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Abstract

We introduce a method for measuring default risk connectedness of euro zone sovereign states

using credit default swap (CDS) and bond data. The connectedness measure is based on an

out-of-sample variance decomposition of model forecast errors. Due to its predictive nature,

it can respond more quickly to crisis occurrences than common in-sample techniques. We

determine sovereign default risk connectedness with both CDS and bond data for a more

comprehensive picture of the system. We find evidence that several observable factors drive

the difference of CDS and bonds, but both data sources still contain specific information for

connectedness spill-overs. Generally, we can identify countries that impose risk on the system

and the respective spill-over channels. In our empirical analysis we cover the years 2009-2014,

such that recovery paths of countries exiting EU and IMF financial assistance schemes and

responses to the ECB’s unconventional policy measures can be analyzed.
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1. Introduction

We propose an out-of-sample empirical procedure for assessing how European sovereign

states are interconnected through default risk in terms of variance spill-over effects similar

to that of Diebold and Yilmaz (2014). Measuring changes in comovements, our method

can also be regarded as assessing a specific form of contagion (see e.g. Rodriguez, 2007; or

Forbes and Rigobon, 2002).1 Contagious interconnection effects among banks and sovereigns

have been central drivers of the recent financial and European sovereign crisis. While there

already exist many empirical tools and studies analyzing spill-over effects, e.g. Diebold and

Yilmaz (2014), Billio et al. (2012), or Engle et al. (2015) and Hautsch et al. (2014) among

others, our novel measure is tailored for forecasting with a parsimonious time series approach

via variance decomposition. The procedure is easy to apply and based on the forecast error

variance, which more adequately reveals the extent and timing of volatility spill-over effects,

in particular, around unexpected events. Furthermore, we measure sovereign connectedness

with both credit default swap (CDS) and asset swap spreads and find that they contain

complementary information of variance-based interconnections.

Technically, we provide an empirical method based on variance decomposition for mea-

suring connectedness between shocks in sovereigns. Our technique captures various aspects

of shocks by decomposing out-of-sample forecast errors of a vector autoregression (VAR).

Thanks to the out-of-sample approach, the forecast error variance covariance structure can

pick up new information more quickly than techniques based on pure in-sample fits such

as in Diebold and Yilmaz (2014). The obtained components of the forecast error variance-

covariance matrix reveal the interconnectedness among all cross-sectional entities with respect

to the volatility channel. We jointly assess connectedness relative to country risk, but also in

absolute terms for a more comprehensive picture of the situation. This complements other

empirical studies (Alter and Beyer, 2014, e.g.) which discard important information with

just relative measures only until mid 2012.

We empirically investigate CDS spreads of eight Eurozone countries (Belgium, France,

Germany, Ireland, Italy, Netherlands, Portugal, Spain) from the beginning of 2009 until

February 2014. The sample thus covers the sovereign crisis and beyond, in particular not only

including country-specific bailout events for Ireland, Portugal and Greece but also Draghi’s

speech “whatever it takes...” in July 2012 and the ECB’s announcement of unconventional

1There are numerous definitions of specific forms of financial contagion in the literature. We study the
predicted impact of an idiosyncratic shock in default risk of one country on the default risk of other countries.
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monetary policy measures from 2012 onwards. Our sample allows to take into account the

aftermath of the sovereign debt crisis.

We employ both CDS spreads and asset swap (ASW) spreads of bonds for assessing sovereign

risk from connectedness. We use asset swaps instead of bond yields as they are free of interest

rate risk and thus provide a better comparison to CDS. When measuring contagion purely in

returns disregarding connectedness aspects, CDS and bond data lead to similar results (see

e.g. Caporin et al., 2013). In variance decomposition results, however, there are important

differences across the two types of data. From the beginning of the sovereign crisis onwards,

the overall level of connectedness of CDS spreads is substantially higher than that of asset

swap spreads. Also, the evolution of country-wise spill-overs on the system reveals different

roles of the core countries, Germany, France, Netherlands or Belgium in comparison to the

remaining four periphery countries. The latter are captured quite differently for CDS and

ASW data and thus reveal different economic and market aspects of the countries. This is

also confirmed by contrasting absolute and relative connectedness components which gives

information about the share of volatility of a country contributed to the system relative

to idiosyncratic volatility. In particular, both sources of data shed different light on the

recovery paths of Portugal and Ireland during the crisis in comparison to Spain and Italy

where the EU and the IMF did not intervene. Moreover, in terms of effective volatility

risk spill-over channels, detected ASW connections can help to focus on the most relevant

effects of the dense CDS network which prevail until after the announcement of the OMT.

We find that most of the differences in connectedness of ASW and CDS can be explained by

bond liquidity, risk aversion and crisis-related events. Although CDS account for risk-related

factors driving connectedness, bonds are important for determining a country’s risk level

compared to other countries. Thus, both datasets should be used to obtain a comprehensive

picture of connectedness in the system.

As far as the model is concerned, Diebold and Yilmaz (2009, 2014) are the first to use

variance decomposition for measuring connectedness. We extend their methodology by in-

cluding out-of-sample shocks in order to capture all connectedness effects of volatility type

more quickly and thereby enhancing measurement quality. There are various extensions of

Diebold and Yilmaz (2009). These are complementary to our work with a focus on out-of-

sample forecast error variance and the joint analysis of CDS and bonds: Alter and Beyer

(2014), Heinz and Sun (2014) and Claeys and Vas̆́ıc̆ek (2012) analyze connectedness of Euro-

pean sovereigns, while Schmidbauer et al. (2012, 2013) and Antonakakis et al. (2016) measure
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connectedness between other entities.

For the data, there has been extensive research on the comparison of CDS and bonds in

levels (such as e.g., Longstaff et al., 2011; Delatte et al., 2012; Fontana and Scheicher, 2016;

Palladini and Portes, 2011; Gyntelberg et al., 2013; among others) but not on their volatility

(the only exceptions are Caporin et al. (2013) and Lange et al. (2016)). To our knowledge, we

are the first to compare a second moment measure such as variance decomposition for these

two sources of credit quality of a country. This also complements many empirical papers

studying contagion in European sovereigns which generally focus on just one type of data,

either bonds or CDS. There is also a broad scope of literature examining the price discovery

process in CDS and bond markets (such as e.g., Ehrmann and Fratzscher, 2017; Heinz and

Sun, 2014). For the differences in the dynamics of levels of CDS and asset swap spreads,

several papers have determined important factors such as market frictions like counterparty

risk, market illiquidity and funding costs (Arce et al., 2013), but also flight to liquidity effects

at the height of the crisis and limits to arbitrage (Fontana and Scheicher, 2016; De Santis,

2014) as well as changes in risk attitude (Calice et al., 2015). We find that for volatility

spill-overs, these factors also play an important role, but both measures still contain peculiar

information for interconnectedness of European sovereigns.

Furthermore, our paper contributes to the literature on systemic risk and contagion. Sev-

eral papers measure systemic risk by investigating the situation of one entity conditional on

the entire system or market being under distress. For example, Adrian and Brunnermeier

(2016) propose the CoVaR and Engle et al. (2015) utilize a Dynamic Conditional Corre-

lation (DCC) model. Acharya et al. (2017) introduce the concept of Systemic Expected

Shortfall (SES) and Brownlees and Engle (2017) develop the Marginal Expected Shortfall

(MES). Hautsch et al. (2014, 2015) propose the realized systemic risk beta using tail risk ex-

posures. Another approach for measuring connectedness uses principal component analysis

and Granger-causality tests (Billio et al., 2012; Kalbaska and Gatkowski, 2012). Further ap-

proaches include principal component analysis (Arghyrou and Kontonikas, 2012) and impulse

responses in a Markov-switching framework (Guidolin and Pedio, 2017). Ricci and Veredas

(2015) propose a metric that is based on a tail interquantile range and Schwaab et al. (2011)

estimate measures for systemic risk using a mixed-measurement dynamic factor model ap-

proach. Giudici and Spelta (2016) and Bianchi et al. (2015) use graphical models to evaluate

systemic risk.

The remainder of the paper is organized as follows. In Section 2, we explain the method-
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ology. Section 3 describes the data. The empirical results are discussed in Section 4. Section

5 concludes.

2. Model

2.1. Forecast Error Variance Decomposition

In the following, we assess spill-over effects between countries by fitting an appropriate

dynamic specification for the system first, and then studying the variance decomposition

of the remaining errors. Variance decompositions generally allow to quantify the effect of

a shock in one variable on the variance of another one. In contrast to Diebold and Yilmaz

(2014), we base our analysis on out-of-sample forecast errors instead of in-sample errors which

are generated in a rolling window approach.

Thus, we first model returns as a vector autoregressive model (VAR)-type process with

the following baseline specification:

yt =

p∑
i=1

Aiyt−i + ut, t = 1, 2, . . . , Te, (1)

where the (K×1) vector ut of error terms is assumed to be a white noise process with E(ut) =

0, E(utu
′
t) = Σu with elements σij and E(utu

′
s) = 0 for t 6= s. yt = (y1t, y2t, . . . , yKt)

′

denotes a (K × 1) vector containing data of K countries and is covariance stationary with

moving average representation yt =
∞∑
i=0

Φiut−i. Ai represents the (K × K) matrices of the

autoregressive coefficients for i = 1, 2, . . . , p. In order to obtain forecast errors over time, we

fit the dynamic specification in rolling windows with a window width Te for the estimation

period of the VAR. In Section 4.1, we provide empirical evidence that for the relatively

short window sizes in practice, a VAR-type model specification is sufficient to capture the

dynamics of CDS and asset swap returns. On the basis of the estimated VAR coefficients, we

can estimate the H-step forecast error variance or mean squared error (MSE), defined as:

ΣOUT
y (H) := MSE

[
ŷt(H)

]
= E

[(
yt+H − ŷt(H)

)(
yt+H − ŷt(H)

)′]
(2)

where ŷt(H) is the linear minimum MSE predictor at time t with forecast horizon H obtained

from the estimated coefficients Âi of the process2. Note that ŷt(H) is computed only with data

from within the estimation sample which does not contain yt+H . Therefore, yt+H − ŷt(H)

2ŷt(H) =
∑p

i=1 Âiŷt(H − i). For a detailed representation, see Lütkepohl (2005).
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is an out-of-sample forecast error and we call ΣOUT
y (H) in Equation (2) out-of-sample MSE.

A standard estimator for ΣOUT
y (H) is given by

Σ̂OUT
y (H) =

1

Ts

Ts∑
t=1

(
yt+H − ŷt(H)

)(
yt+H − ŷt(H)

)′
. (3)

where Ts is the sample size used for estimating ΣOUT
y (H). This is in contrast to the approach

by Diebold and Yilmaz (2014) who base their variance decomposition on an in-sample MSE.

They replace the forecast error by the moving average (MA) representation formula given by

yt+H − yt(H) =
H−1∑
h=0

Φhut+H−h, which then yields:

ΣIN
y (H) := MSE

[
yt(H)

]
= E

[(
yt+H − yt(H)

)(
yt+H − yt(H)

)′]
=

H−1∑
h=0

(
ΦhΣuΦ′h

)
, (4)

where yt(H) is the theoretical optimal predictor for known Φi
3 and Φh is the h-th coeffi-

cient of the MA-representation. This formula is computed with observations only within the

estimation sample, namely the residual covariance matrix Σu and the MA coefficients Φh.

Hence, it is an in-sample forecast error variance. An estimate is obtained using respective

estimates Σ̂u and Φ̂h.

The out-of-sample MSE is directly computed from the VAR-estimates Âi, whereas the

in-sample MSE requires transforming the latter into the MA-representation. In-sample fore-

cast errors use the same sample for estimating the MA-representation and for forecasting.

Measures of spill-over effects, however, are mostly intended to deliver a basis for future de-

cisions. In this sense, risk measures derived from the out-of-sample MSE provide a more

reliable basis for practical forecasting purposes. Out-of-sample forecast errors separate the

estimation sample from the prediction and therefore contain all aspects of potential shocks

of predictions. The formulas show that the out-of-sample MSE contains additional variation

that is not contained in the in-sample MSE due to unknown future shocks. We show em-

pirically in Section 4.2.1 that this plays an important role when unexpected events occur.

4

3In MA-representation: yt(H) =
∞∑

i=H

Φiut+H−i.

4Another possibility for representing forecast error variances that are more realistic than the in-sample
MSE is the asymptotic approximation of the MSE for estimated processes. However, it is not possible to
decompose the approximate MSE because it is an asymmetric sum.
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From the H-step in-sample MSE we derive the ij-th generalized variance decomposition

component for a forecast error H periods ahead5, given by

sINij (H) =
σ−1
jj

∑H−1
h=0 (e′iΦhΣuej)

2∑H−1
h=0 (e′iΦhΣuΦ′hei)

, (5)

where σjj is the (j, j) element of Σu and ei is a selection vector with unity as its i-th el-

ement and zeros elsewhere. The elements sINij (H) for i, j = 1, ...K are summarized in the

connectedness matrix SIN (H) = ((sINij (H)))ij . The numerator of sINij (H) is the contribution

of shocks in variable j to the H-step forecast error variance of variable i. The denominator

is the forecast error variance of variable i.

For our out-of-sample measure, we decompose the out-of-sample MSE ΣOUT
y (H) in con-

trast to the standard in-sample variance decomposition. For the special case of a one step

ahead forecast, i.e. H = 1, the MSE in Equation (4) consists only of one matrix ΣIN
y (1) = Σu,

as opposed to MSEs for H > 1 which are represented by sums of matrices. Since Φ0 = IK , it is

easy to see that in this special case, Equation (5) simplifies to sINij (1) =
σ−1
jj (e′iΣuej)2

(e′iΣuei)
=

σ2
ij

σiiσjj
.

This shows that variance decomposition components actually are related to squared correla-

tion coefficients of forecast error variances. Generally, for the ij-th variance decomposition

component of an out-of-sample forecast error H steps ahead, we replace Σu in sINij (1) by

ΣOUT
y (H):

sOUTij (H) =
(e′iΣ

OUT
y (H)ej)

2

(e′iΣ
OUT
y (H)ei)(e′jΣ

OUT
y (H)ej)

. (6)

Analogously to the in-sample variance decomposition, this is the fraction of variable i’s H-

step forecast error variance due to shocks in variable j and the individual components are

represented in the connectedness matrix SOUT (H) = ((sOUTij (H)))ij . Since the in-sample

measure has been used in the literature we also call it standard connectedness.

2.2. Measures of Connectedness

We now derive the connectedness Cij marking the volatility spill-over of country j to i

from the corresponding variance decomposition elements sOUTij in (6). In particular, we set

COUTij =
1

3
(sOUTij (1) + sOUTij (2) + sOUTij (5)) (7)

5Generalized variance decomposition was proposed by Koop et al. (1996) and Pesaran and Shin (1998).
The derivation is shown in the Appendix A.2.
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to obtain an average over the respective one, two and five step-ahead forecast variance de-

composition components. In this way, COUTij accounts for both, short and longer term ef-

fects of shocks and includes potential feedback effects (see also, e.g. Diebold and Yilmaz

(2015) and Alter and Beyer (2014)). We take the standard case as a benchmark and define

CINij analogously to (7). As in Diebold and Yilmaz (2014), individual connectedness Cmij for

m ∈ {OUT, IN} can be gathered for all i and j in Table 1 which then serves as the adjacency

matrix determining the underlying network structure. In particular, each element Cmij marks

the directed effect of country j on i depicted as the directed edge between the two nodes in

the corresponding network graph. We obtain dynamic networks over time by recalculating

y1 y2 · · · yK ingoing

y1 C11 C12 · · · C1K
∑K

j=1C1j j 6= 1

y2 C21 C22 · · · C2K
∑K

j=1C2j j 6= 2
...

...
...

. . .
...

...

yK CK1 CK2 · · · CKK
∑K

j=1CKj j 6= 1K

outgoing
∑K

i=1Ci1
∑K

i=1Ci2 · · ·
∑K

i=1CiK
1

K

∑K
i,j=1Cij

i 6= 1 i 6= 2 i 6= K i 6= j

Table 1: Connectedness Table

The connectedness table depicts connectedness measures on three different aggregation levels; m is omitted
for readability.

them for each rolling window. From this granular network structure we obtain the following

network statistics which we use to compare the shapes of different networks over time.6 In

particular, country-wise aggregation determines the local importance of a node. We define

outgoing connectedness OCmj as a general real-valued version of the degree (see e.g. Barrat

et al. (2004)) of node j as

OCmj =

K∑
i=1,i 6=j

Cmij . (8)

Outgoing connectedness summarizes all individual connectedness that entity j transfers to

any other node in the system. Correspondingly, ingoing connectedness ICmi aggregates all

connectedness received by i from others by summing row-wise in Table 1 :

ICmi =
K∑

j=1,i 6=j
Cmij . (9)

6Other network measures such as clustering coefficients and eigenvector centrality require some nodes to
be unconnected and thus are not applicable in this setting.
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The overall global shape of a network is reflected by its network density7. Thus we define

total connectedness in line with Diebold and Yilmaz (2014) by aggregating the values of all

outgoing and ingoing edges in the network as:

TCm =
1

K

K∑
i,j=1,i 6=j

Cmij . (10)

For a more expedient interpretation as weights, the elements of the variance decomposition

Sm(H) are normalized row-wise before connectedness measures are calculated. In particular,

we use

s̃mij =
smij∑K
l=1 s

m
il

, (11)

where the row sums of the resulting matrix S̃m are equal to unity. We denote all measures

based on these normalized s̃mij as relative connectedness measures since the impact of j on i

is scaled by the total effect of all other l 6= i on i. Thus we define as in (7):

C̃OUTij =
1

3
(s̃OUTij (1) + s̃OUTij (2) + s̃OUTij (5)). (12)

and also ÕC
m

j , ĨC
m

j and T̃C
m

are obtained accordingly. In this way, we can assess if and how

some countries as nodes are more connected than others. For the full picture, we consider

both, absolute and relative measures based on smij or s̃mij respectively, in order to attribute

changes in connectedness to a specific country or the system entity. The connectedness

matrices S̃m are asymmetric by construction and can be represented as directed network

graphs. Note that this is also true for SOUT while the in-sample version SIN is actually

symmetric and yields a directed network only through the normalization in S̃IN .

When clear from the context, the superscript m ∈ {IN,OUT} of a connectedness measure

is omitted for improved readability in the rest of the paper.

3. Data

Default risk is commonly measured by CDS spreads and asset swap spreads of bonds.

We employ daily CDS spreads of nine European countries, including both core and periphery

countries: Belgium (BE), France (FR), Germany (DE), Ireland (IE), Italy (IT), Netherlands

7Weighted density is computed by 1
K(K−1)

∑K
i,j=1,i 6=j Cij .
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(NL), Portugal (PT) and Spain (ES) 8. The CDS are of five years maturity and denominated

in US Dollars.9 The data is retrieved from Bloomberg and covers the time period from

02/02/2009 until 05/02/2014. A CDS transfers the risk of default from the buyer to the

seller of the swap. In return, the buyer pays the seller the CDS spread (see Duffie, 1999;

Longstaff et al., 2005; Fontana and Scheicher, 2016; among others). Sovereign asset swap

spreads are obtained from Thomson Reuters. The sample covers the same set of countries

and time period as the CDS data. Like the CDS spreads, the asset swap spreads are for bonds

of five years maturity.10 The reference rate of the asset swap is the three month Euribor and

the underlying bonds are denominated in Euro. An asset swap transfers a fixed security, here

a sovereign bond, against a floating market rate. This rate minus a reference rate such as

the Euribor reflects the creditworthiness of the government issuing the bond, stripped of the

interest rate risk. Therefore, the asset swap spread serves as a suitable comparison to CDS

spreads (see also Gyntelberg et al., 2013) and should be preferred over bond yield spreads,

which include interest rate risk. Figure A.9 in the Appendix shows the levels of CDS spreads

and asset swap spreads in comparison.

Tests for stationarity suggest that the data is difference stationary. We apply the Aug-

mented Dickey-Fuller (ADF) test and the Kwiatkowski, Phillips, Schmidt and Shin (KPSS)

test to each 200-day subsample of the rolling window. We then compute the percentage of

times the H0 of the ADF are rejected and the percentage of times the H0 of the KPSS cannot

be rejected at 5%. This gives us the percentages of 200-day series that appear to be station-

ary. Regarding CDS data and according to KPSS, 1.8% of the level series are stationary

and 93.11% of the return series are stationary on average. Using returns of CDS spreads is

common in the literature (cf. Cont and Kan, 2011; Alter and Beyer, 2014; among others). As

expected, the statistical properties of asset swap spreads are similar to those of CDS spreads.

The results of the KPSS test indicate that 3.6% of the level data and 99.1% of the differenced

data are stationary. Country-wise summary statistics of spreads and spread returns, as well

as the results of the unit root tests, are provided in Table A.6 in Appendix A.1.

8Greece is excluded from our study because trading of Greek sovereign bonds ceased after the disclosure
of its budget deficit on 10/20/2009.

9In Section 4.2.3, we control for exchange rate risk among others and find that its effect is negligible.
10We use five years maturity in order to make them comparable to CDS spreads, even though bonds of ten

years maturity are more liquidly traded, see also Caporin et al. (2013).
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4. Results

4.1. Dynamic Specification

In the underlying rolling window VAR-type specification (1), we aim for a parsimonious

model fit while maximizing forecasting power, as our main goal of interest is the connectedness

measure based on the forecast error variance decomposition. We obtain the optimal number

of lags by minimizing the normed MSE11 of different models for each rolling window. We

find that the model generally most suited to our needs is a first order difference VAR with

one lag, i.e. a VAR(1) of spread returns across different estimation and forecast windows

Te, Ts ∈ [100; 400] with Te ≤ Ts. This coincides also with the in-sample optimal lag length

according to AIC. Note that 100 and 400 working days correspond to 4.5 months and 1.5 years

of data, respectively. In the following, we take T = Ts = Te, where T = 200 corresponds

to nine months of data and minimizes the mean MSE across all windows. In this data-

driven way, we ensure that windows with T = 200 are large enough for achieving forecasting

accuracy from sufficient estimation precision and small enough to discern past less relevant

crisis events.12 Also, when comparing rolling window in-sample fits via the mean AIC, the

MSE-driven choice of T = 200 performs well and is thus used for the rest of the paper.13

For a valid connectedness analysis, the dynamic VAR(1) specification must yield unbiased

low variance predictions. We therefore benchmark the chosen VAR-model against VECM and

VARX alternatives according to out-of-sample MSE performance. The results for the VECM

comparison are depicted in Figure A.13 in the Appendix. Even though we find mild evidence

for cointegration relationships in a few time periods as indicated by the Johansen test for

cointegration, in terms of forecasting power, the first-differenced VAR performs equally well

as a respective VECM in non-crisis periods but substantially outperforms it during the crisis.

This also corresponds to the intuition that a VECM captures the long term relations between

the variables and these become less important during the crisis because agents become more

short-sighted.14 There is no improvement in the forecasting power of the VAR by including

exogeneous variables controlling for common changes among the CDS spreads, such as change

in Euribor reflecting financing conditions, VIX as a proxy for investors’ fear and iTraxx

11Correlation in the forecast error is negligible, thus the properties of optimal forecasts hold for MSE (Patton
and Timmermann, 2007).

12See Figure A.10 in Appendix A.4.1 for details.
13exemplary values of mean AIC: 19.9/17.5/23.6 for a window sizes of T = 200/100/400 observations

respectively.
14This confirms the finding by De Santis (2012) that cointegration models for European Monetary Union

(EMU) government bond spread dynamics break down in the period from September 2008 until August 2011.

10



Europe representing aggregate credit market development (Avino and Nneji, 2014)15. As

illustrated in Figure A.14 in the Appendix, the MSE of the VARX persistently exceeds that

of the VAR indicating overall inferior performance of the larger model. For completeness, we

also provide the in-sample AIC, BIC and log-likelihood in Table A.8 in the Appendix.

In our connectedness analysis, we are particularly concerned with understanding the ef-

fects of specific policy and regulatory announcements and actions, such as country-specific

bailout packages, but also EU-wide support programs. The exact dates considered can be

found in the timeline in Appendix A.3, which might have also imposed structural breaks

in the mean return dynamics. Thus, in order to account for structural breaks we include

event dummies that equal unity from the considered events onwards. If our approach was

not out-of-sample, breaks could be accounted for by time-varying parameter models as in

Giannone et al. (2015). We test for parameter constancy in the underlying VAR model using

F-type (Andrews, 1993; Andrews and Ploberger, 1994) and OLS-based MOSUM (Chu et al.,

1995;Kuan and Hornik, 1995) stability tests. The p-values of MOSUM-tests are given in

Table 2 for both with and without event dummies and T = 200.16 The null hypothesis of

no structural change is rejected for the country-regressions of Belgium, France and Ireland

at the 0.05-level in the VAR without event dummies. On the other hand, the null cannot be

rejected at least at the 0.1-level for the model containing event dummies. Hence, we observe

no further evidence for structural breaks after including time dummies to the model.

Belgium France Germany Ireland Italy Netherlands Portugal Spain

w/o dum 0.021 0.029 0.098 0.046 0.235 0.134 0.068 0.185
w/ dum 0.274 0.318 0.338 0.628 0.525 0.157 0.510 0.677

Table 2: P-values of MOSUM stability test

Under the null hypothesis of no structural break the limiting process for the empirical MOUSM proecess is a
standard Brownian bridge. The MOSUM stability test is applied for each equation (i.e. country) of the VAR
with a window width of 200. The first line represents p-values of the MOSUM test for a VAR without event
dummies and the second line shows p-values of the MOSUM test for a VAR including event dummies.

Regarding the F-type test, we apply the supF -statistic, which is the most sensitive to

structural change among those proposed by Andrews (1993) and Andrews and Ploberger

(1994). The F-test is applied for each rolling window of length 200 and the means of the

corresponding p-values for each country are given in Table 3. Once again, we observe larger

p-values for the model with event dummies, underlining their importance. We therefore

15Avino and Nneji (2014) find that the prediction of CDS spreads by an AR(1) is not improved by adding
the employed exogenous variables.

16For robustness, the MOSUM stability tests are also carried out for window sizes 130, 260 and 400. The
results for these window sizes are similar and are provided upon request.
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Belgium France Germany Ireland Italy Netherlands Portugal Spain

w/o dum 0.184 0.186 0.17 0.185 0.309 0.131 0.205 0.272
w/ dum 0.8 0.82 0.812 0.684 0.748 0.786 0.666 0.785

Table 3: P-values of supF test statistic

The null hypothesis of no structural change is rejected when the maximal F statistic of all potential break
points gets too large. The p-values shown in the table are the country-wise means of the p-values for the
supF -statistic across all rolling windows of length 200.

finally stick to a VAR(1) model with event dummies at the specifically considered dates

listed in Appendix A.3. The resulting connectedness measures are only mildly affected

by the inclusion of time dummies at the event dates,17, which might be attributed to the

relatively short estimation windows (see also Blatt et al., 2015).

As in the literature on connectedness effects (see Diebold and Yilmaz (2014) and An-

tonakakis et al. (2016), among others), we aim at capturing all unconditional variance spill-

over effects with our measures. Therefore, conceptually, pre-filtering for idiosyncratic het-

eroskedasticity is not required. The results, however, would not differ substantially if pre-

filtering was applied. In particular, for the relatively small rolling window estimation sizes of

T = 200 and with event dummies, heteroscedasticity effects play only a minor role. We apply

the ARCH-LM-test by (Engle, 1982) to each estimation window and find that we cannot

reject the null of no heteroscedasticity (ARCH disturbances) at the 5%-level (1%-level) in

more than 62% (81%) of the cases (see Figure A.12a in Appendix A.4.3 for a boxplot of all

p-values). Furthermore, as a simple validity check, we have recalculated the total connected-

ness after GARCH pre-filtering and plotted it against the unfiltered total connectedness in

Figure A.12b in the Appendix. The results are almost identical.

4.2. Results on Sovereign Connectedness

4.2.1. Advantages of the Out-of-Sample Measure

In the following, we provide evidence that the novel out-of-sample technique provides

significant additional information relative to the standard in-sample method by Diebold and

Yilmaz (2014), in particular, it responds more quickly to unforeseen events.

First, we determine significant differences between the novel out-of-sample connectedness

and the standard in-sample method by Diebold and Yilmaz (2014) with a Diebold-Mariano

Test (DM-Test) for the same underlying dynamic set-up. We clearly reject the null hypothesis

that both coincide at levels below 1%. In particular, we find significant deviations of the level

17See Figure A.11 in Appendix A.4.2.
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of forecast errors (maximum p-value< 2.2 · 10−16) as well as when comparing connectedness

measures at country-level (maximum p-value = 0.000568) and total connectedness (p-value<

2.2 · 10−16). See Table 4 for detailed p-values of DM-tests of differences in country-wise

in-sample and out-of-sample connectedness.

Belgium France Germany Ireland

p-value 5.68 · 10−4 9.74 · 10−10 2.31 · 10−49 2.30 · 10−14

Italy Netherlands Portugal Spain

p-value 1.21 · 10−8 3.87 · 10−34 2.69 · 10−62 4.18 · 10−94

Table 4: P-values of Diebold-Mariano tests for country-wise connectedness with H0 : (ÕC)OUT
j,t = (ÕC)INj,t

versus H1 : (ÕC)OUT
j 6= (ÕC)INj for all j = 1, . . . , 8.

Second, we find that the level of the out-of-sample measure is generally higher than

that of the in-sample measure when unexpected crisis-related events occur (see Figure 1),

often responding more quickly to such events. Figure 1 shows boxplots of the aggregated

Reference Event (1) Event (2) Event (4)

0.
00

0.
10

0.
20

0.
30

Figure 1: Exemplary boxplots of (
∑8

j=1

|(ÕC)OUT
j,t −(ÕC)INj,t |
(ÕC)INj,t

) depicting the aggregated relative difference of

country-wise out- and in-sample relative connectedness base don CDS in a window of ten working days before
and after bailout dates of selected countries. The event classification follows Table Appendix A.3. The
reference period contains the 20 working days in the period 01/12/2012 -02/09/2012 which is not marked by
specific events.

relative differences in country-wise out-of-sample and in-sample connectedness around the

bailout dates of Ireland (event 1 at 12/01/2010), Portugal (event 2 at 04/06/2011) and

Greece (event 4 at 07/21/2011). The differences around these state-specific actions are much

larger than those of an exemplary reference period without specific events about 6 months

after the last of the three considered events. Moreover, Figure 2 shows for an exemplary

core and periphery country the evolution of (ÕC)OUTj,t and (ÕC)INj,t in the upper part and

the relative differences in the two lower graphs over the entire time period. Even though

the out-of-sample measure often exceeds the in-sample measure, there are also periods were

13
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Figure 2: The upper two plots show (ÕC)OUT
j,t in black dashed lines and (ÕC)INj,t in grey solid lines for

the two countries j, where as in the two lower graphs the blue lines depict the relative differences i.e.,∑8
j=1

|(ÕC)OUT
j,t −(ÕC)INj,t |
(ÕC)INj,t

. All plots are based on CDS data. Important events (see the specification in Table

Appendix A.3) are marked with vertical lines with country-specific events in blue.

the contrary is true. Also, the differences between the two measures decrease over time as

events become less unexpected. Hence, the use of out-of-sample measures appears preferable

in order to obtain more reliable estimates of connectedness, especially, for unexpected key

events.

On the network level, we confirm the impression that the out-of-sample measure reacts

faster when unexpected events occur. In particular, we compare element-wise differences

C̃OUT − C̃IN for all directed edges in the network at three days around event 4 in Figure 2

which is the bailout of Greece, but also around the bailout of Portugal (event 2, networks

shown in Figure A.15) and the announcement of the OMT (event 9, networks shown in Figure

A.16). In Figure 3, the CDS-based results for the Greek bailout indicate that out-of-sample

connectedness exceeds the in-sample one already before the event picking-up leaking informa-

tion more quickly. The same is confirmed but less pronounced for asset swaps (Figure A.17).

For completeness, we also provide the results for asset swap spreads in Appendix A.6. Dif-

ferences between CDS and bond data are discussed in detail in the following subsections.
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(a) 07/20/2011, CDS
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France
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2011−07−21

(b) 07/21/2011, CDS

Belgium
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2011−07−22

(c) 07/22/2011, CDS

Figure 3: The three networks with countries as nodes show C̃OUT
ij − C̃IN

ij for i < j depicted by the arrow from

j to i and C̃OUT
ij − C̃IN

ij for i > j depicted by the arrow from i to j the day before (a), at (b), and the day
after (c) a second bailout package for Greece was decided (event 4 in Table Appendix A.3) for CDS data. The

thickness of each arrow marks the size of C̃OUT
ij − C̃IN

ij according to the following scale: Wide, black arrows
correspond to values greater or equal than the third quartile; medium, darkgray edges mark values between
the median and third quartile, and thin, lightgray edges show small differences between the first quartile and
median. Differences below the first quartile are not shown.

4.2.2. A Comprehensive Picture of Sovereign Connectedness around Important Events

We employ our out-of-sample measure for a real-time forecasters’ perspective on risk

interconnectedness around characteristic events during the crisis. As seen in the previous

subsection, the strictly predictive nature of the out-of-sample measure provides appropriate

forecasts deviating from those of the standard in-sample analysis by Diebold and Yilmaz

(2009) in these cases. In particular, we study the period between February 2009 and 2014

involving country specific bailouts of Ireland, Portugal, Greece, the rescue of Bankia by the

Spanish government but also EU wide actions such as Draghi’s speech “whatever it takes...”,

the announcement of the OMT, and further announcements of unconventional ECB monetary

policy measures.18 Note that in all following figures, country specific events appear as blue

vertical lines if the respective country is contained in the graphs and in dotted black if not.

The most important European-wide events are marked by solid black lines.

CDS connectedness in Figure 4 shows that generally country-wise relative out-connectedness

of the four core countries Belgium, France, Germany and the Netherlands drops significantly

only after the ECB’s commitment to low interest rates (7). Before, connectedness of Ger-

many and the Netherlands is well above 60%. For France and Belgium it is even above 80%.

Connectedness of Germany and the Netherlands already begins decreasing after Draghi’s

speech and the announcement of the OMT (6). While connectedness of Germany and the

Netherlands seems unaffected by the bailouts of Ireland (1) and Portugal (2), connectedness

of both Belgium as well as France rises during this period of the sovereign debt crisis. Their

connectedness measures remain on a high level, comparable to that of Italy, until mid 2013

18See again Section A.7 in the Appendix for a detailed list.
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Figure 4: Country-specific outgoing connectedness using relative variance decomposition components for CDS
spreads for each country grouped for core countries on the left, and the four periphery countries on the right.
Important events are marked with vertical lines. A detailed timeline with their exact specification can be
found in the Appendix in Table A.7.
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Figure 5: Country-specific outgoing connectedness using relative variance decomposition components for ASW
grouped for core coutnries on the left, and the four periphery countries on the right. Important events are
marked with vertical lines. Country specific events appear as blue vertical lines if the respective country is
contained in the graphs and in dotted black if not. The most important European-wide events are marked
by solid black lines. A detailed timeline with their exact specification can be found in the Appendix in Table
A.7.
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(7). This reflects the slightly unstable financial situation of France and the impaired banking

sector of Belgium.

Among the periphery countries, both Italy and Spain remain on a high level of connect-

edness which does not decrease until the beginning of 2014, after the European Commission

adapts the Risk Finance Guidlines (8). The new guidelines improve SMEs’ and midcaps’ ac-

cess to funding and apparently have a stabilizing effect on countries which had been weakened

by the crisis. Portugal shows a different behavior from all other countries with connectedness

declining sharply between the second bailout for Greece (4) and Draghi’s speech (6). This

can be explained by fast and effective implementation of austerity measures and structural

reforms as e.g. in labor markets and institutions (see e.g European Commission (2014)) as

well as by reduced speculation and trading in Portugal after the announcement of the naked

CDS ban in October 2011. Moreover, Ireland is the only periphery country for which con-

nectedness drops in mid 2013 after (7) similar to the core countries, showing its structural

recovery since the turbulence in 2010. The different picture of Ireland’s asset swap connect-

edness in Figure 5 as compared to the CDS based measure can be attributed to the fact that

the country actually lost access to market funding in 2010 and entered a financial assistance

program by the EU and the IMF until the end of 2013. When exiting the program, the

ASW-measure shows that the spill-over impact on other EU-countries quickly decreased as

the country managed to fully rely on market based financing restoring market confidence (see

IMF (2015)).

Generally, for asset swap connectedness, we observe a defragmentation among the periph-

ery countries’ connectedness already from 2011 onwards (see also Ehrmann and Fratzscher,

2017). In CDS connectedness, this becomes visible only from 2014 onwards, after it was clear

that restructuring in Portugal and Ireland was successful and both countries could survive

without EU and IMF funding schemes. Hence, during the financial assistance periods, the

CDS-based measure appears to capture volatility spill-over effects of credit conditions for

periphery countries more realistically in terms of economic fundamentals (see also Fontana

and Scheicher, 2016). Moreover, relative asset swap connectedness of the four core countries

and of Ireland is generally on a lower level than connectedness based on CDS indicating that

the bond market captures less volatility spill-overs. While for France and Belgium the dy-

namics of the asset swap based measure is comparable to CDS connectedness, for Germany

and the Netherlands this is not the case. This can be explained by flight to liquidity and

flight to quality effects which play an important role for bonds but not for CDS (Fontana and
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Scheicher, 2016). Italy, Spain and Portugal are the only countries for which both, the level

as well as the dynamics of outgoing connectedness is similar irrespective of the underlying

dataset. Generally, however, when ranking countries by connectedness, the obtained ordering

is the same for CDS and ASW for almost all points in time. Nevertheless, differences in the

two measures might contain valuable additional information for understanding the role of a

country within the system.

A rise in relative connectedness can originate from an increase in absolute individual

connectedness or from a decline in absolute ingoing connectedness of that country. Thus,

a comparison of the two measures reveals a more comprehensive picture of the spill-over

risk each country imposes on the system while only relative levels allow for a connectedness

comparison across CDS and ASW data sets. Figure 6 shows the outgoing country-wise

CDS connectedness for each country in absolute and relative terms. During the period

between the stress test results (3) and the beginning of 2012, Spanish relative connectedness

drops, while absolute connectedness only decreases slightly. This shows that absolute ingoing

connectedness of Spain increased in this time period which comprises the Greek bailout

(4). The opposite behavior of relative and absolute measures occurs for Belgium, France,

Ireland, Portugal and Spain after the ECB’s commitment to low interest rates (7). For these

countries, absolute measures decline more than relative measures, indicating a strong decrease

in idiosyncratic volatility.

Draghi’s speech marks the point in the crisis after which connectedness for most countries

starts an overall decrease. We therefore study this key event in more detail, investigating the

spill-over channels on the granular network level. Individual connectedness measures before

Draghi’s speech and after the announcement of the OMT are visualized in network graphs

in Figure 7, in which thicker arrows depict a larger magnitude of connectedness from one

country to another. Generally, we observe thinner connections after the announcement of

the bond-buying plan but only a few vanish. Hence, while the overall level of connectedness

decreases, the effective spill-over channels remain almost entirely active. In the CDS case,

only Portugal is less connected to the system confirming its special role detected in the

country-wise connectedness also by the network topology. For ASW, there appear much less

spill-over channels. The more sparse network, however, contains many strong links of the CDS

graph. On the other hand, it also misses out on many valid edges as e.g. between France and

Germany, so it could only partially serve as ranking device for the many CDS connections.
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Figure 6: Country-Specific Outgoing Connectedness Using Absolute and Relative Variance Decomposition
Components for CDS spreads for each country. Absolute connectedness is depicted by a solid black line and
its scale is on the left-hand axis. Relative connectedness is depicted by a dashed line and its scale is on
the right-hand axis. Important events are marked with vertical lines. A detailed timeline with their exact
specification can be found in the Appendix in Table A.7. The sample period is as in Figure 8.

For absolute individual connectedness, shown in Figure A.18 in the Appendix, CDS networks

remain comparable to relative measures, while in the ASW network a strong increase in thin

connections is observed. Generally, both absolute measures indicate a stronger decline by the

event compared to relative connectedness measures. In particular, this is the case for Ireland,

Italy and Portugal which after the ECB’s policy announcement affect the system less than

before.
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Figure 7: Individual relative connectedness before Draghi’s speach (07/25/2012) and after the announcement
of the OMT (09/07/2012). The same definitions as in Figure 3 apply. Absolute connectedness is shown in the
Appendix in Figure A.18 for completeness.

4.2.3. Determinants of the Difference in Connectedness of Sovereign CDS versus Asset Swap

Spreads of Bonds

In the previous two subsections we have seen advantages of the out-of-sample connected-

ness measure and documented differences between measures based on CDS and asset swap

data. Here, we investigate the driving determinants of this discrepancy.

CDS spreads and asset swap or bond yield spreads have both been used in the literature

to measure default risk. Since it is well-known that European countries are politically and

economically tightly interconnected, CDS and asset swap spreads should react in all countries

when crisis-related events occur. Although the theoretic no-arbitrage condition (see Duffie,

1999, among others) would imply that the two datasets reflect the same information on

credit risk, we find important structural differences, especially during the crisis. Various

research papers have studied the determinants of the difference between CDS and bonds in

levels (see e.g. Fontana and Scheicher, 2016; or Bai and Collin-Dufresne, 2011), but only

few have compared volatility type measures using both datasets so far (see Caporin et al.,

2013 and Lange et al., 2016). Figure 8 illustrates total connectedness of CDS and asset swap

spreads. Globally aggregated, variance decomposition measures of asset swap spreads appear

to systematically detect less connectedness relative to variance decomposition measures of
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Figure 8: Total relative connectedness of CDS and asset swap spreads. Both are computed with out-of-sample
forecast errors and averaged across one, two and five forecast periods ahead. The black line is obtained from
CDS spreads and the values resulting from asset swap spreads are depicted by a gray line. The vertical lines
marked 3 and 7 (marking the stress test results and the ECB interest rate commitment) designate the period
in which the time dummy is used in the panel regression. The sample covers the period from 02/02/2009 until
05/02/2014, which leads to out-of-sample connectedness measures from 08/25/2010 until 05/02/2014.

We investigate the driving determinants of the difference between connectedness measures

of CDS and asset swap spreads. We denote this as difference in connectedness and estimate

it by a fixed effect panel regression:

zjt = αj + βxjt + γDtxjt + εjt, (13)

where zjt =
∑K

i=1,i 6=j C̃
OUT,CDS
ij,t − C̃OUT,ASWij,t is the difference in outgoing connectedness for

each country j and xjt represents a vector of explanatory variables. Country fixed effects are

captured by αj and the errors εjt are independent, strictly exogenous. In order to control for

heterogeneity across time, we add a dummy variable Dt equal to unity between 07/15/2011

(event marked 3) and 07/04/2013 (event marked 7). The regressors contained in xjt are

the bid-ask spread of CDS and bonds, the debt-to-GDP ratio, the VIX and the Euribor-

Eurepo three month spread. All employed determinants are level stationary according to the

LR-bar test for multiple cointegration (Larsson et al., 2001). The bid-ask spread is a proxy

for liquidity and plays an important role for the difference between CDS and bonds. We

use the debt-to-GDP ratio to capture the country’s credit quality and the VIX as a global

measure for risk aversion. Both the debt-to-GDP ratio and the VIX are expected to have a

positive impact on the CDS and asset swap spreads and possibly also on their connectedness

measures. The Euribor-Eurepo spread represents arbitrage costs and the general refinancing
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situation: When the repo rate is lower than the Euribor, it is costly to short-sell bonds, thus

a high Euribor-Eurepo spread would drive CDS and bonds apart. These factors are jointly

significant and are individually more significant than other highly correlated explanatory

variables. The regression results are summarized in Table 5.

Variable Estimate Std. Dev.

en
ti

re
p

er
io

d
(b

a
se

li
n
e)

Bid-ask CDS -3.27 (1.97)·

Bid-ask ASW -1.52 (4.37)
Debt/GDP 0.01 (0.00)·

VIX 0.08 (0.02)∗∗∗

Euribor-Eurepo 0.18 (0.36)

tu
rb

u
le

n
t

cr
is

is
p

er
io

d
(3

-7
)

Dummy constant 1.02 (0.20)∗∗∗

D * Bid-ask CDS 2.76 (0.81)∗∗∗

D * Bid-ask ASW 7.84 (2.94)∗∗

D * Debt/GDP 0.00 (0.00)
D * VIX -0.04 (0.01)∗∗∗

D * Euribor-Eurepo 0.13 (0.23)

(a) Estimates and Standard Deviations

Country Fixed Effect

Italy -1.58
Portugal -1.55

Ireland -1.39
Spain -1.38

Belgium -1.35

France -1.28
Germany -1.14

Netherlands -1.04

(b) Country Fixed Effects in Levels

Table 5: Panel Regression Results

Table 5a lists the coefficient estimates and standard deviations for the panel regression of the difference
in connectedness including fixed effects, using 785 observations of nine countries. The numbers in
parentheses are robust standard errors and ***, **, * indicate significance at the 0, 1%, 1%, and 5%
level. The within adjusted R-squared is 0.82 and the coefficients are jointly significant with an F
statistic of 2578.37. Since the difference in connectedness is computed on a 200 day rolling window,
we use rolling window estimates of the same width for the regressors. We use a time dummy for the
most turbulent period of the crisis between 07/15/2011 (event 3) and 07/04/2012 (event 7). In the
second block titled “turbulent crisis period” we list the estimates of the interaction terms. Standard
errors are robust to serial correlation and cross-sectional correlation according to Driscoll and Kraay
(1998). Countries in Table 5b are ordered by size of the fixed effect.

The difference between the connectedness measures of CDS and bonds is largest during

the most turbulent time of the crisis, between 15.07.2011 (event 3) and 04.07.2012 (event

7). The dummy estimate for this period underlines that there is a significant positive shift,

which we have already seen earlier in Figure 8. It shows that part of this shift is explained by

crisis-related conditions during this period. Apart from the level shift between 2011 and 2013

we also observe a change in the effect of the explanatory variables. Liquidity, proxied by the

bid-ask spreads of CDS and bonds, has the largest effect on the difference in connectedness

of CDS and asset swap spreads. It is noteworthy that the effect of bond liquidity is only

significant during the most turbulent period of the crisis with a total effect of 8.07. The

impact of CDS liquidity is almost half the size (-4.32) during more tranquil times compared
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to bond liquidity and decreases to -2.13 between 2011 and 2013.19 Apart from macro factors,

liquidity affects the correlation in bond spreads during the crisis (Boffelli et al., 2016). In

times of crises, bonds of countries in financial distress are barely traded, whereas bonds of

creditworthy countries become more liquid, thus pushing their yields down. The value of

CDS, in contrast, depends less on its liquidity. In this sense, flight to quality and flight to

liquidity in bond markets during the crisis drive the connectedness measures of CDS and

asset swap spreads apart.20 Fontana and Scheicher (2016) find evidence for the same effect

on CDS and bonds in levels. The country fixed effects in Table 5b show that stable countries

generally yield higher differences in connectedness, thus confirming the flight to quality or

liquidity argument (Beber et al., 2009) . The debt-to-GDP ratio and the VIX both have a

smaller, but significant positive impact on the difference in connectedness, meaning that the

CDS-based connectedness measure reacts slightly stronger to a change in these variables than

the bond-based connectedness measure. The effect of the arbitrage proxy Euribor-Eurepo is

insignificant for the difference in connectedness at all times.

We have additionally conducted seperate regressions for CDS connectedness and asset

swap connectedness in order to identify advantages of each dataset. Here, zjt corresponds to

the outgoing connectedness of country j using CDS or ASW data.21 The regression results

are summarized in Appendix A.5. The asset swap panel regression reveals that the ordering

of the country fixed effects are, apart from the position of Belgium, identical to the previous

regression of the difference in connectedness. Country fixed effects of CDS connectedness,

on the other hand, are not ordered intuitively. This shows that asset swaps are important

for determining the approximate position of countries concerning connectedness. While asset

swaps play a crucial role for evaluating the position of a country compared to others, CDS

connectedness accounts for the factors driving connectedness. Liquidity, the debt-to-GDP

ratio and VIX all have a significant impact on CDS connectedness. At the same time, both

instruments have drawbacks: Bond liquidity diminishes in the presence of CDS and during

the crisis (Massa and Zhang, 2012), while CDS are affected by speculative trading (Oehmke

and Zawadowski, 2017). These disadvantages can be compensated by using both instruments

simultaneously and thus measure default risk connectedness more precisely.

The complementarity between CDS and asset swap spread connectedness is illustrated on

19The total effects for the turbulent crisis period equal the sum of the baseline estimates and the dummy
interaction estimates.

20The difference between CDS and bonds is intensified by ECB bond purchases.
21zjt =

∑K
i=1,i 6=j C̃

OUT,CDS
ij,t and zjt =

∑K
i=1,i 6=j C̃

OUT,ASW
ij,t , respectively.
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a country level using network graphs in Section 4.2.1 and 4.2.2.

5. Conclusion

Interconnectedness has been a crucial element of the financial and European sovereign

debt crisis and its propagation. Accordingly, appropriate measures to quantify this intercon-

nectedness are necessary. We provide a method for measuring and forecasting connectedness

via the out-of-sample forecast error variance decomposition, which allows for precise mea-

surement results after unexpected events. In contrast to the standard in-sample variance

decomposition, our method uses forecast errors predicted for points outside the estimation

sample instead of in-sample forecast errors directly computed from the MA representation for-

mula, and it thus incorporates more aspects of unknown shocks. We have shown empirically

that around crisis-related events, the out-of-sample measure reflects changes in connectedness

faster than the standard variance decomposition as proposed by Diebold and Yilmaz (2014).

A detailed comparison at specific events shows that out-of-sample measures are advantageous,

especially when using CDS data.

We find, however, that CDS and asset swap spreads contain complementary information

for evaluating connectedness. The difference between the respective measures is explained

by liquidity effects, credit quality, risk aversion and crisis-related conditions. Asset swaps

are important for determining the overall risk position of countries while CDS reflect more

detailed information on country-specific risk.

We analyze connectedness in Europe during the sovereign debt crisis by evaluating both

relative and absolute connectedness measures. In general, levels of connectedness measures

decrease after financial aid packages to impaired countries and the ECB’s policy measures,

while the channels through which they are transmitted prevail.

In this paper we have shown that out-of-sample connectedness of CDS captures effects

of unexpected events instantaneously. The results for CDS and asset swap spreads motivate

a look at intra-day data for extracting more precise information on their driving forces. We

will explore this in our future work given data availability.
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Appendix A.

Appendix A.1. Summary Statistics
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Figure A.9: Levels of CDS and Asset Swap Spreads.

This figure shows CDS spreads plotted with black lines and asset swap spreads plotted with gray lines
for each country. The left axis represents the levels of spreads denoted in basis points. The sample
covers the period from 02/02/2009 until 05/02/2014.
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Belgium France Germany Ireland Italy Netherlands Portugal Spain

C
D

S
S

p
re

a
d

s

le
ve

l
d

at
a

Mean 123.73 90.78 47.43 349.82 239.68 58.69 480.23 249.45
Median 87.83 75.44 40.02 223.85 199.83 48.29 395.38 237.16
Max 406.12 249.62 119.17 1191.50 591.54 139.84 1526.95 641.98
Min 31.93 19.66 18.73 61.08 57.60 24.50 44.52 53.69
Std dev 82.95 54.30 24.67 241.41 133.01 28.56 352.23 132.90
Skew -12.97 -62.35 -938.35 3.54 2.40 -550.74 4.19 2.67
Kurt 66.62 422.05 14330.92 9.82 14.60 7138.90 11.29 15.00
ADF 17.3 10.2 10.3 16.0 4.3 10.6 10.8 5.9
KPSS 0.9 3.2 2.1 1.0 6.8 1.6 0.6 1.8

re
tu

rn
s

Mean -0.06 -0.02 -0.03 -0.15 -0.05 -0.06 0.03 -0.04
Median -0.05 -0.05 -0.00 -0.08 -0.22 -0.03 0.00 -0.01
Max 35.67 22.76 15.69 107.74 64.08 14.81 141.59 55.29
Min -59.35 -30.03 -14.67 -146.15 -80.83 -15.64 -159.11 -73.89
Std dev 6.19 4.25 2.11 14.62 11.14 2.47 21.09 11.82
Skew -0.54 -0.21 0.19 -0.60 0.09 -0.15 -0.38 -0.50
Kurt 16.75 10.34 10.93 20.26 10.59 9.90 14.35 8.63
ADF 100.0 100.0 100.0 100.0 100.0 100.0 99.7 100.0
KPSS 91.6 94.7 94.0 93.1 95.8 85.5 92.6 98.1

A
ss

et
S

w
ap

S
p

re
a
d

s
of

B
on

d
s

le
ve

l
d

at
a

Mean 40.33 -3.78 -47.23 294.04 167.55 -20.04 452.94 183.00
Median 22.80 -6.90 -42.90 210.10 131.24 -18.00 386.11 172.30
Max 311.50 88.30 -10.10 1080.70 526.90 19.70 1535.70 611.80
Min -14.90 -35.00 -98.90 37.82 8.50 -60.90 -0.50 -4.40
Std dev 48.71 16.48 17.73 213.76 121.07 13.38 360.93 128.77
Skew -89.75 -3327.68 -3767.92 5.14 2.42 -7089.41 4.87 3.13
Kurt 749.87 81383.37 92189.12 16.57 22.63 219378.36 13.41 20.85
ADF 26.5 22.5 2.8 17.0 3.0 0.6 10.9 8.3
KPSS 0.0 15.4 12.5 0.0 0.0 8.8 0.0 1.7

re
tu

rn
s

Mean -0.03 0.01 0.02 -0.09 0.02 -0.01 0.07 0.01
Median 0.00 0.07 0.05 -0.43 -0.10 -0.10 0.17 0.00
Max 33.10 28.30 8.70 102.80 71.60 15.30 183.40 50.90
Min -47.90 -21.30 -10.30 -109.20 -82.90 -12.50 -165.60 -79.80
Std dev 6.26 3.84 2.20 13.69 10.66 2.64 19.83 10.59
Skew -0.29 0.09 -0.08 -0.43 -0.35 0.18 0.55 -0.93
Kurt 13.22 11.53 4.84 15.31 13.82 6.93 23.60 11.47
ADF 100.0 100.0 100.0 99.9 100.0 100.0 99.9 100.0
KPSS 100.0 99.8 98.1 98.4 99.7 100.0 96.0 98.6

Table A.6: Entries report the descriptive statistics of CDS spreads and asset swap spreads of bonds in levels
and returns. Unit root test results show the percentage of times the H0 of the ADF are rejected and the
percentage of times the H0 of the KPSS cannot be rejected at 5%. The tests have been conducted on a rolling
window of width 200, leading to 1087 samples.
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Appendix A.2. Generalized Variance Decompositon

Here we develop the main steps for the in-sample variance decomposition components from

Equation (5) via the impulse response function.22 Koop et al. (1996) define the generalized

impulse response function GI of yt at horizon H for a shock of size δ and a known history

Ωt−1 as follows:

GI(H, δ,Ωt−1) = E(yt+H/ut = δ,Ωt−1)− E(yt+H/ut = 0,Ωt−1) (A.1)

For a shock only on the j-th element of ut, the function is written as:

GIj(H, δj ,Ωt−1) = E(yt+H/utj = δj ,Ωt−1)− E(yt+H/Ωt−1) (A.2)

In this case, the effects of the other shocks must be integrated out. For ut normally distributed

we have:

E(ut/utj = δj) = (σ1j , σ2j , · · · , σnj)′
δj
σjj

= Σuej
δj
σjj

(A.3)

Thus, the generalized impulse response is given by

GIj(H, δj ,Ωt−1) = ΦHΣuej
δj
σjj

(A.4)

By setting δj =
√
σjj one obtains an impulse response function which measures the effect of

one standard error shock to the jth variable at time t on the expected values of y at time

t+H:

GIj(H, δj ,Ωt−1) = σ
−1/2
jj ΦHΣuej (A.5)

As in Pesaran and Shin (1998), this is used to derive the generalized forecast error variance

decomposition components sINij (H):

sINij (H) =
σ−1
jj

∑H−1
h=0 (e′iΦhΣuej)

2∑H−1
h=0 (e′iΦhΣuΦ′hei)

(A.6)

22See Hamilton (1994) for the link between impulse responses and forecast error variance decomposition.
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Appendix A.3. Timeline

11/21/2010 (1) Ireland seeks financial support; EU-IMF package for Ireland is agreed:
12/02/2010

04/06/2011 (2) Portugal asks for support by the Eurozone; aid to Portugal is approved:
05/16/2011

07/15/2011 (3) Stress test results are published

07/21/2011 (4) Eurozone agrees a second bailout package for Greece

05/09/2012 (5) Spanish government rescues Bankia, which is entirely nationalized later;
announcement that Spain will seek financial assistance for its banking sector:
06/09/2012; financial aid is granted: 07/20/2012.

07/26/2012 (6) Draghi promises the ECB would do ”whatever it takes” to sustain the
euro.

09/06/2012 Details of ECB’s new bond-buying plan are announced.

07/04/2013 (7) ECB reveals that key interest rates would remain at present or lower
levels for an extended period of time.

01/15/2014 (8) European Commission adapts Risk Finance Guidlines 4.

04/03/2014 (9) ECB states that it is disposed to apply unconventional measures such as
bond purchasess or quantitative easing.

Table A.7: Timeline of important events during the European debt crisis.
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Appendix A.4. Forecasting Power of Different Model Specifications

Appendix A.4.1. Rolling Window Size
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Figure A.10: Mean MSE for different window sizes

For each window length between 100 and 400, we compute MSEs across all rolling windows. The dots in the
graph represent the mean of the Frobenius norm of the MSEs for each window size.

Appendix A.4.2. Parameter Constancy/ Structural Breaks
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Figure A.11: Total Connectedness With and Without Time Dummies for Events

Total connectedness measures for CDS spreads with (black) and without (grey) time dummies in-
cluded in the underlying VAR. Both are computed with out-of-sample forecast errors, calculated from
relative measures and averaged across one, two and five forecast periods ahead. The sample covers
the period from 02/02/2009 until 05/02/2014, which leads to out-of-sample connectedness measures
from 08/25/2010 until 05/02/2014.

Appendix A.4.3. Heteroscedastic Effects
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test for all rolling windows, LM-test as
proposed by Engle (1982).
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Figure A.12

Appendix A.4.4. VAR, VECM and VARX
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Figure A.13: MSE of VECM and VAR

This figure shows the normed23 MSE of a VAR(1) and a VECM across all rolling windows, using
CDS data in figure A.13a and bond data in figure A.13b. The solid line represents the normed MSE
of a VECM. The number of cointegration relationships of the VECM is adapted for each estimation
window. The dotted line represents the normed MSE of a VAR(1). The sample covers the period
from 08/25/2010 until 05/02/2014.

The number of cointegration relationships of the VECM is adapted for each estimation

window.
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Figure A.14: MSE of VARX and VAR

This figure shows the normed MSE of a VAR(1) and a VECM across all rolling windows, using CDS
data in figure A.14a and bond data in figure A.14b. The solid line represents the normed MSE of a
VARX including change of Euribor, VIX and iTraxx Europe as exogenous variables. VIX and iTraxx
Europe are included as first differenes in order to ensure stationarity. In each estimation window, the
variables are jointly significant for at least seven out of nine equations of the VARX according to the
F-test. The dotted line represents the normed MSE of a VAR(1). The sample covers the period from
08/25/2010 until 05/02/2014.

CDS spreads Asset swap spreads

VAR VECM VARX VAR VECM VARX

AIC 20.48 20.66 20.48 25.09 25.26 25.08
BIC 22.03 23.28 22.03 26.42 27.66 26.40

logLik -4186 -4084 -4187 -4648 -4557 -4649

Table A.8: AIC, BIC and log-Likelihood of a selection of models

For each rolling window in our samples we compute the AIC, BIC and log-Likelihood of different esti-
mated models. Entries report the average values of AIC, BIC and log-Likelihood across all estimation
windows.

36



Appendix A.5. Panel Regression Results

Variable Estimate Std. Dev.

en
ti

re
p

er
io

d
(b
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se
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Bid-ask CDS -4.56 (1.89)∗

Bid-ask ASW 1.17 (2.74)
Debt/GDP 0.00 (0.00)
VIX 0.05 (0.02)∗

Euribor-Eurepo 0.12 (0.25)

tu
rb
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le

n
t

cr
is

is
p

er
io

d
(3

-7
)

Dummy constant 0.54 (0.24)∗

D * Bid-ask CDS 3.61 (0.91)∗∗∗

D * Bid-ask ASW 9.19 (2.03)∗∗∗

D * Debt/GDP 0.00 (0.00)
D * VIX -0.03 (0.01)∗

D * Euribor-Eurepo 0.15 (0.13)

(a) Estimates and Standard Deviations

Country Fixed Effect

Netherlands 0.57
Belgium 0.48

Spain 0.45
France 0.38

Germany 0.37
Ireland 0.37

Italy 0.37
Portugal 0.29

(b) Country Fixed Effects in Levels

Table A.9: Panel Regression Results for CDS connectedness

Table A.9a lists the coefficient estimates and standard deviations for the panel regression of connectedness
computed with CDS data including fixed effects, using 785 observations of nine countries. The numbers in
parentheses are robust standard errors and ***, **, * indicate significance at the 0, 1%, 1%, and 5% level.
The within adjusted R-squared is 0.79 and the coefficients are jointly significant with an F statistic of 2160.36.
Since the difference in connectedness is computed on a 200 day rolling window, we use rolling window estimates
of the same width for the regressors. We use a time dummy for the most turbulent period of the crisis between
07/15/2011 (event 3) and 07/04/2012 (event 7). In the second block titled “between (3) and (7)” we list
the estimates of the interaction terms. Standard errors are robust to serial correlation and cross-sectional
correlation according to Driscoll and Kraay (1998).
Countries in Table A.9b are ordered by size of the fixed effect.

Variable Estimate Std. Dev.
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Bid-ask CDS -1.94 (0.38)∗∗∗

Bid-ask ASW -0.31 (1.17)
Debt/GDP 0.00 (0.00)
VIX 0.01 (0.01)
Euribor-Eurepo -0.07 (0.05)

tu
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Dummy constant 0.23 (0.16)

D * Bid-ask CDS 0.44 (0.34)
D * Bid-ask ASW 3.13 (0.53)∗∗∗

D * Debt/GDP 0.00 (0.00)
D * VIX -0.01 (0.00)∗

D * Euribor-Eurepo -0.09 (0.11)

(a) Estimates and Standard Deviations

Country Fixed Effect

Italy 1.36
Spain 1.32

Belgium 1.30
Ireland 1.20

Portugal 1.20
France 1.19

Netherlands 1.19
Germany 1.11

(b) Country Fixed Effects in Levels

Table A.10: Panel Regression Results for ASW connectedness

Explanation as in Table A.9a, with outgoing asset swap connectedness as dependent variable. The within
adjusted R-squared is 0.42 and the coefficients are jointly significant with an F statistic of 429.55.
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Appendix A.6. Networks
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Figure A.15: Difference between out-of-sample and in-sample connectedness one day before ((a),(d)), at
((b),(e)) and one day after ((c),(f)) the bailout of Portugal. Figures (a)-(c) are computed using CDS data,
while Figures (d)-(f) are based on asset swap data. The same definitions as in Figure 3 apply.
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Figure A.16: Difference between out-of-sample and in-sample connectedness one day before ((a),(d)), at
((b),(e)) and one day after ((c),(f)) the announcement of the OMT. Figures (a)-(c) are computed using CDS
data, while Figures (d)-(f) are based on asset swap data. The same definitions as in Figure 3 apply.
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Figure A.17: Differences between out-of-sample and in-sample connectedness during second bailout for Greece
using ASW data. The same definitions as in Figure 3 are applied.
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Figure A.18: Absolute connectedness before Draghi’s speach (07/25/2012) and after the announcement of the
OMT (09/07/2012) using asset swap spreads. The same definitions as in Figure 3 apply.
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