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Abstract

We compare in a backtesting study the performance of univariate models for
Value-at-Risk (VaR) and expected shortfall based on stable laws and on extreme
value theory (EVT). Analyzing these different approaches, we are able to test if the
sum–stability assumption or the max–stability assumption, that respectively imply
α–stable laws and Generalized Extreme Value (GEV) distributions, is more suitable
for risk management based on VaR and expected shortfall. Our numerical results
indicate that α–stable laws outperform EVT-based risk measures, especially those
obtained by the so-called block maxima method.

1 Introduction

This work focuses on the investigation of the predictive power of Value-at-Risk and
expected shortfall based on the assumption of Paretian stable returns, comparing their
performances with corresponding measures based on the assumption of Gaussian returns
as well as on the Extreme Value Theory (EVT). In particular we study the empirical per-
formances of two fully parametric approaches, assuming that returns follow a Gaussian
law or an α-stable law, and of some semi-parametric approaches based on limit theorems
for maxima of sequences of independent random variables. We also consider, mainly as
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a benchmark case, a fully non-parametric approach based on empirical processes, which
corresponds to the so called historical simulation method.

In the literature, Value-at-Risk (VaR) is commonly accepted as the standard measure
of market risk and indicates, in percentage terms, the maximum probable loss on a given
portfolio, referring to a specific confidence interval and time horizon. Historically the
VaR literature has evolved following both the parametric and the non-parametric (see
[17] for a complete historical account and list of references). While in the latter case
the probability distribution of future returns is ”simulated from the past” in order to
estimate the relevant quantile (i.e. the VaR), the parametric approach is based on fitting
a certain family of probability laws to observed historical returns.

In the parametric approach the most widely adopted hypothesis is the conditional or
unconditional normality of returns (see e.g. [6] for a comprehensive overview). This as-
sumption is motivated by the conception that returns are the outcome of a large number
of “microscopic” effects. Hence, the central limit theorem (CLT) provides a theoreti-
cally sound argument in favor of Gaussian distribution. The normality assumption,
along with the hypothesis of linearity of portfolio returns with respect to the considered
risk factors, implies a normal distribution for portfolio returns. Consequently, it is pos-
sible to describe the returns’ distribution simply with the first two moments, hence VaR
can be calculated using the corresponding quantile of a standard Gaussian law.

Even if the normality of returns is intuitively very appealing, its drawbacks are well
known in literature. In fact, several empirical studies have shown that financial returns
exhibit features like high kurtosis and skewness that are incompatible with the normality
assumption (see [11], [10] and [2] among others).

A natural approach to overcome these inconsistencies is to assume that returns follow
a stable law, thus saving the CLT argument and explaining heavy tails and asymmetries
(a complete account of stable distributions in finance is given in [26]). In particular,
stable laws arise as the only possible weak limits of properly normalized sums of i.i.d.
random variables, they are heavy tailed (except in the Gaussian subcase), and can
exhibit skewness (see e.g. [27]). Moreover, univariate stable models have the potential to
provide more realistic estimates of the frequency of large price movements, and therefore
they seem preferable to classical models based on the assumption of normally distributed
returns (for related discussions see e.g. [16], [13] and [18]).

In the last 10 years there has been intense activity in the application of ideas of
extreme value theory to risk management. Roughly speaking, this method is an ap-
plication of another stability scheme: as α-stable laws are the only laws appearing as
(weak) limits of sum of i.i.d. random variables and are stable (better said, closed) with
respect to summation, GEV laws are the only weak limits with respect to the opera-
tion of pairwise maximum, and they are closed with respect to this operation. In other
words, denoting by ◦ a binary operation, and writing

aX1 ◦ bX2
d= cX, (1)

where X1, X2 are i.i.d. copies of X, then (1) defines, respectively, α stable laws when
◦ = +, and max-stable laws (or equivalently GEV laws) when x ◦ y = max(x, y). One
could say that EVT-based methods are semi-parametric, as they do not require a precise
parametric assumption on the returns distribution, but they still need fitting procedures
for quantities such as block maxima or exceedances over a threshold.
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Our contribution is a rather extensive comparison in terms of a backtesting procedure
of the two alternative stability scheme described above. Our work is closely related with
[22] where an Extreme Value VaR is proposed and tested, and with [14] where the
properties of an Extreme Value risk estimator are assessed. However, while the former
focuses only on a EVT method, the latter does not provide any information about the
out-of-sample (backtesting) performance of the analyzed model.

We also contribute some results about the estimators of VaR and expected shortfall
in the stable and EVT framework, computing their (asymptotic) confidence intervals.

Let us introduce some notation and conventions used throughout the paper: vectors
will always be column vectors, and v∗ denotes the transpose of the vector or matrix v. We
shall write X ∼ η to mean that the law of the random variable X is the (probability)
measure η, and Xn ⇒ X to mean that the sequence of random variables (Xn)n∈N
converges weakly to X. N(µ, σ2) denotes the law of a Gaussian random variable with
mean µ and variance σ2. The law of a χ2 random variable with n degrees of freedom
will be denoted by χ2

n. For r ∈ [0, 1] we denote by zr and νn,r the r-quantiles of the laws
N(0, 1) and χ2

n, respectively. We shall always denote by X ∼ F the random variable of
negative returns of a financial position. Then Value-at-Risk at confidence level p for our
financial position is defined as the p quantile of the distribution F , i.e.

VaRp(X) = inf{x ∈ R : F (x) ≥ p}. (2)

Since in all cases of interest (in this paper) we deal with random variables X with
continuous distribution F , (2) reduces to VaRp(X) = F−1(p). Typical choices of p are
p ∈ {0.9, 0.95, 0.99}.
We shall also assume throughout that the observed (negative) returns Xi, i = 1, . . . , n
form an i.i.d. sample from the law F .

The remainder of the paper is organized as follows: section 2 recalls how to compute
VaR in a standard univariate Gaussian setting and using only past observation (historical
simulation). Asymptotic confidence intervals are obtained in both cases. Sections 3 and
4 derive stable and EVT VaR measures, respectively, together with their asymptotic
confidence intervals. Section 5 is devoted to the study of expected shortfall, a risk
measure that enjoys better properties than VaR (in particular it is subadditive). All
models are empirically tested in section 6. Section 7 concludes.

2 Benchmark VaR

In this section we find point estimates and confidence intervals (sometimes asymptotic,
i.e. for n large) for VaRp(X) that will be used as benchmark measures for the estimators
introduced in the following sections. In particular, we study estimators of VaR based
on the Gaussian assumptions and on empirical quantiles.

2.1 Normal VaR

If X ∼ N(0, σ2) (we assume, as is commonly done for purposes of VaR estimation,
µ = 0), then one has

VaRp(X) = σzp,

3



as it immediately follows by well known scaling properties of Gaussian measures. The
problem is thus reduced to estimating σ, which can be done as

σ̂2
n =

1
n− 1

n∑
i=1

X2
i ,

where, as usual, Xi, i = 1, . . . , n are i.i.d. random variables with law F = N(0, σ2). It
is well known that

V := (n− 1)
σ̂2

n

σ2
∼ χ2

n−1,

hence the 1− r confidence interval for σ2 is given by[
(n− 1)σ̂2

n

νn−1,1−r/2
,
(n− 1)σ̂2

n

νn−1,r/2

]
. (3)

It is now immediate to obtain confidence intervals for σ, and hence for VaR. However,
it is well known that confidence intervals obtained through χ2 distributions are very
sensitive with respect to the normality assumption. A more robust alternative is given
by the asymptotic confidence interval that can be obtained by the limiting relation

√
n(S2

n − σ2) ⇒ N(0, µ4 − σ4), (4)

where S2
n := n−1

∑n
i=1X

2
i is the sample variance and µk := EXk. In order to apply (4),

which can be easily proved by a direct calculation based on the central limit theorem,
one needs to assume EX4

i < ∞. An asymptotic confidence interval for σ2 can now be
obtained from (4) as

σ2 = S2
n ±

√
µ4 − σ4

n
zr/2. (5)

In order to make this confidence interval operational, we need to replace in (5) σ4 and
µ4 with consistent estimators. Then, in view of Slutsky’s theorem, (5) will still yield
asymptotic confidence intervals at level 1 − r. Assuming EX4 < ∞, µ4 and σ4 are
consistently estimated by n−1

∑n
i=1X

4
i and (S2

n)2, respectively.
We shall use confidence intervals for Gaussian VaR derived from both (3) and (5).

2.2 VaR and empirical processes

Let Fn denote the empirical process of the observed negative returns X1, . . . , Xn, that
is

Fn(t) =
1
n

n∑
i=1

I(Xi ≤ t),

where the Xi are i.i.d. with (unknown) distribution F , and I(A) stands for the indicator
function of the event A. The Glivenko-Cantelli theorem ensures that

lim
n→∞

sup
x∈R

|Fn(x)− F (x)| = 0 a.s.

This suggests that the p quantile F−1(p) can be estimated by

F−1
n (p) = Xn(i), p ∈

( i− 1
n

,
i

n

]
,
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where Xn(1) ≤ Xn(2) ≤ . . . ≤ Xn(n) are the order statistics.
The asymptotic properties of this estimator are collected in the following proposition,

whose proof can be found, e.g., in [31]. The derivative of F , whenever it exists, will be
denoted by f .

Proposition 1 Let p ∈]0, 1[, and assume that F is continuously differentiable at F−1(p),
with f(F−1(p)) > 0. Then

√
n
(
F−1

n (p)− F−1(p)
)

= − 1√
n

n∑
i=1

I(Xi ≤ F−1(p))− p

f(F−1(p))
+ oP (1),

and
√
n
(
F−1

n (p)− F−1(p)
)
⇒ N

(
0,

p(1− p)
f2(F−1(p))

)
. (6)

Moreover, if F ∈ C1([a, b]), with a := F−1(p1) − ε, b := F−1(p2) + ε for some ε > 0,
and F ′(x) > 0 for all x ∈ [a, b], then

√
n
(
F−1

n − F−1
)
⇒ B0

f(F−1(p))

in `∞([a, b]), where B0 is a standard Brownian bridge.

If f2(F−1(p)) is known explicitly, or at least can be approximated with a good level of
accuracy, then one can obtain confidence intervals from (6). If that is not possible, then
the following alternative procedure can be used: let X1, . . . , Xn be a random sample
from F , and define Ui = F (Xi), so that Ui are independent uniform random variables.
Then one has

P
(
Xn(k) < F−1(p) ≤ Xn(`)

)
= P

(
Un(k) < p ≤ Un(`)

)
.

Choosing k and ` so that
k

n
= p− zr/2

√
p(1− p)

n

and
`

n
= p+ zr/2

√
p(1− p)

n
,

since the events {Un(k) < p ≤ Un(`)} and {
√
n |G−1

n (p)−p| ≤ zr/2

√
p(1− p)} are asymp-

totically equivalent, then

lim
n→∞

P
(
Un(k) < p ≤ Un(`)

)
= lim

n→∞
P
(√

n |G−1
n (p)− p| ≤ zr/2

√
p(1− p)

)
= 1− r,

where G−1
n is the quantile process of the uniform distribution.
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3 Stable modelling of VaR

Let us recall that the law of a one-dimensional stable random variable X is explicitly
characterized through its characteristic function ψ(t) = EeitX , which can be written as

logψ(t) =


−σα|t|α

(
1− iβ sgn(t) tan πα

2

)
+ iµt if α 6= 1

−σ|t|
(
1 + iβ 2

π sgn(t) log |t|
)

+ iµt if α = 1.

The parameter α ∈]0, 2] is an index of tail thickness, β ∈ [−1, 1] measures skeweness,
σ > 0 and µ ∈ R are scale and location parameters, respectively. The law of a stable
random variable will be denoted by Sα(σ, β, µ), with obvious meaning of the notation.
Note that the characteristic function of a centered (i.e. with µ = 0) symmetric stable
law takes the particularly simple form e−σα|t|α . Moreover, the following scaling and shift
property holds: (X−µ)/σ ∼ Sα(1, β, 0). Although not known in closed form for general
parameters, stable laws admit C∞ density functions (see [27]), which we shall denote by
p(·;α, β, σ, µ). From a computational point of view, they can be efficiently approximated
by numerically inverting the characteristic function, e.g. by numerical integration or by
Fast Fourier Transform (see e.g. [24], [23]).

The parameters of a stable law can be fitted to data by maximum likelihood. In
particular, setting θ = (α, β, σ, µ), and

θ̂n = arg max
θ∈Θ

n∏
k=1

p(xk;α, β, σ, µ),

one has that θ̂n is a consistent and asymptotically normal estimator of θ, with
√
n(θ̂n − θ) ⇒ N(0, J−1

θ ), (7)

where Θ =]1, 2]× [−1,−1]× R+ × R and Jθ is the Fisher information matrix, i.e.

Jθ = E [∇θ`(X; θ)(∇θ`(X; θ))∗] ,

where `(x; θ) = log p(x; θ). For proofs of the above statements we refer to [7]. Compu-
tationally, one obtains an initial estimate of θ, using e.g. the quantile-based method of
[21], and uses it as starting point for a constrained numerical optimization of the (log)
likelihood function.

An interesting alternative is the characteristic function-based method used in [19],
where the fit in the tails is particularly emphasized with a very fine sampling of the
characteristic function in a neighborhood of the origin (for theoretical properties of this
class of estimators see e.g. [25]).

In order to derive (asymptotic) confidence intervals for stable VaR, let us denote by
g the following function:

gp : int(Θ) → R
θ 7→ F−1(p; θ),
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where F stands for the distribution function of a Sα(σ, β, µ) random variable, θ =
(α, β, σ, µ), and p is the (fixed) quantile of interest, e.g. p = 0.95 or p = 0.99. Since√
n(θ̂n − θ) ⇒ N(0, J−1

θ ), an application of the delta method leads to
√
n(V̂aRn −VaR) ⇒ N(0, (∇gp(θ))∗J−1

θ ∇gp(θ)),

where VaR := g(θ), and V̂aRn := gp(θ̂). Applying Slutsky’s lemma, one obtains the
following asymptotic confidence interval at level 1− r:

VaR = V̂aRn ± zr/2

√
(∇gp(θ̂n))

∗
J−1

θ̂n
∇gp(θ̂n)

√
n

(8)

The argument leading to (8) is of course only formal, but it becomes rigorous if we can
prove that gp is differentiable at θ.

Proposition 2 Assume that θ0 = (α0, β0, σ0, µ0) is such that 1 < α0 < 2 and −1 <
β0 < 1. Then gp is continuously differentiable at θ0.

Proof. Let us assume for now that σ = 1 and µ = 0, and let X ∼ Sα(1, β, 0). Then one
has

ψ(t;α, β) = exp
(
− |t|α(1− iβ(sgn t) tan

πα

2
)
)
, (9)

and
p(x;α, β) =

1
2π

∫
R
ψ(t;α, β)e−itx dt.

Differentiating with respect to α and β, respectively, in the last expression, and inter-
changing the order of integration and differentiation, one has

∂αp(x;α, β) =
1
2π

∫
R
∂αψ(t;α, β)e−itx dt,

and similarly

∂βp(x;α, β) =
1
2π

∫
R
∂βψ(t;α, β)e−itx dt.

Using the explicit expression for the characteristic function (9), and recalling that stable
density functions are C∞ with respect to x, one has that p ∈ C1,1(R × G), where
G = (1, 2) × (−1, 1). This in turns implies that F ∈ C1,1(R × G), since F (x;α, β) =∫ x
−∞ p(y;α, β) dy. Recalling that one has, by well-known scaling properties of stable

laws,
F (x;α, β, σ, µ) = σF (x;α, β) + µ,

we also get F ∈ C1,1(R×H), where H = (1, 2)× (−1, 1)× R+ × R.
Let us now define the function Φ : R × H → R5, Φ : (x, θ) 7→ (F (x; θ), θ). It is
immediately seen that the Jacobian of Φ in a neighborhood U of (x, θ), with F (x; θ) = p,
for a given fixed p, is of the form

DΦ(x, θ) =


p(x, θ) 0 0 0 0
∗ 1
∗ 1
∗ 1
∗ 1

 ,
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hence detDΦ(x, θ) 6= 0: in fact, density functions of stable laws are positive on the
whole real line whenever α > 1. Therefore Φ is a C1 diffeomorphism on U , in particular
θ 7→ F−1(p, θ) is of class C1 for any fixed finite p. This is equivalent to the claim that
gp is continuously differentiable at θ0. �

4 VaR estimates based on Extreme Value Theory

The rationale behind the extreme value theory approach is essentially contained in two
theorems, due in their present form to Gnedenko [15] and to Balkema and de Haan
[1]. Here we recall only the statements of the two theorems, and we describe what
consequences are usually derived from them for the purposes of estimating VaR.

Theorem 3 (Gnedenko) Let X1, . . . , Xn be i.i.d. random variables with distribution
function F . If there exist a positive sequence {an}n∈N and a real sequence {bn}n∈N such
that

max(X1, . . . , Xn)− bn
an

⇒ Y (10)

as n→∞ and Y is nondegenerate, then the law of Y is of the generalized extreme value
(GEV) type, i.e. its distribution function H is given by

H(x) = exp
(
−
(
1 + ξ

x− µ

σ

)−1/ξ

+

)
. (11)

In (11) µ and σ are location and scale parameters, and ξ determines the shape of the
distribution: the GEV laws with ξ > 0 and ξ < 0 correspond to the Fréchet and Weibull
distributions respectively, while the case ξ = 0 has to be interpreted in the limit ξ → 0
and corresponds to the Gumbel law, i.e H(x) = exp

(
− exp

(x−µ
σ

)
+

)
.

We say that a distribution F is in the max-domain of attraction a GEV law H (in
symbols, F ∈ Dm(H)) if it satisfies the hypotheses of theorem 3.

Appealing to theorem 3, at least two ways have been proposed in the literature to
estimate high quantiles of probability distributions. In particular, one divides a sample
X1, X2, . . . in “blocks” of a given size, say k, and sets

Y1 = max(X1, X2, . . . , Xk)
Y2 = max(Xk+1, Xk+2, . . . , X2k)

...
...

Then, by assuming that the distribution of the block maxima (Yi) is approximately
GEV, one fits a law like (11) to the (Yi) and computes “block VaR”. The procedure is
described in detail in subsection 4.1. A refinement of the above procedure consists in
relaxing the assumption that block maxima are GEV distributed, assuming instead that
block maxima are only in the max-domain of attraction of a GEV law. Such potentially
more general algorithms are described in subsection 4.2.

As already mentioned in the introduction, α-stable and GEV laws can be seen as the
fixed points of two alternative stability schemes, namely they are the only sum-stable
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and max-stable laws, respectively (or equivalently, they are the only laws arising as
weak limits of normalized sums and maxima, respectively, of i.i.d. random variables).
It appears therefore natural to try to compare the performance of the two stability
schemes. Since the max-stability scheme does not seem to be useful to estimate daily
VaR, we shall backtest “block VaR” models based on the three following assumptions:

• Y1, Y2, . . . are max-stable, i.e. they are GEV distributed;

• Y1, Y2, . . . are in the domain of attraction of a max-stable law;

• Z1, Z2, . . . are sum-stable, i.e. α-stable,

where Z1 = X1 +X2 + · · ·+Xk, etc.

Another procedure to estimate VaR (that does not need to divide observations into
blocks, and therefore works for daily VaR as well) is based on the following theorem,
characterizing the limit distribution of excesses over a threshold of a sequence of i.i.d.
random variables.

Theorem 4 (Balkema and de Haan) Let X1, . . . , Xn be i.i.d. random variables with
distribution function F . Assume that the support of F is R and that F ∈ Dm(H), with
H max-stable. Then there exists a function σ : R+ → R+ such that

lim
u↑∞

sup
0≤x≤∞

∣∣∣Fu(x)−Gξ,σ(u)(x)
∣∣∣ = 0,

where Fu(x) = P(X − u ≤ x|X > u) and Gξ,σ is the generalized Pareto distribution:

Gξ,σ(x) = 1−
(
1 + ξ

x

σ

)−1/ξ

+
.

The method relying on this theorem, sometimes called Peaks over Thresholds (POT)
method, is described in subsection 4.4. A natural term of comparison for this method
will be the plain assumption of α-stable distributed (daily) returns.

4.1 VaR with max-stable block maxima

Let us define block maxima as follows:

Yk = max(Xkm, Xkm+1, . . . , Xk(m+1)−1),

where m is the block size (m could correspond, for instance, to the typical number of
trading days in a month or a year). The aim is to obtain estimates of quantiles yp of Y
such that P(Y > yp) = p, together with their confidence intervals.

Recall, however, that in this case one obtains a VaR estimate over the period covered
by the block size. For instance, if the block size corresponds to one year, then we obtain
a VaR estimate for annual returns.

Let θ = (ξ, µ, σ) and h(·; θ) the density of H(·; θ). The maximum likelihood estimate
θ̂n based on the observations Y1, . . . , Yn is given by

θ̂n = arg max
θ∈Θ

L(θ),
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where

L(θ) =
n∏

i=1

h(Yi; θ)I(1 + ξ(Yi − µ)/σ > 0),

h(x; θ) =
1
σ
H(x; θ)

(
1 + ξ

x− µ

σ

)−1− 1
ξ
,

and Θ = R× R× R+. There are no closed-form expressions for θ̂n, but the availability
of numerical optimization routines renders the task quite simple.
The following result guarantees that in most interesting cases this estimator has good
properties (for the proof see [28]).

Proposition 5 If ξ > −1/2 then θ̂n is a consistent, asymptotically normal and efficient
estimator of θ.

As it follows from (11), VaR at p level can be estimated as

V̂aRn = gp(θ̂n) := µ̂− σ̂

ξ̂

(
1− (− log p)−ξ̂

)
.

In order to obtain confidence intervals for VaR we apply again the delta method, in
complete similarity to section 3. In particular one has

VaR = V̂aRn ± zr/2

√
(∇g(θ̂n))

∗
J−1

θ̂n
∇g(θ̂n)

√
n

, (12)

where Jθ̂n
is the empirical Fisher information matrix relative to the maximum likelihood

estimate θ̂n. Note that in this case we have an explicit expression for gp, hence the
situation is simpler than in the stable case. The limiting case ξ = 0, as observed before,
has to be treated separately.

Let us also mention that some estimation procedures for tails and quantiles have been
proposed under the assumption that observations are only in the domain of attraction
of a max-stable law. Here we limit ourselves to report two algorithms described in [9],
to which we refer for further details. The empirical tests will not use the following
procedures.

The first method works as follows:

• Estimate the tail parameter ξ through the Hill estimator, i.e.

ξ̂ =
1
k

k∑
j=1

log Yj,n − log Yk,n,

where Yn,n ≤ Yn−1,n ≤ · · · ≤ Y1,n are the order statistics and k is a number to be
chosen.

• The tail of the distribution is estimated as

P(Y > x) =
k

n

( x

Xk+1,n

)−1/ξ̂
,
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and the quantile xp is estimated as

x̂p =
(n
k

(1− p)
)−ξ̂

Xk+1,n.

The following theorem, due to Dekkers and de Haan ([3]), describes the asymptotic
behavior of the quantile estimator and can be used to obtain asymptotic confidence
intervals for block VaR.

Theorem 6 Let Y1, . . . , Yn be i.i.d. with distribution function F ∈ Dm(Hξ) with ξ > 0.
Assume moreover that F has a positive density f of regular variation of order −1−1/ξ.
Set p = pn, k = kn = [n(1 − pn)] where [·] denotes integer part. Assume pn → 1 and
n(1− pn) →∞. Then

√
2k

xp − Yk,n

Yk,n − Y2k,n
⇒ N

(
0,

22ξ+1ξ2

(2ξ − 1)2
)
.

Another estimator proposed in [9] (and introduced in [3]) is

x̂p = Yk,n + (Yk,n − Y2k,n)

(
k

n(1−p)

)−ξ̂
− 1

1− 2−ξ̂
.

The following theorem on asymptotic normality of the estimator (see [3]) allows one to
construct asymptotic confidence intervals for VaR.

Theorem 7 Under the same hypotheses of the previous theorem on X1, . . . , Xn and on
F , assume n(1 − p) → c, c > 0 fixed. Let ξ̂ be the Pickands estimator. Then for every
fixed k > c one has

x̂p − xp

Yk,n − Y2k,n
⇒ η,

where

η =
(k/c)ξ − 2−ξ

1− 2−ξ
+

1− (Qk/c)ξ

eξHk − 1
,

and the random variables Hk, Qk are independent, Qk are exponentially distributed
with parameter 2k + 1, and Hk =

∑2k
j=k+1 j

−1Ej, with Ei, i = 1, 2, . . . i.i.d. standard
exponentials.

4.2 Exceedences over a threshold

Let u be a fixed threshold and define the conditional distribution of excesses

Fu(x) = P(X − u ≤ x|X > u).

Then one has
Fu(x) =

P({X ≤ u+ x} ∩ {X > u})
P(X > u)

,

hence
F (x) = (1− F (u))Fu(u+ x) + F (u).
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Appealing to theorem 4, one approximates in the previous expression Fu(u + x) by a
generalized Pareto distribution G(x) and F (u) by the empirical distribution function
at u, i.e. by 1 − nu/n, where nu is the number of observation above the threshold u,
getting

F (x) ≈ 1− nu

n

(
1 +

ξ

σ
(x− u)

)−1/ξ
,

from which VaR can be estimated as

V̂aRn = gp(θ̂n) := u+
σ̂n

ξ̂n

(
(n(1− p)/nu)−ξ̂n − 1

)
.

The estimates θ̂n = (ξ̂n, σ̂n) of the parameter vector appearing in the previous formula
can be obtained by fitting a generalized Pareto distribution (GPD) to the portion of
the data that exceeds the threshold u. Once u has been chosen, then we use maximum
likelihood estimation, which is straightforward as the density of GPD is known in closed
form.

Let us briefly remark that there is no general rule to optimally select the threshold
u. This choice is nonetheless very important, as for u too high the estimator has high
variance, and for u too small the estimator becomes biased. In our empirical tests we
follow [22] in choosing a random threshold that pick the top 10% of the analyzed data.

Asymptotic approximate confidence intervals for VaR can again be obtained by an
argument based on the delta method. In fact, assuming that all negative returns over
the threshold u are drawn from a generalized Pareto law, we have (see [29])

√
nu(θ̂nu − θ) ⇒ N(0, J−1

θ ), (13)

provided ξ > −1/2, with

J−1
θ =

[
2σ2(1 + ξ) σ(1 + ξ)
σ(1 + ξ) 1 + ξ

]
.

We can now write

VaR = V̂aRn ± zr/2

√
(∇gp(θ̂nu))

∗
J−1

θ̂nu

∇gp(θ̂nu)
√
nu

. (14)

In the above expression we compute ∇gp by considering u a constant, even though in
practice this is not true. In this sense the confidence intervals obtained in this way are
only approximate. Let us mention, however, that there are more refined asymptotic
normality results similar to (13) when u is a random threshold – see e.g. [5] and [4].
The asymptotic covariance matrices obtained by these authors seem unfortunately quite
difficult to implement.

5 Expected shortfall

Denoting by X the negative return of our financial position, we define as expected
shortfall at level p the quantity

ESp = E[X|X > VaRp(X)].
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We shall use the shorthand notation yp := ESp(X). Recall that expected shortfall is,
under very mild assumptions, the smallest convex measure of risk that dominates Value-
at-Risk (see e.g. [12]). Although it is well known that VaR is not a coherent measure
of risk, it is subadditive when restricted to elliptic distributions (among which Gaussian
and stable laws).

5.1 Empirical shortfall

The following approximation is straightforward:

ŷp =
1
|I|
∑
i∈I

Xi,

where I is the set of i such that Xi > V̂aRp(X), and |I| its cardinality. Consistency of
this estimator is guaranteed by the law of large numbers.

5.2 Gaussian shortfall

When X is a Gaussian random variable, a simple closed form expression has been
obtained in [30]. In particular, if X ∼ N(0, 2), the expected shortfall at level p is given
by

ESp(X) =
1

(1− p)
√
π

exp
(−(VaRp(X))2

4

)
.

In the general case X ′ ∼ N(µ, σ) one has

ESp(X ′) =
σ√
2

ESp(X) + µ,

as follows from well known scaling properties of Gaussian laws.
Assuming µ = 0, recalling that VaRp(X) =

√
2zp for X ∼ N(0, 2), the confidence

interval for ESp(X) for general X ∼ N(0, σ) is given by[
e−z2

p/2

(1− p)
√

2π
σ−,

e−z2
p/2

(1− p)
√

2π
σ+

]
,

where [σ−, σ+] is the confidence interval for σ (see section 2).

5.3 Stable expected shortfall

For X is α-stable there exists an integral representation of expected shortfall obtained
in [30]. In particular, if X ∼ Sα(1, β, 0), one has

ESp(X) =
α

1− α

|VaRp(X)|
pπ

∫ π/2

−c
φ(x) exp(−|VaRp(X)|

α
α−1 v(x)) dx,
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where

φ(x) =
sin(α(c+ x)− 2x)

sin(α(c+ x))
− α cos2 x

sin2(α(c+ x))
,

v(x) = cos
1

α−1 (αc)
( cosx

sin(α(c+ x))

) α
α−1 cos(αc+ (α− 1)x)

cosx
,

c =
1
α

arctan
(
− sgn(VaRp(X))β tan

πα

2

)
.

For general X ′ ∼ Sα(σ, β, µ), recall that σX + µ ∼ X ′, hence

ESp(X ′) = σESp(X) + µ.

Asymptotic confidence intervals can be obtained again using the delta method. In par-
ticular, proposition 2 combined with some other tedious verifications show that the map
g0
p :]1, 2[×] − 1, 1[→ R, g0

p(α, β) := ESp(X), X ∼ Sα(1, β, 0) is continuously differen-
tiable. Therefore the map gp : intΘ → R, gp(α, β, σ, µ) := σg0

p(α, β) + µ = ESp(X),
X ∼ Sα(σ, β, µ), is also continuously differentiable. Finally, the delta method yields

√
n(ÊSn − ES) ⇒ N(0, (∇gp(θ))∗J−1

θ ∇gp(θ)),

hence

ES = ÊSn ± zr/2

√
(∇gp(θ̂n))

∗
J−1

θ̂n
∇gp(θ̂n)

√
n

,

where Jθ is the Fisher information matrix of (7).

5.4 EVT-based expected shortfall

Using the POT method one can easily derive a close form expression for the expected
shortfall. In fact, if Y ∼ Gξ,σ, then one can verify that, for ξ < 1, σ + ξx > 0,

E[Y |Y > x] =
x+ σ

1− ξ
. (15)

Assuming that the distribution of X −u, conditional on X > u, is GPD, we obtain that
the distribution of X − xp, for xp > u, conditional on X > xp, is GPD with parameters
ξ and σ + ξ(xp − u). Hence, using (15), one has

ESp(X) = E[X|X > VaRp(X)] =
VaRp(X)

1− ξ
+
σ − ξu

1− ξ
.

An estimator for ESp(X) is therefore obtained by replacing in the previous expressions
VaRp(X), ξ, and σ with their respective estimators, which were all derived in subsection
4.4.

Asymptotic approximate confidence intervals for expected shortfall can again be
obtained by the delta method. Details are omitted, as the relevant issues have already
been discussed in previous sections. In particular, the main approximation is to consider
the threshold u constant, while in practice it is random.

14



6 Empirical tests

In this section we present and describe the main empirical results obtained by testing
the models introduced in the previous sections. For the empirical test we chose two stock
indices, SP500 and NASDAQ, and two stocks, Amazon and Microsoft. All the raw prices
are freely available on the web, and the returns are calculated as log-differences on daily
data series. The sample periods span from 2-Jan-1990 to 31-Dec-2004 for the SP500
and from 2-Jan-1998 to 31-Dec-2004 for the other series.

In order to better understand the empirical exercise, it is worth looking briefly at
the basic characteristics of the analyzed financial series. Table 1 presents, for each of the
analyzed series, the first four moments of their distributions. From a preliminary analysis
the leptokurtic nature of the returns’ series is clearly revealed. In particular the SP500
index, with a kurtosis of 6.67 and a skewness of −0.105, strongly differs from a normal
distribution especially in the thickness of the tails. In the same fashion, NASDAQ,
Microsoft and Amazon all display clear evidence of fat tails in their distributions.

[Table 1 about here.]

This claim is confirmed by a more detailed analysis: in figure 1 we plot the third and
the fourth moment, calculated on a rolling window of 250 data points. It is clear how
the behavior of the kurtosis of all the series is far from the one expected for a Gaussian
distribution (plotted as a straight line in the graph). In particular both Microsoft and
Amazon display a long time span where the kurtosis is well above 6, with peaks of
values above 8 for the first one. The same behavior is shown by the SP500, with a
kurtosis well above 3 during the period 1990-1997, and peaks of values above 8 during
the period 1997-1999. Interestingly enough the deviations from the normality by the
kurtosis correspond to a comparable deviation by the skewness parameter (cf. Panel
C-D of figure 1).

[Figure 1 about here.]

Having investigated the characteristics of the financial series, we can now turn to a
comparative analysis of the VaR models proposed in the previous sections. In particular,
we are interested in out-of-sample performances of the different VaR measures proposed.
In order to assess them, we calculate for each specification two series of VaRs, with
confidence interval of 95% and 99% respectively. All the risk measures are computed on
a rolling window of 250 data-points. Subsequently a simple out-of-sample comparison is
performed, by testing the VaR measures versus the next day returns. Some preliminary
analysis on the estimations can be done by analyzing the time series behavior for the
three different VaR measures. Generally speaking the estimations are in line with the
empirical returns and present a remarkable level of accuracy in term of their estimation
error. In order to make this analysis clearer we plot the last 12 months of estimations1,
along with the confidence intervals, for the Amazon time series, that has the higher
historical volatility coupled with a high kurtosis (cf. table 1). The graphs in figures 2
and 3 show estimations that are comparable in magnitude for the three specifications,

1We choose to plot only the last year of data for a better readability of the graphs, after having
investigated that the analysis in the text can be applied to the whole sample period.
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both at a 95% and 99% confidence interval. Moreover, the VaRs based on the Stable
assumption seems to have a greater accuracy, given their confidence intervals’ tightness.
In fact both the Extreme Value estimation based on the Peak over a Threshold approach
(GPD), proposed in subsection 4.2, and the Gauss specifications, display a confidence
interval of the order of 0.5%− 1.5% points for the 95% VaR, and 1%− 2% to peaks of
4% points for the99% VaR. On the contrary, the Stable confidence intervals are below
the 0.6% point in both cases.

[Figure 2 about here.]

[Figure 3 about here.]

To further assess the accuracy of the calculated VaR, we perform a simple Proportion
of Failure (POF) test, as e.g. in [20]. In particular we calculate:

LR =− 2 log

(
px
0(1− p0)(n−x)

px(1− p)(n−x)

)
, (16)

where p0 is the probability of an exception implied by the chosen confidence interval, n
is the sample size, x is the actual number of exceptions and p is the maximum-likelihood
estimator x/n of p0. Basically this test performs a likelihood-ratio with 5% level, based
on the number of exceedences in any given sample, where the null hypothesis is that the
estimated value for the exceedences matches its exact value. Given its definition, the
test is asymptotically χ2 distributed with one degree of freedom; thus if the value of the
test statistic exceeds the critical value of 3.84, the VaR model can be considered as not
reliable with a 95% confidence level.

Table 2 reports the results on the VaR backtesting exercise. Overall, the performance
of the three models is good on all the analyzed series, nevertheless some differences can
be noted. First the Stable VaR is relatively more accurate than the VaRs based on the
Gauss and the GPD assumptions. In fact, while the former never present a LR statistics
that exceed the critical value, the Gauss–VaR and the GPD–VaR both are rejected in
two out of eight cases respectively. Second, the highest number of failures by GPD and
Gauss estimations occurs with the Microsoft data series. This can be ascribed to the
high kurtosis of the series, which is probably better captured by fitting a stable law. To
further investigate this point, we plot in figure 4 the negative returns of the Microsoft
series along with the 95% lower bound for the three models. It is clear that the worse
performances pf the Gauss and GPD estimations are due to a more conservative VaR
bound in both cases, clearly displayed in the 2000-2002 period for the Gauss estimation
and in the 1999-2000 and 2003-2004 periods for the GPD.

[Table 2 about here.]

[Figure 4 about here.]

In the same fashion as the VaR backtesting procedures, we analyze the performance
of the Expected Shortfall (ES) proposed is section 5. We calculate for each specification
two series of ESs, with confidence interval of 95% and 99% respectively. All the risk
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measures are computed on a rolling window of 250 data-points. Subsequently a simple
comparison test is performed.

Not surprisingly, the preliminary analysis on the estimations and their confidence
intervals lead us to basically the same conclusions as in the VaR case. Figures 5 and 6
show estimations that are comparable in magnitude for the three specifications, both at
a 95% and 99% confidence interval. Also, the ESs based on the stable assumption seem
to have a greater accuracy, given their confidence intervals’ tightness. Again the GPD
and the Gauss specifications display a confidence interval of the order of 1% − 3.5%
points for the 95% ES, and 1%−2.5% for the 99% ES, with a peak of 11% for the GPD.
On the contrary, the Stable confidence intervals are below the 0.6% point in both cases2.

[Figure 5 about here.]

[Figure 6 about here.]

To backtest the ES forecasts, we follow [8] in calculating a measure evaluating the ES
performance when returns are violating the corresponding VaR measure. In particular,
we calculate the average difference between the realized returns and the forecasted ESs,
conditional on having a return below the lower VaR bound3.

Following [8]’s notation we have:

V ES
1 =

∑t1
t=t0

(Rt − (ESp
t )) 1Rt>V aRp

t∑t1
t=t0

1Rt>V aRp
t

. (17)

Given its specification, the lower the value of the test in absolute term is, the better
is the ES estimate.

[Table 3 about here.]

Table 3 displays the result of the V1 test. Clearly the Expected Shortfall measures
estimated on the stock indices perform equally well in all the specified models. The main
differences arise in the single stock evaluations; in particular the Stable specifications,
both at a 95% and 99% confidence interval, seem to present less accuracy than the other
two specifications. This difference is clearer in the Amazon returns’ series, and can be
ascribed to the less conservative nature of the Stable estimations.

6.1 Block maxima backtesting

Finally we also perform a comparative test on a VaR calculated with the block maxima
method (BMM) introduced in subsection 4.1 versus the Gaussian and stable approaches.
In practice we calculate the VaR, based on the BMM approach, for all the data series, at
three different block sizes: 10, 15, and 20 trading days. In the same fashion we calculate
the Gauss-based and the stable-based VaRs on 10, 15 and 20 days and we compare them
with the corresponding realized returns.

2It is worth noting that these results are ascribable to the whole period analyzed both for the VaR
and the ES.

3[8] also propose a measure based on the evaluation of values below a threshold calculated on the
confidence interval. Given its intuitive definition, we prefer the measure presented in the text.
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Results, reported in tables 4 to 7, are quite striking: in all analyzed series the BMM
approach is largely “over-conservative”, producing VaR bounds that are difficult to
interpret4. This lead the log-likelihood ratio test introduced above in rejecting strongly
the model in all the data series and at all the confidence intervals. Interestingly enough,
even if the results are strongly influenced by performing an estimation on not more than
20 data points, both the Gauss and the stable approaches produce a VaR bound more
in line with the observed returns, with several cases where the model cannot be rejected
with a 95% probability (cf. tables 4 to 7).

[Table 4 about here.]

[Table 5 about here.]

[Table 6 about here.]

[Table 7 about here.]

7 Conclusions

We have compared the properties of some univariate VaR models, in particular of α–
stable and EVT–based models. We argue that comparing Stable and EVT VaR cor-
responds to testing which one of two stability assumptions performs better for VaR
modeling: namely, we implicitly compare sum–stability and max–stability. The two
stability schemes give rise, respectively, to α–stable laws and GEV distributions. Even
though the EVT approach is quite appealing for its theoretical justification in terms of
the theorems of Gnedenko and Balkema and de Haan, and because it applies to a large
class of returns distributions, it suffers of several problems when applied in practice.
For instance, using the POT approach it is necessary to choose a specific threshold. As
noted above, there is no general rule to optimally select this threshold, but this choice is
nonetheless very important. In particular, if the chosen threshold is “too high” the esti-
mator has high variance, and if the chosen threshold is “too low” the estimator becomes
biased. On the other hand, it seems that the stable procedure requires much less exter-
nal input (hence it is significantly easier to implement in automated form). A second
important issue is that EVT-based methods discard a lot of data, while stable-based
ones use all of the data points in the time series. In essence, one could say that good fit
of the law where there is more mass contributes to good fit in the tail, even though the
EVT approach requires less distributional assumptions.

Our empirical analysis clearly show that α–stable laws outperform GEV distributions
for estimating VaR. While GEV VaR gives conservative estimates at 5% level which are
close to normal VaR, at 1% level the estimates becomes strongly “over-conservative”,
with peaks that are somehow difficult to interpret.

Let us also remark, however, that empirical tests at ”extreme” quantiles (e.g. 99.5%
or 99.9%) could be performed in order to asses the models’ behavior ”far out” in the tails
of the distribution. Then we would expect EVT models to have a better performance,

4In particular, in all the performed estimations, there are several VaR points where the value reaches
150%, producing a bound that is not useful for an economic interpretation.
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at least in the case of abundant data. However, we decided to focus on testing quantiles
that are commonly used in financial risk management, both to compare our results
with the existing literature and to assess the performance of models possibly used by
practitioners. Nevertheless, such an analysis may be an interesting topic for future
research.
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Figure 1: Time series of the kurtosis

This figure plots the skewness and the kurtosis of the analyzed series The moments of NASDAQ, Mi-
crosoft and Amazon are shown in Panel A and C respectively, while the ones of SP500 in Panel B and
D. The moments are calculated on a rolling window of 250 daily data points. For the sake of comparison
straight lines corresponding with a kurtosis of 3 and a skewness of 0 (i.e. for a normal distribution) are
provided.
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Figure 2: VaR 95% with confidence intervals

This figure plots the 95% VaR estimation for the Stable, Gauss and GPD assumption respectively. The
chosen data series is Amazon and it spans from December 2003 to December 2004. The risk measures
are calculated on a rolling window of 250 daily data points.
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Figure 3: VaR 99% with confidence intervals

This figure plots the 99% VaR estimation for the Stable, Gauss and GPD assumption respectively. The
chosen data series is Amazon and it spans from December 2003 to December 2004. The risk measures
are calculated on a rolling window of 250 daily data points.
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Figure 4: VaR95% Lower Bounds for Microsoft

This figure plots the negative returns of the Microsoft series, along with the 95% VaR lower bounds for
Stable, Gauss and GPD model respectively. The risk measures are calculated on a rolling window of
250 daily log returns.
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Figure 5: Expected Shortfall 95% with confidence intervals

This figure plots the 95% ES estimation for the Stable, Gauss and GPD assumption respectively. The
chosen data series is Amazon and it spans from December 2003 to December 2004. The risk measures
are calculated on a rolling window of 250 daily data points.
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Figure 6: Expected Shortfall 99% with confidence intervals

This figure plots the 99% ES estimation for the Stable, Gauss and GPD assumption respectively. The
chosen data series is Amazon and it spans from December 2003 to December 2004. The risk measures
are calculated on a rolling window of 250 daily data points.
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Table 1: Descriptive Statistics of Financial Series

This table reports the first four moments of the analyzed time series. All returns are calculated as log-differences

on daily data series. The sample periods span from 2-Jan-1990 to 31-Dec-2004 for the SP500 and from 2-Jan-1998

to 31-Dec-2004 for the other series.

Descriptive Statistics
Mean Standard deviation Skewness Kurtosis

SP500 0.000 0.010 -0.105 6.666
NASDAQ 0.000 0.021 0.071 5.571
MICROSOFT 0.000 0.025 -0.145 7.882
AMAZON 0.001 0.053 0.318 6.498
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Table 2: Value at Risk Backtesting

This table reports the results of a Value at Risk backtesting on the proposed models. All returns are calculated
as log-differences on daily data series. Panel A results are from a sample period from 2-Jan-1990 to 31-Dec-2004,
while Panel B to D results are from 2-Jan-1998 to 31-Dec-2004. The first two columns display the empirical
violations and their percentages of the returns with respect to the VaRp bound. The last column shows the result
of the POF test, where ∗ indicates a 95% rejection of the VAR model.

Panel A: SP500
Violations Percentage POF

Stable95% 190 5.4% 1.071
Stable99% 36 1.0% 0.014
Gaussian95% 156 4.4% 2.616
Gaussian99% 48 1.4% 4.14∗

GPD95% 163 4.6% 1.122
GPD99% 39 1.1% 0.377

Panel B: NASDAQ
Violations Percentage POF

Stable95% 69 4.6% 0.597
Stable99% 14 0.9% 0.081
Gaussian95% 61 4.0% 3.108
Gaussian99% 18 1.2% 0.534
GPD95% 64 4.2% 1.924
GPD99% 14 0.9% 0.081

Panel C: MICROSOFT
Violations Percentage POF

Stable95% 64 4.2% 1.924
Stable99% 9 0.6% 2.902
Gaussian95% 55 3.6% 6.415∗

Gaussian99% 13 0.9% 0.307
GPD95% 56 3.7% 5.773∗

GPD99% 10 0.7% 1.968
Panel D: AMAZON

Violations Percentage POF
Stable95% 67 4.4% 1.034
Stable99% 13 0.9% 0.307
Gaussian95% 62 4.1% 2.680
Gaussian99% 22 1.5% 2.800
GPD95% 55 3.6% 6.415∗

GPD99% 14 0.9% 0.081
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Table 3: Expected Shortfall Backtesting

This table reports results of the backtesting procedure on the expected shortfall measures. All returns are

calculated as log-differences on daily data series. The sample periods span from 2-Jan-1990 to 31-Dec-2004 for

the SP500 and from 2-Jan-1998 to 31-Dec-2004 for the other series.

Stable 95% Stable 99% Gauss 95% Gauss 99% GPD 95% GPD 99%
SP500 0.002 0.006 0.002 0.004 0.001 0.004
NASDAQ 0.004 0.005 0.001 0.007 0.000 0.012
MICROSOFT 0.006 0.019 0.008 0.015 0.004 0.015
AMAZON 0.032 0.060 0.011 0.021 0.001 0.004
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Table 4: Block Maxima VaR Backtesting on SP500

This table reports the results of a Value at Risk backtesting on the Block Maxima approach for the Microsoft
series (2-Jan-1990 to 31-Dec-2004). Returns are calculated as log-differences on daily data series. Panel A-C
results are from a block of 10, 15 and 20 days respectively. The first two columns display the empirical violations
and their percentages of the returns with respect to the VaRp bound. The last column shows the result of the
POF test, where ∗, ∗∗ and ∗ ∗ ∗ indicates a 95%, 99% and 99.9% rejection of the VAR model.

SP500
Panel A: 10 days block

Violations Percentage POF
Stable95% 123 3.5% 19.009∗∗∗

Stable99% 32 0.9% 0.322
Gaussian95% 88 2.5% 56.822∗∗∗

Gaussian99% 18 0.5% 10.439∗∗

BMM95% 2 0.1% 340.006∗∗∗

BMM99% 1 0.0% 61.808∗∗∗

Panel B: 15 days block
Violations Percentage POF

Stable95% 142 4.0% 7.585∗∗

Stable99% 42 1.2% 1.211
Gaussian95% 78 2.2% 72.474∗∗∗

Gaussian99% 28 0.8% 1.641
BMM95% 17 0.5% 246.905∗∗∗

BMM99% 9 0.3% 28.198∗∗∗

Panel C: 20 days block
Violations Percentage POF

Stable95% 223 6.3% 11.945∗∗∗

Stable99% 102 2.9% 84.344∗∗∗

Gaussian95% 121 3.4% 20.551∗∗∗

Gaussian99% 32 0.9% 0.322
BMM95% 17 0.5% 246.905∗∗∗

BMM99% 9 0.3% 28.198∗∗∗
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Table 5: Block Maxima VaR Backtesting on NASDAQ

This table reports the results of a Value at Risk backtesting on the Block Maxima approach for the NASDAQ
series (2-Jan-1998 to 31-Dec-2004). Returns are calculated as log-differences on daily data series. Panel A-C
results are from a block of 10, 15 and 20 days respectively. The first two columns display the empirical violations
and their percentages of the returns with respect to the VaRp bound. The last column shows the result of the
POF test, where ∗, ∗∗ and ∗ ∗ ∗ indicates a 95%, 99% and 99.9% rejection of the VAR model.

Panel A: 10 days block
Violations Percentage POF

Stable95% 39 2.6% 22.346∗∗∗

Stable99% 11 0.7% 1.236
Gaussian95% 19 1.3% 62.691∗∗∗

Gaussian99% 5 0.3% 9.202∗∗

BMM95% 9 0.6% 97.661∗∗∗

BMM99% 3 0.2% 14.585∗∗∗

Panel B: 15 days block
Violations Percentage POF

Stable95% 49 3.2% 11.083∗∗∗

Stable99% 24 1.6% 4.506∗

Gaussian95% 32 2.1% 33.309∗∗∗

Gaussian99% 12 0.8% 0.687
BMM95% 3 0.2% 129.152∗∗∗

BMM99% 3 0.2% 14.585∗∗∗

Panel C: 20 days block
Violations Percentage POF

Stable95% 83 5.5% 0.771
Stable99% 28 1.9% 8.910∗∗

Gaussian95% 42 2.8% 18.467∗∗∗

Gaussian99% 14 0.9% 0.081
BMM95% 6 0.4% 111.831∗∗∗

BMM99% 5 0.3% 9.202∗∗
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Table 6: Block Maxima VaR Backtesting on Amazon

This table reports the results of a Value at Risk backtesting on the Block Maxima approach for the Amazon series
(2-Jan-1998 to 31-Dec-2004). Returns are calculated as log-differences on daily data series. Panel A-C results are
from a block of 10, 15 and 20 days respectively. The first two columns display the empirical violations and their
percentages of the returns with respect to the VaRp bound. The last column shows the result of the POF test,
where ∗, ∗∗ and ∗ ∗ ∗ indicates a 95%, 99% and 99.9% rejection of the VAR model.

Panel A: 10 days block
Violations Percentage POF

Stable95% 43 2.9% 17.229∗∗∗

Stable99% 13 0.9% 0.304
Gaussian95% 33 2.2% 31.507∗∗∗

Gaussian99% 9 0.6% 2.894
BMM95% 9 0.6% 97.571∗∗∗

BMM99% 4 0.3% 11.625∗∗∗

Panel B: 15 days block
Violations Percentage POF

Stable95% 60 4.0% 3.549
Stable99% 17 1.1% 0.237
Gaussian95% 38 2.5% 23.691∗∗∗

Gaussian99% 14 0.9% 0.080
BMM95% 4 0.3% 122.809∗∗∗

BMM99% 2 0.1% 18.193∗∗∗

Panel C: 20 days block
Violations Percentage POF

Stable95% 63 4.2% 2.268
Stable99% 29 1.9% 10.218∗∗

Gaussian95% 37 2.5% 25.140∗∗∗

Gaussian99% 16 1.1% 0.056
BMM95% 6 0.4% 111.736∗∗∗

BMM99% 1 0.1% 22.866∗∗∗
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Table 7: Block Maxima VaR Backtesting on Microsoft

This table reports the results of a Value at Risk backtesting on the Block Maxima approach for the Microsoft
series (2-Jan-1998 to 31-Dec-2004). Returns are calculated as log-differences on daily data series. Panel A-C
results are from a block of 10, 15 and 20 days respectively. The first two columns display the empirical violations
and their percentages of the returns with respect to the VaRp bound. The last column shows the result of the
POF test, where ∗, ∗∗ and ∗ ∗ ∗ indicates a 95%, 99% and 99.9% rejection of the VAR model.

Panel A: 10 days block
Violations Percentage POF

Stable95% 34 2.3% 29.827 ∗∗∗

Stable99% 14 0.9% 0.080
Gaussian95% 22 1.5% 54.569∗∗∗

Gaussian99% 6 0.4% 7.156∗∗

BMM95% 4 0.3% 122.809∗∗∗

BMM99% 1 0.1% 22.866 ∗∗∗

Panel B: 15 days block
Violations Percentage POF

Stable95% 56 3.7% 5.747∗

Stable99% 20 1.3% 1.471
Gaussian95% 32 2.1% 33.249∗∗∗

Gaussian99% 6 0.4% 7.156∗∗

BMM95% 3 0.2% 129.054∗∗∗

BMM99% 2 0.1% 18.193∗∗∗

Panel C: 20 days block
Violations Percentage POF

Stable95% 83 5.5% 0.782
Stable99% 35 2.3% 19.365∗∗∗

Gaussian95% 40 2.7% 20.953∗∗∗

Gaussian99% 9 0.6% 2.894
BMM95% 3 0.2% 129.054∗∗∗

BMM99% 3 0.2% 14.569∗∗∗
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