scotland from the UK. The banks that
rank highly in the VaR distribution, on the other hand, are mainly from crisis countries.
For instance, all banks headquartered in Greece and Cyprus are in the highest quartile of
the VaR distribution. At the same time, they exhibit only moderate correlations with the
left tail of the risk index. Conversely, the Swedish banks display a comparatively strong
correlation with the risk index, but are safe individually.

The third plot of Figure 5 shows the distribution of realized systemic risk, integrating
the individual and the systemic perspective. Banks in the fourth quartile of the distribution
tend to rank highly in one risk metric and to exhibit an intermediate level in the other
metric. Only three banks which are typically considered as belonging to the core euro
area are in the fourth quartile of the realized systemic risk distribution: Dexia, KBC, and
Natixis. Perhaps more surprisingly, this is true for only one bank each from Italy and
Spain, despite the pressure exerted by financial markets at this stage of the sovereign debt
crisis. Less surprisingly, five banks from the crisis countries are present in the fourth
quartile of the realized systemic risk distribution.

Table 9 ranks banks according to marginal systemic relevance and lists the associated
group as well as the bank’s size, leverage and interconnectedness in June 2012. The table
shows that the estimated systemic risk beta increases with size and leverage as captured
by our grouping. The last column demonstrates that more interconnected banks likewise
display a higher degree of tail dependence. Thus, size, leverage, and interconnectedness
affect the estimated systemic risk beta in line with prior expectations. More importantly,
the results suggest that traditional balance sheet characteristics alone provide an incom-
plete account of systemic relevance.

We, moreover, show the results of our analysis for another key period, October 2008,
right after the default of Lehman Brothers on 15 September 2008. Similarly to the anal-
ysis above, Figure 6 illustrates the marginal systemic relevance, the Value-at-Risk and
realized systemic risk contributions of the individual European banks at the eye of the
global financial crisis. Likewise, Tables 10 and 11 show the overall ranking based on the
realized systemic risk as well as its components. In October 2008, we observe the highest
systemic risk for Dexia, Bank of Ireland, Royal Bank of Scotland, Commerzbank and
KBC. In case of Dexia, Royal Bank of Scotland and Commerzbank, this is explained by
a high estimated systemic risk beta, and in particular high leverage and size. In contrast,
the high estimated systemic risk contribution of Bank of Ireland and KBC is mainly ex-
plained by a high level of Value-at-Risk. The difference between the estimated systemic
risk rankings in October 2008 and June 2012 is noticeable. While Dexia, Barclays, Royal
Bank of Scotland and Irish Life and Permanent rank high in terms of their estimated sys-
temic risk contributions in both periods, the top ranking banks clearly differ. In the latter
period, several banks from countries participating in the EU-IMF programme occupy the
highest ranks, while in the former period, large, international bank such as Royal Bank of
Scotland, Commerzbank, Credit Agricole, Barclays, Societe Generale and Lloyeds rank
high.
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Figure 7 shows the distribution of the systemic risk beta, Value-at-Risk and realized
systemic risk conditional on whether banks have received a capital injection in the fourth
quarter of 2008.9 All risk measures point into the same direction and are higher for
those banks that were subject to capital injections. The realized systemic risk measure
combining both individual and systemic perspective is apparently better at discriminating
between the two groups than either of the other measures solely. This is intuitive as many
of the banks that failed at the height of the financial crisis were the large international
banks.

Figure 8 presents the same comparison for the second quarter of 2012. In this period,
a slightly different picture emerges. As in 2008, banks that were re-capitalized in the
second quarter of 2012, exhibit a higher median Value-at-Risk and thus are considered as
being fragile by market participants. The systemic risk beta, however, appears to be lower.
Though this results seem to be counterintuitive at first glance, it becomes plausible when
considering the identity of the banks. Actually, four of the eight banks that received a cap-
ital injection were Greek.10 The re-capitalization followed the Private Sector Involvement
in March 2012. Thus contagion links between Greek banks and the rest of the European
banking system had been severed by then. This is consistent with the structure of the tail
dependence network, where the separate component formed by Greek and Cypriot banks
suggests that these were subject to different shocks than the rest of the European banking
system.

Figure 9 shows how in the case of four sample banks marginal systemic relevance
evolves over time. Particularly Allied Irish and Dexia exhibit a considerable time vari-
ation. The marginal systemic relevance of Allied Irish peaked before Ireland signed the
economic adjustment programme with the Troika in the second half on 2010. By June
2012, it then declined to less than a quarter of its maximum. Analogously, the marginal
systemic relevance of Dexia was at its all time high in the run-up to its first bailout in
fall 2008. The figure moreover separates the marginal systemic relevance βt0g (Bi

t, net
i,t0
t )

into its underlying components. In particular, we quantify the contribution of a bank’s
interconnectedness (as reflected by neti,t0t ) by δt02,gnet

i,t0
t , whereas that of the other com-

ponents is given by δt00,g + δt01,gB
i
t with Bi

t including size and leverage. The plots illustrate
the fact that network effects matter. In particular, it seems that interconnectedness is
comparatively more important for the below median leverage and size banks in group 1
(such as Allied Irish), and the above median and size banks in group 3 (like Barclays or
Dexia) than banks in group 2 with leverage and size being in opposite categories (such as
Santander).

Figure 10 shows the relative proportions of interconnectedness as a share of marginal
systemic relevance δt02,gnet

i,t0
t /βt0g (Bi

t, net
i,t0
t ). The plot associated with Allied Irish sug-

gests that up to 2011 about 70% of the bank’s marginal systemic relevance was due to
interconnectedness. Similarly, our estimates attribute about 40% of Dexia’s marginal sys-
temic relevance before the second bailout to interconnectedness. Both banks have a zero

9Data on capital injections come from Betz, Oprica, Peltonen, and Sarlin (2014). The following banks
were recapitalized in October 2008: Credit Agricole, BNP Paribas, Commerzbank, Dexia, Erste Bank
Group, Societe Generale, KBC, Royal Bank of Scotland, and Swedbank.

10The following banks were re-capitalized in the second quarter of 2012: Alpha Bank, Banco Comercial
Portugues, Monte dei Paschi, Banco BPI, Marfin, National Bank of Greece, EFG Eurobank, Piraeus.
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contribution of interconnectedness in the penultimate and the last two subperiods, respec-
tively. This follows from an out-degree of zero in the corresponding tail dependence
networks.

4.4 Robustness Checks

To validate our analysis, we conduct various robustness and sensitivity checks: First, we
analyze the sensitivity of results with respect to the choice of the risk index R(i,t0). While
the form of weighting (e.g., equal-weighting versus value-weighting) does not qualita-
tively change the results, its role as control variable for a consistent estimation of sys-
temic risk betas is distinct. Actually, omitting R(i,t0) influences the estimates of systemic
risk betas and consequently the resulting systemic risk ranking. Second, we check the de-
pendence of beta estimates on the number of underlying groups. Using, for instance, an
even rougher categorization based on two groups only, has very mild effects on the final
outcomes. Hence, our estimates show sufficient stability with respect to the underlying
grouping. Third, we redo the analysis by including asset growth as additional control in
the vector B. This extension, however, produces multi-collinearity effects inducing un-
stable estimates. Therefore, a specification with leverage, size and netit as the drivers of
time variation in systemic risk beta turns out to be sufficient. 11

Generally, it has been shown that network components substantially increase the over-
all performance of individual Value-at-Risk models in terms of resulting backtest p-
values (Hautsch, Schaumburg, and Schienle (2015), Hautsch, Schaumburg, and Schienle
(2014)). Moreover, if macroeconomic and balance sheet characteristics of financial in-
stitutions are data-driven penalized, they often are de-selected by the LASSO procedure
when controlling for tail network effects, which themselves are determined as highly sig-
nificant (see Hautsch, Schaumburg, and Schienle (2015)). We find that the inclusion of
sovereign tail effects helps to further augment the model fit for banks’ idiosyncratic risk
during the sovereign debt crisis. In particular, we obtain an 8.2% increase of the me-
dian backtest p-value across all crisis countries when comparing the model with included
sovereign tail network effects to the model based on a network of financial institutions
only.12 Furthermore, network effects substantially contribute to the systemic risk beta.
This is illustrated in Figure 9 for representative examples of each of the groups. In par-
ticular, for Dexia after 2011 and Santander, more than 90% of the final size of β results
from interconnectedness. Thus network effects matter in both parts of the procedure and
their impact on the final measure of systemic relevance is non-negligible.

11We have also experimented with alternative interconnectedness measures without obtaining systemati-
cally different results. This is due to the fact that in most periods, our measure is relatively highly correlated
with alternative measures, such as PageRank or closeness.

12We use the likelihood ratio backtest for conditional VaR (see Berkowitz, Christoffersen, and Pelletier
(2011)) and compare the median of in-sample p-values.
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5 Conclusions

The paper provides a framework for estimating time-varying systemic risk contributions
of financial entities and applies it to a comprehensive sample of large European banks.
Our measure of realized systemic risk takes into account both the individual riskiness
of the bank as well as the degree of price co-movement with the left tail of the finan-
cial system return distribution, which we refer to as marginal systemic relevance. Not
surprisingly, we find that at the height of the sovereign debt crisis, banks from coun-
tries participating in the EU-IMF programme exhibit the greatest degree of systemic risk
contributions. We document that marginal systemic relevance increases with size, lever-
age, and interconnectedness. Taking these factors into account, banks from programme
countries rank highly in the distribution of realized systemic risk. However, there is a no-
ticeable difference to the estimated systemic risk ranking at the eye of the global financial
crisis with large, global banks ranking at the top.

The systemic risk contributions are based on tail dependence networks that can be used
as monitoring tool and thus are an output of interest in its own right. We show that the
network density varies with the intensity of the financial crisis. We further document
that the fragmentation of the European financial system is reflected by a clustering of tail
dependence relationships at the country level and provide evidence that fragmentation has
peaked. Constructing the networks based on CDS spreads allow for a symmetric treatment
of banks and sovereigns and for an explicit representation of bank-sovereign interactions.
The tail dependence networks reveal a dramatic increase in the interdependence of banks
and sovereigns since the beginning of the financial crisis. While there is evidence that
bank-sovereign interaction has peaked, it is still way above the levels observed before the
crisis.

We believe that our framework can be a useful monitoring device for policy makers.
As it is based on asset prices and the procedure is highly data driven, the resulting tail
dependence networks provide a market view on systemic risk relationships in the banking
system. Such a market view provides a complementary perspective to networks based
on contractual linkages between banks that are visible only by a supervisory authority.
The systemic risk rankings can be likewise used for monitoring purposes. A consistently
high ranking in any of the three risk metrics should trigger a supervisory follow-up. We
caution against mechanically tying the systemic risk measure to a regulatory measure
such as a capital surcharge as advocated by (Acharya, Engle, and Richardson 2012). The
systemic risk ranking produced by our methodology can feed into the regulatory process, a
measure such as a capital surcharge for systemically relevant financial institutions should
be, however, based on a broader set of indicators and considerations.
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Appendix

Selection algorithm for relevant risk drivers

We adapt the data-driven procedure of Hautsch, Schaumburg, and Schienle (2015) to ac-
count for time-variation in tail risk networks and different types and scalings of potential
risk drivers. Determination of relevant risk drivers R(i,t0) at the beginning of a year t0
uses information of observations from the previous two years on a rolling window basis.
Hence, it is based on approximately τ = 500 observations Rt0−τ , . . . , Rt0−1, where each
Rt is a K-vector of centered observations of the potential regressors. The idea is to use
penalized quantile regression of LASSO-type for model selection and then to re-estimate
the obtained model for obtaining unbiased coefficients (see Belloni and Chernozhukov
(2011)). Due to the included sovereigns we modify the procedure in the post-LASSO
selection step into a weighted LASSO for quantiles by introducing data-driven weights
wi,t0k for different components Rt,k. We thus obtain an improved precision in the selection
step (see Wu and Liu (2009)).

The whole methodology works in 3 steps for each institution i in the system at time
point t0:

Step 1: Determine the penalty parameter λi,t0 and the component-specific weights wi,t0
from the data:

Step a) Take τ iid draws from U [0, 1] independent of Rt0−τ , . . . , Rt0−1 denoted as
U1, . . . , Uτ . Conditional on observations of R, calculate the corresponding
value of the random variable,

Λi,t0 = τ max
1≤k≤K

1

τ

∣∣∣∣∣
τ∑
t=1

Rt0−t,k(q − I(Ut ≤ q))

σ̂k
√
q(1− q)

∣∣∣∣∣ . (8)

Step b) Repeat step a) B=500 times generating the empirical distribution of Λi,t0

conditional on R through Λi,t0
1 , . . . ,Λi,t0

B . For a confidence level α ≤ 1/K in
the selection, set

λi,t0 = c ·Q(Λi,t0 , 1− α|Rt0−), (9)

whereQ(Λi,t0 , 1−α|Rt0−) denotes the (1−α)-quantile of Λi,t0 givenRt0−τ , . . . , Rt0−1
and c ≤ 2 is a constant. Choose α = 0.1 for optimal rates of the post-
penalization estimators as in Belloni and Chernozhukov (2011). Generate
λi,t0(c) for different parameter values c on an equi-distant grid.

Step c) Run an unrestricted quantile regression to obtain weights wi for the penal-
ization

ᾰi,t0q = argminαi

1

τ

τ∑
t=1

ρq
(
X i
t0−t + αiRt0−t

)
. (10)

Set wi,t0k = |ᾰi,t0q,k |−γ with γ > 0. Generate wi,t0(γ) = (wi,t01 (γ), . . . , wi,t0K (γ))′

on an equi-distant grid of different γ.
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Step 2: Run an l1-penalized quantile regression and calculate for each (λi,t0(c);wi,t0(γ))
on the pairwise grid (c, γ) of step 1,

α̃i,t0q = argminαi

1

τ

τ∑
t=1

ρq
(
X i
t0−t + αiRt0−t

)
+ λi,t0(c)

√
q(1− q)
τ

K∑
k=1

wi,t0k σ̂k|αik| ,

(11)
with the set of potentially relevant regressors Rt = (Rt,k)

K
k=1, componentwise vari-

ation σ̂2
k = 1

τ

∑τ
t=1(Rt0−t,k)

2 and the loss function ρq(u) = u(q− I(u < 0)), where
the indicator I(·) is 1 for u < 0 and zero otherwise.

Step 3: Drop all firms in R with absolute marginal effects |α̃i,t0(c, γ)| below a threshold
a = 0.0001 keeping only the K(i, t0) remaining relevant regressors R(i,t0)(c, γ).
Re-estimate the unrestricted model (11) without penalty only with the selected
relevant regressors R(i,t0)(c, γ). This regression yields the post-LASSO estimates
α̂i,t0q (c, γ). The final estimates are the ones which maximize the in-sample pre-
dictive ability of the resulting VaR specification jointly in c and γ. This is evalu-
ated according to a backtest criterion (see Berkowitz, Christoffersen, and Pelletier
(2011)).

Tables and Figures
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Table 1: Banks in the sample

Stock returns (daily) CDS returns (daily)

Name ID Country Mean Std.Dev. Mean Std.Dev.

Allied Irish Banks alb ie -1.27e-03 0.060
Alpha Bank alp gr -3.20e-04 0.048
BBVA bbv es -1.83e-04 0.024 3.08e-03 0.049
BNP Paribas bnp fr 1.48e-04 0.030 2.95e-03 0.052
Banca Carige crg it -4.49e-04 0.021
Banca Popolare di Milano pmi it -8.39e-04 0.030 2.61e-03 0.039
Bance Popolare dell’Emilia Romagna bpe it -3.94e-04 0.025
Banco BPI bpi pt -6.41e-04 0.025
Banco Comercial Portugues bcp pt -1.01e-03 0.027 3.00e-03 0.043
Banco Popolare SC bpi it -1.28e-03 0.033 2.46e-03 0.045
Banco Popular Espanol pop es -1.11e-03 0.025 3.22e-03 0.057
Banco Santander san es -1.20e-04 0.025 2.99e-03 0.050
Banco de Sabadell sab es -6.18e-04 0.019 2.67e-03 0.038
Bank of Cyprus boc cy -1.18e-03 0.035
Bank of Ireland bki ie -4.51e-04 0.059 3.37e-03 0.050
Bankinter bkt es -1.14e-04 0.026
Barclays bar gb 3.46e-04 0.040 2.84e-03 0.051
Commerzbank cbk de -1.17e-03 0.035 2.64e-03 0.052
Credit Agricole aca fr -2.50e-04 0.032 2.89e-03 0.049
Credit Industriel et Commerciale ccf fr -1.44e-04 0.016
Danske Bank dan dk -1.05e-04 0.025 2.73e-03 0.050
Deutsche Bank dbk de -8.18e-05 0.029 2.39e-03 0.050
Deutsche Postbank dpb de 2.28e-05 0.025
Dexia dex be -1.38e-03 0.069
EFG Eurobank eur gr -8.77e-04 0.056
Erste Group Bank ebs at 1.56e-04 0.034 2.27e-03 0.046
Espirito Santo Financial Group esf pt -6.96e-04 0.013 2.97e-03 0.044
HSBC hsb gb 9.22e-05 0.020 2.58e-03 0.048
ING ing nl 2.80e-05 0.037 2.61e-03 0.044
Intesa Sanpaolo isp it -2.47e-04 0.029 3.64e-03 0.065
Irish Life and Permanent ipm ie -5.09e-04 0.077
KBC kbc be 2.90e-04 0.042
Landesbank Berlin beb de 1.88e-04 0.022
Lloyds llo gb 1.08e-05 0.040 2.88e-03 0.047
Marfin cpb cy -1.69e-03 0.037
Monte dei Paschi bmp it -1.16e-03 0.028 3.29e-03 0.049
National Bank of Greece ete gr -1.05e-03 0.046
Natixis knf fr -4.17e-05 0.037 1.96e-03 0.038
Nordea nda se 3.30e-04 0.024 2.43e-03 0.077
OTP Bank otp hu 2.82e-04 0.029
Piraeus tpe gr -1.09e-03 0.049
Pohjola poh fi 4.26e-04 0.025
Powszechna Kasa pko pl 2.71e-04 0.022
Royal Bank of Scotland rbs gb -5.70e-04 0.042 3.08e-03 0.050
SEB seb se 2.79e-04 0.030 2.66e-03 0.056
Societe Generale gle fr -1.79e-04 0.033 2.88e-03 0.048
Standard Chartered sta gb 5.27e-04 0.028 1.56e-03 0.039
Svenska Handelsbanken shb se 4.46e-04 0.021 2.12e-03 0.071
Swedbank swe se 4.39e-04 0.030
UniCredit ucg it -6.54e-04 0.033 3.00e-03 0.051
Unione di Banche Italiane ubi it -7.28e-04 0.025
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Table 2: Summary statistics sovereigns

Bond yields (first diff.; daily) CDS returns (daily)

Country Mean Std.Dev. Mean Std.Dev.

AT -1.06e-03 0.05 3.73e-03 0.07
BE -7.87e-04 0.05
DE -1.28e-03 0.05 4.43e-03 0.09
DK -1.23e-03 0.09 9.76e-04 0.04
ES 3.72e-04 0.08 4.26e-03 0.06
FI -1.14e-03 0.06
FR -9.51e-04 0.05 7.22e-03 0.12
GB -1.25e-03 0.05 1.47e-03 0.04
GR 3.61e-03 0.84
HU -1.01e-03 0.14
IE 1.21e-05 0.10 1.58e-02 0.58
IT 9.64e-05 0.07 2.80e-03 0.05
NL -1.05e-03 0.04 2.34e-03 0.05
PL -7.24e-04 0.06
PT 1.24e-03 0.14 3.60e-03 0.06
SE -1.00e-03 0.05 2.32e-03 0.05

Table 3: Characteristics of estimated tail dependence networks based on equity returns of
51 European banks, 2006-2013.

(1) (2)
Network Share of domestic
density linkages

2006 0.07 0.34
2007 0.07 0.37
2008 0.08 0.28
2009 0.06 0.47
2010 0.04 0.52
2011 0.05 0.45

The table shows how network density and the fragmentation as represented by
the share of domestic linkages evolve over time. The networks result from the
LASSO selection procedure as described above and are based on six (overlap-
ping) two-year periods. The networks are based on non-penalized control vari-
ables including bank-specific characteristics, macro-financial state variables
and sovereign bond yields.
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Table 4: Share of domestic linkages in estimated tail dependence networks based on
equity returns of 51 European banks, 2006-2013.

(1) (2)
Crisis Non-crisis

countries countries

2006 0.32 0.10
2007 0.35 0.17
2008 0.20 0.15
2009 0.45 0.25
2010 0.56 0.30
2011 0.44 0.17

The table presents the share of domestic linkages between banks of a given
country. In the case of AT, DK, FI, HU, NL, and PL, there is just one bank in
the sample so the quantity is not defined. The column “crisis countries” refers
to the simple average for a group of countries composed of CY, ES, GR, IE,
IT, and PT. “Non-crisis countries” refers to the average over all other countries
in the sample. The networks result from the LASSO selection procedure as
described above and are based on six (overlapping) two-year periods. The
networks are based on non-penalized control variables including bank-specific
characteristics, macro-financial state variables and sovereign bond yields.

Table 5: Characteristics of estimated tail dependence networks based on CDS returns of
29 European banks and 11 sovereigns, 2006-2013.

(1) (2) (3)
Network Share of domestic Share of sovereign
density linkages bank linkages

2006 0.13 0.22 0.01
2007 0.14 0.20 0.06
2008 0.18 0.20 0.10
2009 0.12 0.30 0.13
2010 0.17 0.32 0.21
2011 0.18 0.23 0.19

The table shows how network density, the fragmentation as represented by the
share of domestic linkages, and sovereign bank interaction evolve over time.
The share of domestic linkages only takes into account connections between
banks. The networks result from the LASSO selection procedure as described
above and are based on six (overlapping) two-year periods. The networks
are based on non-penalized macro-financial state variables when modeling the
VaR of banks and sovereigns.
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Table 6: Sovereign interconnectedness by degree

(1) (2)
Crisis Non-crisis

countries countries

2006 1.25 1.33
2007 4.25 4.86
2008 5.25 4.71
2009 5.75 5.29
2010 9.00 7.43
2011 7.00 5.00

The table presents the interconnectedness of sovereigns as rep-
resented by degree. The column “crisis countries” refers to the
simple average for a group of countries composed of CY, ES,
GR, IE, IT, and PT. “Non-crisis countries” refers to the aver-
age over all other countries in the sample. The networks re-
sult from the LASSO selection procedure as described above
and are based on six (overlapping) two-year periods. The net-
works are based on non-penalized macro-financial state vari-
ables when modeling the VaR of banks and sovereigns.

Table 7: Share of linkages between sovereign and banks

(1) (2)
Crisis Non-crisis

countries countries

2006 0.00 0.25
2007 0.28 0.07
2008 0.19 0.20
2009 0.26 0.13
2010 0.35 0.24
2011 0.46 0.33

The table presents the share of linkages between sovereigns
and banks. The column “crisis countries” refers to the simple
average for a group of countries composed of CY, ES, GR, IE,
IT, and PT. “Non-crisis countries” refers to the average over
all other countries in the sample. The networks result from
the LASSO selection procedure as described above and are
based on six (overlapping) two-year periods. The networks are
based on non-penalized macro-financial state variables when
modeling the VaR of banks and sovereigns.
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Table 8: Realized systemic risk of 51 European banks, June 2012

Rank Bank name ID Country Realized systemic Systemic V̂ aR
risk β risk β

1 Irish Life and Permanent ipm ie 0.0193 0.1345 0.1432
2 Bank of Cyprus boc cy 0.0136 0.2125 0.0639
3 National Bank of Greece ete gr 0.0131 0.1160 0.1129
4 Dexia dex be 0.0121 0.1583 0.0766
5 Alpha Bank alp gr 0.0100 0.1863 0.0539
6 Royal Bank of Scotland rbs gb 0.0095 0.2259 0.0423
7 Banca Carige crg it 0.0088 0.1059 0.0830
8 Barclays bar gb 0.0082 0.2557 0.0322
9 Marfin cpb cy 0.0075 0.1415 0.0530

10 Natixis knf fr 0.0073 0.2593 0.0281
11 OTP Bank otp hu 0.0072 0.2582 0.0279
12 KBC kbc be 0.0066 0.1355 0.0486
13 Bankinter bkt es 0.0063 0.1530 0.0411
14 Lloyds llo gb 0.0062 0.1741 0.0355
15 Piraeus tpe gr 0.0062 0.1416 0.0437
16 EFG Eurobank eur gr 0.0061 0.1399 0.0433
17 Bank of Ireland bki ie 0.0059 0.1624 0.0361
18 Bance Popolare dell’Emilia Romagna bpe it 0.0055 0.1528 0.0362
19 Commerzbank cbk de 0.0054 0.1532 0.0356
20 Credit Agricole aca fr 0.0053 0.2484 0.0214
21 Danske Bank dan dk 0.0049 0.2052 0.0236
22 Erste Group Bank ebs at 0.0049 0.2024 0.0241
23 Intesa Sanpaolo isp it 0.0049 0.1980 0.0247
24 Credit Industriel et Commerciale ccf fr 0.0046 0.2269 0.0202
25 Banco Santander san es 0.0044 0.2278 0.0193
26 Banco Comercial Portugues bcp pt 0.0042 0.0882 0.0472
27 UniCredit ucg it 0.0042 0.2134 0.0195
28 BBVA bbv es 0.0041 0.2498 0.0164
29 SEB seb se 0.0040 0.2319 0.0173
30 Monte dei Paschi bmp it 0.0039 0.0907 0.0435
31 ING ing nl 0.0039 0.1714 0.0229
32 Standard Chartered sta gb 0.0038 0.2003 0.0191
33 Deutsche Bank dbk de 0.0036 0.1696 0.0215
34 Societe Generale gle fr 0.0035 0.1687 0.0206
35 BNP Paribas bnp fr 0.0034 0.1766 0.0194
36 Banco Popular Espanol pop es 0.0034 0.1163 0.0288
37 Banco BPI bpi pt 0.0033 0.1226 0.0266
38 Unione di Banche Italiane ubi it 0.0029 0.1226 0.0238
39 Banco Popolare SC bpi it 0.0028 0.1207 0.0228
40 Allied Irish Banks alb ie 0.0027 0.0416 0.0646
41 Nordea nda se 0.0026 0.2133 0.0124
42 Pohjola poh fi 0.0026 0.1784 0.0145
43 Swedbank swe se 0.0026 0.1787 0.0145
44 Banca Popolare di Milano pmi it 0.0021 0.1014 0.0209
45 Deutsche Postbank dpb de 0.0020 0.1355 0.0150
46 HSBC hsb gb 0.0020 0.2330 0.0087
47 Banco de Sabadell sab es 0.0018 0.1425 0.0124
48 Svenska Handelsbanken shb se 0.0018 0.1985 0.0090
49 Powszechna Kasa pko pl 0.0015 0.1003 0.0146
50 Landesbank Berlin beb de 0.0012 0.1211 0.0100
51 Espirito Santo Financial Group esf pt 0.0007 0.0863 0.0077

The table ranks banks according to realized systemic risk in June 2012. Realized systemic risk is given by the product of systemic
risk beta and value-at-risk as in Equation (7).

26



Table 9: Systemic risk betas and driving components, June 2012

Bank name Systemic risk β Group Size Leverage Net

Natixis 0.2593 3 6.2299 26.1202 1.3863
OTP Bank 0.2582 1 3.5264 7.3755 1.7918
Barclays 0.2557 3 7.5333 29.0104 1.0986
BBVA 0.2498 3 6.3977 15.3705 1.0986
Credit Agricole 0.2484 3 7.4519 36.1905 1.0986
HSBC 0.2330 2 7.5899 15.9292 1.0986
SEB 0.2319 3 5.5769 21.7143 1.0986
Banco Santander 0.2278 2 7.1572 16.8518 1.3863
Credit Industriel et Commerciale 0.2269 3 5.4523 25.2925 1.0986
Royal Bank of Scotland 0.2259 2 7.4282 19.0981 1.0986
UniCredit 0.2134 2 6.8385 14.5713 0.6931
Nordea 0.2133 3 6.5425 25.9949 0.6931
Bank of Cyprus 0.2125 1 3.6547 15.1471 1.0986
Danske Bank 0.2052 3 6.1540 28.4674 0.6931
Erste Group Bank 0.2024 3 5.3786 17.7028 0.6931
Standard Chartered 0.2003 2 6.1254 13.7613 0.6931
Svenska Handelsbanken 0.1985 3 5.6288 26.9227 0.6931
Intesa Sanpaolo 0.1980 2 6.4810 12.4980 0.0000
Alpha Bank 0.1863 1 4.0530 15.8155 1.0986
Swedbank 0.1787 2 5.3662 19.1752 0.6931
Pohjola 0.1784 1 3.7527 17.0224 0.6931
BNP Paribas 0.1766 3 7.5834 28.0491 0.0000
Lloyds 0.1741 3 7.0558 21.4171 0.0000
ING 0.1714 3 7.1243 25.8275 0.0000
Deutsche Bank 0.1696 3 7.6513 37.5956 0.0000
Societe Generale 0.1687 3 7.0850 28.3256 0.0000
Bank of Ireland 0.1624 2 5.0427 18.3763 0.0000
Dexia 0.1583 3 6.0229 21.4107 0.0000
Commerzbank 0.1532 3 6.5382 36.8333 0.0000
Bankinter 0.1530 2 4.1047 19.6879 0.6931
Bance Popolare dell’Emilia Romagna 0.1528 1 4.0969 16.1703 0.6931
Banco de Sabadell 0.1425 1 4.6570 14.8263 1.0986
Piraeus 0.1416 1 3.8606 3.3544 0.6931
Marfin 0.1415 1 3.4617 15.3970 0.0000
EFG Eurobank 0.1399 1 4.2985 2.1094 1.0986
Deutsche Postbank 0.1355 3 5.3287 35.8836 0.0000
KBC 0.1355 2 5.6721 59.4140 0.6931
Irish Life and Permanent 0.1345 2 4.2772 28.7822 0.0000
Banco BPI 0.1226 2 3.8012 39.6606 0.6931
Unione di Banche Italiane 0.1226 1 4.8791 12.7310 1.0986
Landesbank Berlin 0.1211 2 4.9002 49.8018 0.0000
Banco Popolare SC 0.1207 1 4.9048 12.6513 1.0986
Banco Popular Espanol 0.1163 1 5.0639 15.7241 1.0986
National Bank of Greece 0.1160 1 4.6453 2.1094 1.0986
Banca Carige 0.1059 1 3.8607 11.6481 0.0000
Banca Popolare di Milano 0.1014 1 3.9705 13.1303 0.0000
Powszechna Kasa 0.1003 1 3.8250 7.9325 0.0000
Monte dei Paschi 0.0907 1 5.4412 15.9840 1.0986
Banco Comercial Portugues 0.0882 1 4.5221 24.7166 0.0000
Espirito Santo Financial Group 0.0863 2 4.4446 70.8370 0.0000
Allied Irish Banks 0.0416 1 4.9174 15.7617 0.0000

The table ranks banks according to their systemic risk beta in June 2012. Systemic risk beta is a function of size, leverage and
interconnectedness as represented by log(outdegree+ 1). Group refers to the grouping applied in the estimation of Equation (5).
Banks in group 3 have above median size and leverage, while banks in group 1 have below median size and leverage. The remaining
banks constitute group 2.
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Table 10: Realized systemic risk of 51 European banks, October 2008

Rank Bank name ID Country Realized systemic Systemic V̂ aR
risk β risk β

1 Dexia dex be 0.0362 0.2446 0.1479
2 Bank of Ireland bki ie 0.0316 0.1759 0.1795
3 Royal Bank of Scotland rbs gb 0.0290 0.2307 0.1257
4 Commerzbank cbk de 0.0282 0.2281 0.1235
5 KBC kbc be 0.0280 0.1927 0.1451
6 Credit Agricole aca fr 0.0276 0.2667 0.1037
7 Irish Life and Permanent ipm ie 0.0275 0.1445 0.1899
8 Barclays bar gb 0.0268 0.2057 0.1303
9 Societe Generale gle fr 0.0253 0.2619 0.0965

10 Lloyds llo gb 0.0245 0.2336 0.1051
11 Deutsche Postbank dpb de 0.0245 0.2100 0.1166
12 ING ing nl 0.0243 0.2114 0.1151
13 UniCredit ucg it 0.0209 0.1982 0.1056
14 Allied Irish Banks alb ie 0.0208 0.1553 0.1342
15 Standard Chartered sta gb 0.0190 0.1732 0.1097
16 SEB seb se 0.0180 0.1932 0.0932
17 OTP Bank otp hu 0.0175 0.1169 0.1500
18 Intesa Sanpaolo isp it 0.0172 0.1981 0.0868
19 BNP Paribas bnp fr 0.0170 0.1693 0.1004
20 Bank of Cyprus boc cy 0.0162 0.2279 0.0710
21 Erste Group Bank ebs at 0.0160 0.1464 0.1092
22 Banca Popolare di Milano pmi it 0.0156 0.2186 0.0713
23 Banco Santander san es 0.0152 0.2157 0.0705
24 Pohjola poh fi 0.0150 0.2023 0.0741
25 BBVA bbv es 0.0149 0.2807 0.0533
26 Piraeus tpe gr 0.0148 0.2355 0.0626
27 Deutsche Bank dbk de 0.0143 0.1521 0.0941
28 Svenska Handelsbanken shb se 0.0139 0.2433 0.0571
29 Swedbank swe se 0.0131 0.1752 0.0748
31 HSBC hsb gb 0.0128 0.2266 0.0566
30 Marfin cpb cy 0.0128 0.2066 0.0620
33 Alpha Bank alp gr 0.0126 0.1820 0.0694
32 Banco Popolare SC bpi it 0.0126 0.1441 0.0872
34 Powszechna Kasa pko pl 0.0117 0.2070 0.0566
35 National Bank of Greece ete gr 0.0116 0.1409 0.0822
36 Nordea nda se 0.0111 0.2370 0.0470
37 Banco Popular Espanol pop es 0.0110 0.2093 0.0524
38 Danske Bank dan dk 0.0109 0.1509 0.0725
40 Bance Popolare dell’Emilia Romagna bpe it 0.0107 0.1973 0.0544
39 Banco Comercial Portugues bcp pt 0.0107 0.1840 0.0579
41 Landesbank Berlin beb de 0.0105 0.1111 0.0946
42 Natixis knf fr 0.0098 0.1558 0.0627
43 Banca Carige crg it 0.0089 0.1838 0.0487
44 Banco BPI bpi pt 0.0079 0.1461 0.0542
45 EFG Eurobank eur gr 0.0075 0.1700 0.0437
46 Banco de Sabadell sab es 0.0070 0.2734 0.0258
47 Bankinter bkt es 0.0069 0.1547 0.0444
48 Unione di Banche Italiane ubi it 0.0066 0.1244 0.0527
49 Credit Industriel et Commerciale ccf fr 0.0064 0.2248 0.0286
50 Espirito Santo Financial Group esf pt 0.0038 0.0868 0.0438
51 Monte dei Paschi bmp it 0.0032 0.0697 0.0455

The table ranks banks according to realized systemic risk in October 2008. Realized systemic risk is given by the product of
systemic risk beta and value-at-risk as in Equation (7).
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Table 11: Systemic risk betas and driving components, October 2008

Bank name Systemic risk β Group Size Leverage Net

BBVA 0.2807 3 6.2305 20.1084 1.6094
Banco de Sabadell 0.2734 1 4.3880 17.2724 2.4849
Credit Agricole 0.2667 3 7.2895 36.5858 1.3863
Societe Generale 0.2619 3 6.9809 36.7140 1.3863
Dexia 0.2446 3 6.4347 47.3055 1.3863
Svenska Handelsbanken 0.2433 3 5.3006 28.2589 1.3863
Nordea 0.2370 3 6.0725 24.6836 1.0986
Piraeus 0.2355 1 3.9532 17.1094 1.6094
Lloyds 0.2336 3 6.1427 29.9180 1.0986
Royal Bank of Scotland 0.2307 2 7.6798 28.1315 1.7918
Commerzbank 0.2281 3 6.4220 41.5008 1.0986
Bank of Cyprus 0.2279 1 3.4521 15.8218 1.0986
HSBC 0.2266 2 7.3892 17.9267 1.0986
Credit Industriel et Commerciale 0.2248 3 5.5251 29.1889 1.0986
Banca Popolare di Milano 0.2186 1 3.8237 13.0968 1.3863
Banco Santander 0.2157 2 6.9010 18.9559 1.0986
ING 0.2114 3 7.2225 40.6074 0.6931
Deutsche Postbank 0.2100 3 5.4223 44.9140 1.0986
Banco Popular Espanol 0.2093 1 4.6937 16.6799 1.9459
Powszechna Kasa 0.2070 1 3.5589 9.5414 1.0986
Marfin 0.2066 1 3.5632 9.4828 1.0986
Barclays 0.2057 3 7.4546 51.6146 0.6931
Pohjola 0.2023 1 3.3490 15.1767 0.6931
UniCredit 0.1982 2 6.9658 20.2044 0.0000
Intesa Sanpaolo 0.1981 2 6.4484 11.9451 0.0000
Bance Popolare dell’Emilia Romagna 0.1973 1 3.9232 16.7478 1.0986
SEB 0.1932 3 5.4983 30.8818 0.6931
KBC 0.1927 2 5.9332 22.0918 1.0986
Banco Comercial Portugues 0.1840 1 4.5392 20.0341 1.3863
Banca Carige 0.1838 1 3.4222 8.8829 0.6931
Alpha Bank 0.1820 1 4.0538 13.8021 1.0986
Bank of Ireland 0.1759 2 5.2854 29.0040 1.3863
Swedbank 0.1752 2 5.1673 23.9362 1.0986
Standard Chartered 0.1732 2 5.4214 15.6492 0.0000
EFG Eurobank 0.1700 1 4.3495 17.7473 1.0986
BNP Paribas 0.1693 3 7.4351 34.0321 0.0000
Natixis 0.1558 3 6.2538 28.4809 0.0000
Allied Irish Banks 0.1553 1 5.1810 19.2902 1.6094
Bankinter 0.1547 2 3.9154 26.9901 1.6094
Deutsche Bank 0.1521 3 7.5993 57.4133 0.0000
Danske Bank 0.1509 3 6.1500 32.4465 0.0000
Erste Group Bank 0.1464 3 5.3648 23.5646 0.0000
Banco BPI 0.1461 2 3.7039 24.1041 1.0986
Irish Life and Permanent 0.1445 2 4.3828 31.1468 0.6931
Banco Popolare SC 0.1441 1 4.8677 12.0214 1.3863
National Bank of Greece 0.1409 1 4.5490 10.6437 1.0986
Unione di Banche Italiane 0.1244 1 4.7935 10.7961 1.0986
OTP Bank 0.1169 1 3.6267 9.2577 0.0000
Landesbank Berlin 0.1111 2 4.9886 59.4149 0.0000
Espirito Santo Financial Group 0.0868 2 4.3273 86.3160 1.3863
Monte dei Paschi 0.0697 1 5.3304 17.2038 0.6931

The table ranks banks according to their systemic risk beta in October 2008. Systemic risk beta is a function of size, leverage and
interconnectedness as represented by log(outdegree+ 1). Group refers to the grouping applied in the estimation of Equation (5).
Banks in group 3 have above median size and leverage, while banks in group 1 have below median size and leverage. The remaining
banks constitute group 2.
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Figure 7: Risk metrics and capital injections, fourth quarter 2008
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The figure compares the distributions of systemic risk beta, Value-at-Risk, and realized systemic risk con-
ditional on whether a bank was re-capitalized in the fourth quarter of 2008.

Figure 8: Risk metrics and capital injections, second quarter 2012

no capital injection capital injection

0.
05

0.
10

0.
15

0.
20

0.
25

Systemic Risk Beta

●●

●

●

●

●

●

no capital injection capital injection

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

Value at Risk

●

●

●

no capital injection capital injection

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0 Realized systemic risk
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