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The Proper Use of Risk Measures in Portfolio Theory 
 

Abstract 

 

This paper discusses and analyzes risk measure properties in order to understand how a risk 

measure has to be used to optimize the investor’s portfolio choices. In particular, we distinguish 

between two admissible classes of risk measures proposed in the portfolio literature: safety risk 

measures and dispersion measures. We study and describe how the risk could depend on other 

distributional parameters. Then, we examine and discuss the differences between statistical 

parametric models and linear fund separation ones. Finally, we propose an empirical comparison 

among three different portfolio choice models which depend on the mean, on a risk measure, and 

on a skewness parameter. Thus, we assess and value the impact on the investor’s preferences of 

three different risk measures even considering some derivative assets among the possible choices.   

 

Key words: skewness, safety risk measures, risk aversion, dispersion measures, portfolio 

selection, investors’ preference, fund separation. 
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1. INTRODUCTION 

Many possible definitions of risk have been proposed in the literature because 

different investors adopt different investment strategies in seeking to realize their 

investment objectives. In some sense risk itself is a subjective concept and this is 

probably the main characteristic of risk. Thus, even if we can identify some desirable 

features of an investment risk measure, probably no unique risk measure exists that can 

be used to solve every investor’s problem. Loosely speaking, one could say that before 

the publication of the paper by Artzner, Delbaen, Eber, and Heath (2000) on coherent risk 

measures, it was hard to discriminate between “good” and “bad” risk measures. However, 

the analysis proposed by Artzner, et al.(2000) was addressed to point out the value of the 

risk of future wealth, while most of portfolio theory has based the concept of risk in 

strong connection with the investor’s preferences and their “utility function”.  

From an historical point of view, the optimal investment decision always corresponds 

to the solution of an “expected utility maximization problem”. Therefore, although risk is 

a subjective and relative concept (see Balzer (2001), Rachev et al (2005)) we can always 

state some common risk characteristics in order to identify the optimal choices of some 

classes of investors, such as non-satiable and/or risk-averse investors. In particular, the 

link between expected utility theory and the risk of some admissible investments is 

generally represented by the consistency of the risk measure with a stochastic order.1 

Thus, this property is fundamental in portfolio theory to classify the set of admissible 

optimal choices. On the other hand, there exist many other risk properties that could be 

used to characterize investor’s choices. For this reason, in this paper, we classify several 

risk measure properties for their financial insight and then discuss how these properties 

characterize the different use of a risk measure.  

In particular, we describe three risk measures  (MiniMax, mean-abolute deviation, 

and standard deviation) and we show that these risk measures (as many others) can be 

                                                 
1 Recall that the wealth X first order stochastically dominates the risky wealth Y (X FSD Y) if and only if for every 
increasing utility function u, E(u(X))≥E(u(Y)) and the inequality is strict for some u. Analogously, we say that X second 
order stochastically dominates Y (X SSD Y), if and only if for every increasing, concave utility functions u, 
E(u(X))≥E(u(Y)) and the inequality is strict for some u. We also say that X  Rothschild Stiglitz stochastically dominates Y 
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considered equivalent by risk-averse investors, although they are formally different. Then 

we discuss the multi-parameter dependence of risk and  show how we could determine 

the optimal choices of non-satiable and/or risk-averse investors. In particular, we observe 

that when asset returns present heavy tails and asymmetries, fund separation does not 

hold. However, if we consider the presence of the riskless asset, then two fund separation 

holds among portfolios with the same skewness and kurtsosis parameters. Finally, we 

propose an empirical comparison among different portfolio allocation problems in a three 

parameter context in order to understand the impact that MiniMax, mean-absolute 

deviation, and standard deviation could have for some non-satiable and risk-averse 

investors. In this framework we also consider the presence of some contingent claims and 

compare the optimal choices of several investors in a mean-risk-skewness space.  

2. RISK MEASURES AND THEIR PROPERTIES  

Let us consider the problem of optimal allocation among n assets with vector of returns 

r=[r1,…,rn]’  where , 1 ,

,

i t i t
i

i t

P P
r

P
+ −

=  while ,i tP  is the price of i-th asset at time t. No short 

selling is allowed, i.e., the wealth iy  invested in the i-th asset is non negative for every 

i=1,...,n. Thus considering an initial wealth 0W , imagine that the following optimization 

problem:  

( )0

0
1

0

min  p '

0 1,...,

( ' )

y

n

i i
i

y

W y r

y W y i n

E W y r µ
=

+

= ≥ =

+ ≥

∑                                           (1) 

is equivalent to maximizing the expected utility ( ( ))yE U W  of the future wealth 

0: 'yW W y r= +  invested in the portfolio of assets. Then, we implicitly assume that the 

                                                                                                                                                 
(X R-S Y) if and only if for every concave utility functions u, E(u(X))≥E(u(Y)) and the inequality is strict for some u. 
(See, among others, Levy (1992) and the references therein).  
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expected utility of the future wealth yW  has a mean greater than yµ  and the expected 

utility depends only on the mean and the risk measure p. In this case, we say that the risk 

measure p is consistent with the order relation induced by the utility function U.  

More generally, a risk measure is consistent with an order relation (Rothschild-Stiglitz 

stochastic order, first-order stochastic dominance, second-order stochastic dominance) if 

E(U( xW ))≥E(U( yW )) (for all utility functions U belonging to a given category of 

functions: increasing; concave; increasing and concave) implies that p( xW )≤ p( yW ) for all 

admissible future wealths xW , yW . Consistency is absolutely necessary for a risk measure 

to make sense. It ensures us that we can characterize the set of all the optimal choices 

when either wealth distributions or expected utility depend on a finite number of 

parameters.2 Although, when we assume that either wealth distributions or expected utility 

depend on more than two parameters (the mean, the risk, and other skewness and/or 

kurtosis parameters – see Section 4), the complexity of the optimization problem could 

increase dramatically. As a consequence of consistency, all the best investments of a given 

category of investors (non-satiable, risk-averse, non-satiable and risk-averse) are among 

the less risky ones. But the converse is not generally true; that is, we cannot guarantee that 

all the less risky choices are the best ones even if the risk measure is consistent with some 

stochastic orders. In fact, any risk measure associates only a real number to a random 

wealth, while the stochastic orders compare all cumulative distribution functions. Then, 

intuitively, a unique number cannot summarize the information derived from the whole 

wealth distribution function.  

                                                 
2 See Ortobelli (2001). 



 6

This is the main reason why every risk measure is incomplete and other parameters 

have to be considered. The standard deviation 

( )( )1/ 22
( ) ( )y y ySTD W E W E W= −                                 (2) 

is the typical example of a risk measure consistent with Rothschild-Stiglitz (R-S) 

stochastic order (concave utility functions). It was also the first measure of uncertainty 

proposed in portfolio theory for controlling portfolio risk (see Markowitz (1952-1959) 

and Tobin (1958)). Another example of a risk measure consistent with Rothschild-Stiglitz 

stochastic order is the mean-absolute deviation (MAD) 

( ) ( ( ) )y y yMAD W E W E W= − ,                                    (3) 

where the risk is based on the absolute deviations from the mean rather than the squared 

deviations as in the case of the standard deviation. The MAD is more robust with respect 

to outliers  and  proposed as a measure to order the investor’s choices (see Konno and 

Jamazaki (1991), Speranza (1993), and Ogryczak and Ruszczynski (1999)). 
Artzner et al (2000) have defined another type of consistency, called monotony, that 

is p( yW )≤ p( xW ) for the risky wealths yW  and xW  that satisfy yW ≥ xW .  

Sometimes there is only a partial consistency between a risk measure and a stochastic 

order. For example, we say that a risk measure is consistent with first-order stochastic 

dominance with respect to additive shifts if p( xW )≤ p( yW ) when xW = yW +t, for some 

constant t≥ 0. In this case, the wealth xW  is considered less risky than yW  by any investor 

that prefers more than less. An example of a monotone risk measure proposed by Young 

(1998) for portfolio theory that is consistent with first and second order stochastic 

dominance is the MiniMax (MM) risk measure, 

{ }( ) sup ( ) 0y yMM W c R P W c= − ∈ ≤ = .                            (4) 

Considering and realizing that the utility maximization problem can be difficult to 

solve, many researchers have sought and proposed equivalent formulations with nicer 
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numerical properties. This leads to the definition of the following properties.  The first 

property which should be fulfilled by a risk measure is positivity. Either there is risk, this 

means p( yW )>0 or there is no risk (p( yW )=0). Negative values (less risk than no risk) 

does not make sense. Particularly, we impose the condition that p( yW ) = 0 holds if and 

only if investment yW  is non-stochastic. This property is called positivity.  

Clearly, different risk measures could have a different impact on the complexity of 

the problem given by (1). In particular, we must take into account the computational 

complexity when solving large-scale portfolio selection problems. Under some 

circumstances, it might happen that the resulting minimization problem might be 

linearizable, which implies easy solution algorithms; in this case, we call the risk measure 

linearizable. Hence, the success of some risk measures is due to the computational 

practicability of the relative linearizable optimization problems.  

Another important property which should be accounted for by the risk measure is the 

effect of diversification: if the wealth yW  bears risk p( yW ) and investment xW  bears risk 

p( xW ), then the risk of investing half of the money in the first portfolio and half of the 

money in the second one should be not be greater than the corresponding weighted sum 

of the risks. Formally, we have: ( (1 ) ) ( ) (1 ) ( )x y x yp W W p W p Wλ λ λ λ+ − ≤ + −  for all 

[0,1]λ ∈ . A risk measure p fulfilling this equation is called convex. The property of 

convexity can also be deduced if the risk measure fulfills two other properties which are 

called subadditivity and positive homogeneity:  

(1) p is subadditive if ( ) ( ) ( )x y x yp W W p W p W+ ≤ +  and  

(2) it is called positive homogeneous if ( ) ( )x xp W p Wα α=  for all random wealth xW  

and real 0α > .  

The last property of risk measures is called translation invariance. There are different 

definitions of translation invariance. We obtain the so-called Gaivoronsky-Pflug (G-P) 

translation invariance (see Gaivoronsky and Plfug (2001)) if for all real t: 
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p( xW +t)=p( xW ). This property can be interpreted as follows: the risk of a portfolio 

cannot be reduced or increased by simply adding a certain amount of riskless money. 

This property is, for example, fulfilled by the standard deviation but not fulfilled by the 

MiniMax measure or the Conditional Value at Risk (CVaR) measure that has recently 

been suggested for risk management. Alternatively, translation invariance holds if 

p( xW +t) = p( xW )-t for all real t. Furthermore, we can generalize all the previous 

definitions of translation invariance considering the so-called functional translation 

invariance, if for all real t and any risky wealth xW , the function f(t)=p( xW +t) is a 

continuous and non-increasing function. This property summarizes not only the different 

definitions of translation invariance, but it considers also the consistency with first-order 

stochastic dominance with respect to additive shifts.  

In order to take into account the temporal dependence of risk, the above static 

properties can be generalized to an intertemporal framework assuming the same 

definitions at each moment of time (see, among others, Artzner et al (2003)). Artzner, et 

al (2000) have called a coherent risk measure any translation invariant, monotonous, 

subadditive, and positively homogeneous risk measure. In particular the MiniMax 

measure can be seen as an extreme case of conditional value at risk (CVaR), that is a 

coherent risk measure. Other risk measure classifications have been proposed recently. In 

particular, Rockafeller et al (2003) (see also Ogryczak and Ruszczynski (1999)) define 

deviation measure as a positive, subadditive, positively homogeneous,    G-P translation 

invariant risk measure and expectation-bounded risk measure as any translation invariant, 

subadditive, positively homogeneous risk measure p that associates the value 

( ) ( )x xp W E W> −  with a non-constant wealth xW . Typical examples of deviation 

measures are the standard deviation given by (2) and the MAD given by (3), while the 

MiniMax measure given by (4) is a coherent expectation-bounded risk measure. The 

most important feature of these new classifications is that there exists a corresponding 

one-to-one relationship between deviation measures and expectation-bounded risk 

measures.  

As a matter of fact, given a deviation measure p, then the measure defined q( xW ) = 
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p( xW )-E( xW ) for any risky wealth xW  is an expectation-bounded risk measure. 

Conversely, given an expectation-bounded risk measure q, then the measure defined 

p( xW )=q( xW -E( xW )) is a deviation measure. Thus, the deviation measure associated with 

MiniMax is given by ( ( ))x xMM W E W− . 

3. MEASURES OF UNCERTAINTY AND PROPER RISK MEASURES  

From the discussion above, some properties are substantially in contrast with others. 

For example, it is clear that a G-P translation invariant measure cannot be translation 

invariant and/or consistent with first-order stochastic dominance (FSD) due to additive 

shifts. As a matter of fact, G-P translation invariance implies that the addition of certain 

wealth does not increase the uncertainty. Thus, this concept is linked to uncertainty. 

Conversely the translation invariance and consistency with FSD due to additive shifts 

imply that the addition of certain wealth decreases the wealth under risk even if it does 

not increase uncertainty.  

Artzner et al (2000) have identified in the coherent property “the right price” of risk. 

However, in the previous analysis, we have identified some properties which are 

important to measure the  uncertainty and other properties which are typical of the proper 

risk measures because they are useful to value wealth under risk. Clearly, coherency is 

typical of proper risk measures. Instead, a positive risk measure p does not distinguish 

between two certain wealths 1W  and 2W  because 1 2( ) ( ) 0p W p W= =  even if  1 2W W<  

and the second wealth is preferred to the first one. That is, if wealth xW  presents 

uncertainty, then p( xW )>0, otherwise no uncertainty is allowed and p( xW )=0.  

We meet an analogous difference between the two categories of risk measures if we 

consider the risk perception of different investors. So, risk aversion characterizes 

investors who want to limit the uncertainty of their wealth. Instead, non-satiable investors 

want to increase wealth, thus they implicitly reduce the wealth under risk. Therefore, the 

consistency with Rothschild-Stigliz stochastic order is typical of uncertainty measures 

and the consistency with FSD order or the monotony characterizes the proper risk 

measures.  
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In contrast, there are some properties that are useful in order to measure uncertainty 

and wealth under risk. For example, convexity is a property that identifies the importance 

of diversification. Undiversified portfolios present a greater grade of uncertainty and a 

larger wealth under risk. Similarly, positive homogeneity implies that when wealth under 

risk is multiplied by a positive factor, then risk and uncertainty must also grow with the 

same proportionality. In addition, it is possible to show that positivity, functional 

translation invariance, and positive homogeneity are sufficient to characterize the 

uncertainty of any reasonable family of portfolio distributions.3 Thus, we will generally 

require that at least these properties are satisfied by any uncertainty measure. Moreover, 

considering that consistency is the most important property in portfolio theory, we 

require that any measure of wealth under risk is at least consistent with FSD.  

Table 1 summarizes the properties of uncertainty measures and proper risk measures 

of wealth under risk. However, this classification is substantially known in the literature 

despite the fact that researchers have labeled the two categories of risk measures 

differently and have not identified all their properties and characteristics. As a matter of 

fact, according to the portfolio theory literature, we can define these two disjoint 

categories of risk measures as dispersion measures and safety-risk measures. Typically, a 

dispersion measure values the grade of uncertainty, and a safety-first measure values 

wealth under risk. In very general terms, we say that a dispersion measure is a strictly 

increasing function of a functional translation invariant, positive and positively 

homogeneous risk measure, while a safety-risk measure is consistent with FSD. The two 

categories are disjointed since a dispersion measure is never consistent with FSD. More 

precisely, given a positive risky wealth xW  and a positive 1α < , then it is not difficult to 

verify that x xW FSD Wα . Thus, any safety-first risk measure q presents less risk for the 

dominant random variable, that is ( ) ( )x xq W q Wα≤ . In contrast, a dispersion measure p is 

a strictly increasing function of a positive and positively homogeneous risk measure p1, 

that is p = f(p1) with f strictly increasing function. Therefore, p satisfies the relation  

1 1( ) ( ( )) ( ( )) ( )x x x xp W f p W f p W p Wα α= > = . 

                                                 
3 See Ortobelli (2001). 
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In particular, Tables 2 and 3 recall the definitions and the properties of some of the 

dispersion measures and safety-first risk measures proposed in the portfolio literature (for 

a review, see also Giacometti and Ortobelli (2004)). 

Observe that X dominates Y for a given stochastic order (Rothschild-Stiglitz 

stochastic order, first-order stochastic dominance, and second-order stochastic 

dominance), if and only if X bα +  dominates Y bα +  for the same stochastic order, for 

any positive α  and real b. This is the main reason why we can interchange wealth and 

return in problems of type (1) with consistent risk measures. Let us refer to A as the class 

of optimal choices that we obtain solving the optimization problem (1) and varying yµ  

for a given consistent risk measure p. Then, the class A is practically the same (up to an 

affine transformation) to the one that we obtain by solving the same problem but 

considering either 0/yW W  or 0/ 1yW W −  instead of the final wealth 0: 'yW W y r= + . In 

this case, the variables are the portfolio weights 
0

i
i

y
x

W
=  (i=1,...,n) that represent the 

percentage of wealth invested in the i-th asset. Besides, the future wealth of one unit 

invested today is given by 1+ 'x r . Thus, the optimization problem (1) can be rewritten 

as:  

min  p(1 ' )

. . 1,  0

     (1 ' )

x

i i
i

x

x r

s t x x

E x r m

+

= ≥

+ ≥

∑                                                 (1’) 

for an opportune level xm . For this reason, in the following we deal and study simplified 

selection problems with the gross returns 1+ 'x r , instead of the final wealth 

0: 'yW W y r= + .  

4. LIMITS AND ADVANTAGES OF RISK MEASURES IN PORTFOLIO 

OPTIMIZATION  

4.1 How to Use Uncertainty Measures 
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In the previous analysis, we explained that the most widely used risk measure, the 

variance, is in realty a measure of uncertainty. Thus, the question is: When and how can 

we use an uncertainty measure to minimize risk?  

When we minimize the risk measure at a fixed mean level, we are not trying to increase 

our future wealth (because the mean is fixed), but we are only limiting the uncertainty of 

future wealth. Thus we can obtain a portfolio that could be optimal for a risk-averse 

investor, but not necessarily for a non-satiable one. However, we do not have to minimize 

uncertainty in order to minimize risk. For example, suppose that future wealth is uniquely 

determined by the mean and a dispersion measure p. Assuming that no short sales are 

allowed, every non-satiable investor will choose a portfolio among the solutions of the 

following problem.4 

max p(1 ' )

. . 1,  0

1 ( )
    

p(1 ' )

x

i i
i

i i
i

x r

s t x x

x E r
h

x r

+

= ≥

+
=

+

∑

∑

                                                      (5) 

where the ratio between the mean and the uncertainty measure must be greater than an 

opportune level h . That is, we maximize the uncertainty for an opportune level of wealth 

under risk. The level of wealth under risk is measured assuming that the expected future 

wealth is proportional to its uncertainty, i.e. 1 ( ) p(1 ' )i i
i

x E r h x r+ = +∑ . Therefore, even 

if returns are uniquely determined from the mean and the variance, there are some 

optimal portfolios from the Markowitz’ point of view which cannot be considered 

optimal for a non-satiable investors. In fact, Markowitz’ analysis is theoretically justified 

only if distributions are unbounded elliptical (normal, for example) or investors have 

quadratic utility functions.  

Figure 1 shows the optimal choices in a mean-dispersion plane. All the admissible 

choices have mean and dispersion in the closed area. In Figure 1, we implicitly assume 

                                                 
4 See Ortobelli (2001). 
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that future wealth is positive because wealth is not unbounded from below (in the worst 

case it is equal to zero when we lose everything). Thus, it is generally unrealistic to 

assume return distributions that are unbounded from below such as the normal one. 

Portfolios on the arc EA (in a neighborhood of the global minimum dispersion portfolio) 

are not optimal because there are other ones with greater uncertainty that are preferred by 

every non-satiable investor. Observe that the quadratic utility is not always increasing 

and it displays the undesirable satiation property. Thus, an increase in wealth beyond the 

satiation point decreases utility. Then, there could exist some quadratic utility functions 

whose maximum expected utility is attained at portfolios in the arc EA, but for any 

increasing utility function, the expected utility of portfolios on the arc EA is lower than 

the expected utility of some portfolios on the arc AB. From this example we see that 

although dispersion measures are uncertainty measures, we can opportunely use them in 

order to find optimal choices for a given class of investors. Moreover, minimum 

dispersion portfolios are not always optimal for non-satiable investors. 

4.2 Two Fund Separation and Equivalence Between Risk Measures  

Generally, we say that two risk measures are considered equivalent by a given category 

of investors if the corresponding mean-risk optimization problems generate one and the 

same solution. From the analysis of risk measure properties, we cannot deduce if there 

exists “the best” risk measure. In fact, under some distributional assumptions, it has been 

proven that all dispersion measures are equivalent. In particular, when we assume that 

choices depend on the mean and a G-P translation invariant, positive and positively 

homogeneous risk measure, then any other G-P translation invariant positive and 

positively homogeneous risk measure differs from the first one by a multiplicative 

positive factor.5 This result implies that it in theory one is indifferent when deciding to 

employ one or any other existing G-P translation invariant positive and positively 

homogeneous risk measure (in a mean-risk framework). Furthermore, considering the 

equivalence between expectation-bounded risk measures and deviation measures, we 

have to expect the same results minimizing either a G-P translation invariant dispersion 

                                                 
5  See Ortobelli (2001). 
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measure, or an expectation-bounded safety risk measure for any fixed mean level.6 Thus 

expectation-bounded safety risk measures are equivalent to the G-P translation invariant 

dispersion measures from the perspective of risk-averse investors. However, a 

comparison among several allocation problems, which assume various equivalent-risk 

measures, has shown that there exist significant differences in the portfolio choices.7 

There are two logical consequences of these results.  

First, practically, the portfolio distributions depend on more than two parameters 

and optimal choices cannot be determined only by the mean and a single risk measure. 

This is also confirmed by empirical evidence. Return series often show “distributional 

anomalies” such as heavy tails and asymmetries. Then, it could be that different risk 

measures penalize/favor the same anomalies in a different way. For this reason, it makes 

sense to identify those risk measures that improve the performance of investors’ 

strategies. 

Second, most of the mean-variance theory can be extended to other mean G-P 

translation invariant dispersion models and/or mean-expectation-bounded risk models. 

On the other hand, assume that the portfolio returns are uniquely determined by the mean 

and a G-P translation invariant positive and positively homogeneous risk measure 'x rσ . 

Thus, we obtain an analogous capital asset pricing model (CAPM) for any opportune 

mean-risk parameterization of the portfolio family. In particular, we can use the extended 

Sharpe measure 0

'

( ' )

x r

E x r r
σ

−
 to identify superior, ordinary, and inferior performance of 

portfolio excess return 0'x r r−  where 0r  is the riskless return. If 'x r  is the risky 

portfolio which maximizes the extended Sharpe measure, then, for any (0,1)λ ∈ , an 

optimal portfolio with the same mean and lower risk than 0 (1 ) 'z r x rλ λ= + −  cannot 

exist because 0 0

'

( ) ( ' )

z x r

E z r E x r r
σ σ
− −

= . Therefore, the portfolios 0r  and 'x r  span the 

efficient frontier and two fund separation holds. However, as it follows from the next 

                                                 
6  See Rockafeller et al. (2003), Ogryczak and  Ruszczynski (1999), and Tokat et al (2003).  
7  See Giacometti and Ortobelli (2004). 



 15

discussion, we cannot generally guarantee that k fund separation holds when the portfolio 

of returns depend on k statistical parameters.  

4.3 Multi-parameter Efficient Frontiers and Non-linearity 

To take into account the distributional anomalies of asset returns, we need to measure the 

skewness and kurtosis of portfolio returns. In order to do this, statisticians typically use 

the so called Pearson-Fisher skewness and kurtosis indexes which provide a measure of 

the departure of the empirical series from the normal distribution. A positive (negative) 

index of asymmetry denotes that the right (left) tail of the distribution is more elongated 

than that implied by the normal distribution. The Pearson-Fisher coefficient of skewness 

is given by 

( )( )
( )( )( )

3

1 3/ 22

' ( ' )
( ' )

' ( ' )

E x r E x r
x r

E x r E x r
γ

−
=

−
 

The Pearson-Fisher kurtosis coefficient for a Gaussian distribution is equal to 3. 

Distributions whose kurtosis is greater (smaller) than 3 are defined as leptokurtic 

(platikurtic) and are characterized by fat tails (thin tails). The Pearson-Fisher kurtosis 

coefficient is given by 

( )( )
( )( )( )

4

2 22

' ( ' )
( ' )

' ( ' )

E x r E x r
x r

E x r E x r
γ

−
=

−
. 

 

According to the analysis proposed by Ortobelli (2001), it is possible to determine the 

optimal choice for an investor under very weak distributional assumptions. For example, 

when all admissible portfolios of gross returns are uniquely determined by the first k 

moments, under institutional restrictions of the market (such as no short sales and limited 

liability), all risk-averse investors optimize their portfolio choosing among the solutions 

of the following constrained optimization problem: 
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2

min (1 ' ) subject to

' ( ) ; 1; 0 1,...,

(( ' ( ' )) ) ; 3,...,
( ' )

x

i i
i

i

ii

p x r

x E r m x x i n

E x r E x r q i k
x Qx

+

= = ≥ =

−
= =

∑                                     (6) 

for some mean m and iq  i=3,…, k, where (1 ' )p x r+  is a given dispersion measure of the 

future portfolio wealth 1 'x r+  and Q is the variance–covariance matrix of the return 

vector 1[ ,..., ] 'nr r r= . Moreover, all non-satiable investors will choose portfolio weights, 

solutions of the following optimization problem  

2

max (1 ' ) subject to

1 ' ( ) ; 1; 0 1,...., ;
(1 ' )

(( ' ( ' )) ) 3,...,
( ' )

x

i i
i

i

ii

p x r

x E r h x x i n
p x r

E x r E x r q i k
x Qx

+

+
≥ = ≥ =

+

−
= =

∑                                (7) 

for some iq  i=3,…, k, and an opportune h . Similarly, all non-satiable risk-averse 

investors will choose portfolio weights that are solutions to the following optimization 

problem  

2

max ( ' ) subject to

1 ' ( ) ; 1; 0 1,...., ;
(1 ' )

(( ' ( ' )) ) 3,...,
( ' )

x

i i
i

i

ii

E x r

x E r h x x i n
p x r

E x r E x r q i k
x Qx

+
≥ = ≥ =

+

−
= =

∑                                (8) 

for some iq  i=3,…, k, and an opportune h . Moreover, in solving the above constrained 

problems, we can identify the optimal choices respect to other investor’s attitude. As a 

matter of fact, it has been argued in the literature that  decision makers have ambiguous 

skewness attitudes, while others say that investors are skewness-prone or prudent.8  

                                                 
8  See, among others, Horvarth and Scott (1980), Gamba and Rossi (1998), and Pressacco and Stucchi 
(2000). 
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For example, according to the definition given in Kimball (1990), we can 

recognize the nonsatiable, risk-averse investors who display prudence, i.e. the agents that 

display a skewness preference for fixed mean and dispersion. In any case, if we assume 

the standard deviation as a risk measure, we find that the Markowitz mean-standard 

deviation frontier is contained in the set of the solutions to problem (6) obtained by 

varying the parameters m and iq . In spite of this, the mean-variance optimal portfolios 

are generally chosen by risk-averse investors who do not display prudence. Gamba and 

Rossi (1998), in fact, have shown that in a three fund separation context, prudent 

investors choose optimal portfolios with the same mean and greater skewness and 

variance of a minimum variance portfolio. Thus, the present analysis is substantially a 

generalization of the Markowitz one that permits one to determine the non-linearity 

aspect of risk. For this reason, we continue to refer to the efficient frontier (for a given 

category of investors) as  the whole set of optimal choices (of that category of investors).  

Moreover, as recently demonstrated by Athayde and Flôres (2004, 2005), when 

unlimited short sales are allowed and the risk measure is the variance, we can give an 

implicit analytical solution to the above problems using the tensorial notation for the 

higher moments. From these implicit solutions, we observe that the non-linearity of the 

above problems represents the biggest difference with the multi-parameter linear models 

proposed in the portfolio choice literature (see Ross (1976, 1978)). As a matter of fact, 

factor pricing models are generally well justified for large stock market aggregates. In 

this case, some general economic state (centered) variables 1 1,..., kY Y −  influence the 

pricing (see Chen, Roll, Ross (1986)). Recall that, most of the portfolio selection models 

depending on the first moments proposed in literature are k-fund separation models (see, 

among others, the three-moments based models proposed by Kraus and Litzenberg 

(1976), Ingersoll (1987), Simaan (1993), and Gamba and Rossi (1998)). Thus, they 

assume that each return follows the linear equation: 

,1 1 , 1 1...i i i i k k ir b Y b Yµ ε− −= + + + +      i=1,…,n,                                (9) 

where generally the zero mean vector 1( ,..., ) 'nε ε ε=  is independent of 1 1,..., kY Y −  and the 

family of all convex combinations 'x ε  is a translation and scale invariant family 
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depending on a G-P translation invariant dispersion measure ( ' )p x ε . Then, when we 

require the rank condition9 (see Ross (1978) and Ingersoll (1987)), k+1 fund separation 

holds. Hence, if the riskless r0 is allowed, every risk-averse investor chooses a portfolio 

among the solution of the following constrained problem: 

0
1

.,

min ( ' ) subject to

' ( ) (1 ) ; 1;

0; 1,..., ; ' ; 1,..., 1

x
n

i i
i i

i j j

p x

x E r x r m x

x i n x b c j k

ε

=
+ − = =

≥ = = = −

∑ ∑
                                 (10) 

for some jc  j=1,…, k-1, and an opportune mean m. Furthermore, if unlimited short 

selling is allowed and the vector 1( ,..., ) 'nε ε ε=  is elliptical distributed with definite 

positive dispersion matrix V (see Owen and Rabinowitch (1983)), then all the solutions of 

(7) are given by:  

( )
( )

11 1 .,0
0 1 1 1

1 10 .,

'' ( )
1

' ( ) '

k k j
j j

j j j

r V br V E r r
r

V E r r V b
λ λ λ

−− −

− −
= =

−⎛ ⎞
− + +⎜ ⎟

−⎝ ⎠
∑ ∑

1
1 1 1

, 

where [1,1,...,1]'=1  is a vector composed of ones and iλ  i=1,…,k represent the weights 

in the k funds that together with the riskless asset span the efficient frontier (see Ortobelli 

(2001), Ortobelli et al. (2004)). Therefore, coherently with the classic arbitrage pricing 

theory the mean returns can be approximated by the linear pricing relation  

0 ,1 1 ,( ) ...i i i i k kE r r b bµ δ δ= = + + +% %  

where δj for j=1,...,k, are the risk premiums relative to the different factors. In particular, 

when we consider a three-fund separation model which depend on the first three 

moments, we obtain the so called Security Market Plane (SMP) (see, among others, 

Ingersoll (1987), Pressacco and Stucchi (2000), and Adcock et al (2005)). However, the 

approaches (6), (7), and (8) generalize the previous fund separation approach. As a matter 

of fact, if (9) is satisfied and all the portfolios are uniquely determined from the first k 

                                                 
9 This further condition is required in order to avoid that the above model degenerates into a s-fund separation model with 
s<k+1.  
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moments, then the previous optimal solutions also can be  parameterized with the first k 

moments. However, the converse is not necessarily true.  

Let’s assume that the portfolio returns 'x r  are uniquely determined by the mean 

and a G-P translation invariant positive and positively homogeneous risk measure 

(1 ' )p x r+  and the skewness parameter 1( ' )x rγ . Also suppose 3' ' ( )x r x r q=  is the risky 

portfolio that maximizes the extended Sharpe measure for a fixed 1 3( ' )x r qγ = . Then, for 

any (0,1)λ ∈ , an optimal portfolio with the same mean, skewness, and lower risk than 

0 (1 ) 'z r x rλ λ= + −  cannot exist because 0 0( ) ( ' )
(1 ) (1 ' )

E z r E x r r
p z p x r

− −
=

+ +
 and 1 3( )z qγ = . Thus, 

when unlimited short sales are allowed,10 all the optimal choices are a convex 

combination of the riskless return and the solutions of the constrained problem  

0

3

33 2

' ( )
max subject to

(1 ' )

(( ' ( ' )) )1;
( ' )

x

j
j

x E r r
p x r

E x r E x rx q
x Qx

−
+

−
= =∑

                                     (11) 

varying the parameter 3q . However, we cannot guarantee that fund separation holds 

because the solutions of (11) are not generally spanned by two or more optimal 

portfolios. As typical example, we refer to the analysis by Athayde and Flôres (2004) and 

(2005) that assumes  the variance as the risk measure.  

As for the three-moments framework, we can easily extend the previous analysis 

to a context where all admissible portfolios are uniquely determined by a finite number of 

moments (parameters). Therefore, when returns present heavy tails and strong 

asymmetries, we cannot accept the k fund separation assumption. However, if we 

consider the presence of the riskless asset, then two-fund separation holds among 

portfolios with the same asymmetry parameters. On the other hand, the implementation 

of nonlinear portfolio selection models should be evaluated on the basis of the trade-off 

                                                 
10 When no short sales are allowed, we have to add the condition 0≥ix  i=1,…,n at problem (11). 
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between costs and benefits. As a matter of fact, even the above moment analysis presents 

some non-trivial problems which are: 

1) Estimates of higher moments tend to be quite unstable, thus rather large samples are 

needed in order to estimate higher moments with reasonable accuracy. In order to avoid 

this problem, Ortobelli et al (2003, 2004) proposed the use of other parameters to value 

skewness, kurtosis, and the asymptotic behavior of data. 

2) We do not know how many parameters are necessary to identify the multi-parameter 

efficient frontier. However, this is a common problem on every multi-parameter analysis 

proposed in literature. 

3) Even if the above optimization problems determine the whole class of the investor’s 

optimal choices, those problems are computationally too complex to be solved for large 

portfolios, in particular when no short sales are allowed. Thus, we need to simplify the 

portfolio problems by reducing the number of parameters. When we simplify the 

optimization problem, for every risk measure we find only some among all optimal 

portfolios. Hence, we need to determine the risk measure that better characterizes and 

captures the investor’s attitude.  

5 AN EMPIRICAL COMPARISON AMONG THREE-PARAMETER EFFICIENT 

FRONTIERS  

Let us assume, for example, that the investors’ choices depend on the mean, on the 

Pearson-Fisher skewness coefficient, and on a risk measure equivalent to a dispersion 

measure. Then, all risk-averse investors optimize their choices selecting the portfolios 

among the solutions of the following optimization problem:  

3

3 2

min (1 ' ) subject to

' ( ) ; 1; 0 0,1,...,

(( ' ( ' )) ) ;
( ' )

x

i i
i

p x r

x E r m x x i n

E x r E x r q
x Qx

+

= = ≥ =

−
=

∑                              (12) 
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for some mean m and skewness q. In this portfolio selection problem, we also consider 

the riskless asset that has weight 0x . 

The questions we will try to answer are the following: Is the risk measure used to 

determine the optimal choices still important? If it is, which risk measure exhibits the 

best performance? What is the impact of skewness in the choices when we consider very 

asymmetric returns? 

In order to answer to these questions, we consider the  three risk measures 

discussed earlier: the MiniMax, the MAD, and standard deviation. These three measures 

are equivalent when portfolio distributions depend only on two parameters. In addition, 

when three parameters are sufficient to approximate investors’ optimal choices, the 

optimal portfolio solutions of problem (12) with the three risk measures lead to the same 

efficient frontier (see Ortobelli (2001)).  

5.1 Portfolio selection with and without the riskless return 

In the empirical comparison, we consider 804 observations of daily returns from 1/3/1995 

to 1/30/1998 on 23 risky international indexes converted into U.S. dollars (USD) with the 

respective exchange rates.11 In addition, we consider a fixed riskless asset of 6% annual 

rate. Solving the optimization problem (12) for different risk measures, we obtain Figure 

2 on the mean-risk-skewness space. Here, we distinguish the efficient frontiers without 

the riskless asset (on the left) and with the riskless (on the right). Thus we can 

geometrically observe the linear effect obtained by adding a riskless asset to the 

admissible choices. As a matter of fact, when the riskless asset is allowed, all the optimal 

choices are approximately represented by a curved plane, even if no short sales are 

allowed. These efficient frontiers are composed of 5,000 optimal portfolios found by 

varying in problem (12) the mean m and the skewness q between the minimum (mean; 

skewness) and the maximum (mean; skewness).  

                                                 
11 We consider daily returns on DAX 30, DAX 100 Performance, CAC 40, FTSE all share, FTSE 100, FTSE actuaries 
350, Reuters Commodities, Nikkei 225 Simple average, Nikkei 300 weighted stock average, Nikkei 300 simple stock 
average, Nikkei 500, Nikkei 225 stock average, Nikkei 300, Brent Crude Physical, Brent current month, Corn No2 
Yellow cents, Coffee Brazilian, Dow Jones Futures1, Dow Jones Commodities, Dow Jones Industrials, Fuel Oil No2, and 
Goldman Sachs Commodity, S&P 500. 



 22

Generally, we cannot compare the three efficient frontiers because they are developed 

on different three-dimensional spaces. Thus, Figure 2 serves only to show that we could 

obtain different representations of the efficient frontiers when using different risk 

measures. Moreover, from Figure 2 we can also distinguish the optimal portfolios of risk 

averse, nonsatiable, prudent investors, i.e. the portfolios with the smallest risk and the 

highest mean and skewness. If three parameters are sufficient to describe the investor’s 

optimal choices, then the optimal portfolio compositions obtained as solution of (12), 

corresponding to the three risk measures and fixed mean m and skewness q, must be 

equal. In this case, all three-parameter efficient frontiers represented on the same space 

must be equal. However, we have found that for any fixed mean m and skewness q the 

solution to the optimization problem (12) does not correspond to the same portfolio 

composition when we use different risk measures. From this difference, we deduce that 

three parameters are still insufficient to describe all the efficient portfolio choices. 

Now, we introduce a comparison among mean-risk-skewness models from the 

perspective of some non-satiable risk-averse investors. We assume that several investors 

want to maximize their expected (increasing and concave) utility function. For every 

mean-risk-skewness efficient frontier, each investor will choose one of the 5,000 efficient 

portfolios. Thus, we obtain three optimal portfolios that maximize the expected utility on 

the three efficient frontiers. Comparing the three expected utility values, we can 

determine which efficient frontier better approximates the investor’s optimal choice with 

that utility function. In particular, we assume that each investor has one among the 

following utility functions:  

1) ( ' ) log(1 ' )U x r x r= + ;  

2) 
( )1 '

( ' )
x r

U x r
α

α
+

=  with 5, 10, 15, 50α = − − − − ; 3) ( ' ) exp( (1 ' ))U x r k x r= − − +  

with k = 8, 10, 11, 12, 13, 50.  

In order to emphasize the differences in the optimal portfolio composition we denote 

by:  
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a) ,0 ,1 ,23, ,..., ,best best best bestx x x x⎡ ⎤= ⎣ ⎦ the optimal portfolio that realizes the maximum 

expected utility among the three different approaches;  

b) ,0 ,1 ,23, ,...,worst worst worst worstx x x x⎡ ⎤= ⎣ ⎦  the optimal portfolio that realizes the lowest 

expected utility among the three approaches.  

Then we consider the absolute difference between the two vectors of portfolio 

composition, i.e.  
23

, ,
0

best i worst i
i

x x
=

−∑ . This measure indicates in absolute terms how much 

change the portfolio considering different approaches. From a quick comparison of the 

estimated expected utility, major differences are not observed. However, the portfolio 

composition changes when we adopt distinct risk measures in the portfolio selection 

problems. That is, the portfolio composition is highly sensitive to small changes in the 

expected utility. For example, even if the difference between the highest and lowest 

optimal value of the exponential expected utility ( ' ) exp( 50(1 ' ))U x r x r= − − +  is of order 

10-22, the corresponding optimal portfolio composition obtained in mean-standard 

deviation-skewness space is significantly different (about 37%) from that obtained in a 

mean-MiniMax-skewness space.  

Table 4 summarizes the comparison among the three mean-risk-skewness approaches. 

In particular, we denote by "B" cases where the expected utility is the highest among the 

three models, "M" where the expected utility is the "medium value" among the three 

models, and  "W" when the model presents the lowest expected utility. Table 4 shows 

that the optimal solutions are either on the mean-standard deviation-skewness frontier or 

on the mean-MiniMax-skewness frontier. Hence, investors with greater risk aversion 

obtain the best performance on the mean-standard deviation-skewness frontier, while less 

risk-averse investors maximize their expected utility on the mean-MiniMax-skewness 

efficient frontier.  

Although we consider international indexes which lack substantial asymmetries, we 

observe some significant differences in the optimal portfolio compositions of investors 

with greater risk aversion. Instead, we do not observe very big differences in the optimal 

choices of less risk-averse investors. As a matter of fact, portfolio compositions of less 
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risk-averse investors present differences of order 10-6 (that we approximate at 0%). On 

the other hand, even if the variance cannot be considered the unique indisputable risk 

measure that it has been characterized by in portfolio theory, this former empirical 

analysis confirms the good approximation of expected utility obtained in a mean, 

varianc,e and skewness context (see Levy and Markowitz (1979) and Markowitz and van 

Dijk (2005)). Thus, we next investigate  the effects of very asymmetric returns in 

portfolio choice. 

5.2 An empirical comparison among portfolio selection models with derivative assets 

As observed by Bookstaber and Clarke (1985), Mulvey and Ziemba (1999), and Iaquinta 

et al. (2003), the distribution of contingent claim returns present heavy tails and 

asymmetries. For this reason, it has more sense to propose a three-parameter portfolio 

selection comparison considering some contingent claim returns. Generally, we cannot 

easily obtain the historical observations of the same contingent claim. Thus, in order to 

capture the joint distributional behavior of asset derivatives, we need to approximate the 

historical observations of derivative returns.  

In particular, mimicking the RiskMetrics' approximation of derivative's returns 

even for historical data (see, Longestaey and Zangari (1996)), we can describe the returns 

of a European option with value 0( , , , , )t tV V P K rτ σ=  where Pt is the spot price of the 

underlying asset at time t, K, the option's exercise price, τ, the time to maturity of the 

option, 0r , the riskless rate, and σ, the standard deviation of the log return. Now, the 

value of the contingent claim can be written in terms of the Taylor approximation  

2
1 1 1

1 ( ) ( )
2t t t t t tV V P P P P+ + +− = Γ − + ∆ − + Θ , 

where we have used the Greeks 
2

2
t

t

V
P

∂
Γ =

∂
, t

t

V
P
∂

∆ =
∂

 and tV
t

∂
Θ =

∂
. Hence, the option 

return 1t t
t

t

V V
R

V
+ −

=  over the period [t,t+1] is approximated by the quadratic relation:  

2
t t tR Ar Br C= + + ,                                                   (13) 
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where 1t t
t

t

P P
r

P
+ −

=  is the return of the underlined asset, while  
2

2
t

t

P
A

V
Γ

= , t

t

P
B

V
∆

=  and 

t
C

V
Θ

= . The main advantage of this approximation consists that we can analyze, describe 

and evaluate the dependence structure of contingent claim portfolios. Moreover, as 

shown in Longerstaey and Zangari (1996), the relative errors of these approximations are 

reasonably low when options are not too close to the expiration date.  

In this empirical analysis, we consider a subset of 10 of the risky international 

indexes used in the previous empirical analysis12 and a fixed riskless asset of 6% annual 

rate. We approximated historical returns on six European calls and six European puts on 

the corresponding indexes. We assume that the options were purchased on 1/30/98 with a 

three months expiration. Thus, if we assume that non-linear approximation (13) holds 

with A, B and C fixed, then we can derive implicit approximations of a contingent claim 

return series considering i.i.d. observations of asset return tr . Generally speaking, in 

order to obtain a better approximation of contingent claim returns, we follow the advise 

of RiskMetrics’ empirical analysis.  

Considering this portfolio composition, it is difficult to believe that three-fund 

separation holds and that the investors will all hold combination of no more than two 

mutual funds and the riskless asset. Then, we perform an analysis similar to the previous 

one based on the optimization problem (12), in order to value the impact and the 

differences of strongly asymmetric returns in the optimal investors’ choices. Figure 3 

shows the efficient frontiers we obtain by solving the optimization problem (12) for 

different risk measures. In this case,  differences from the figures obtained previously are 

evident. In particular, the mean m and the skewness q of problem (12) vary in a larger 

interval and consequently we used 10,000 portfolios to approximate the efficient 

frontiers. Even in this case, we include a comparison among mean-risk-skewness models 

from the perspective of some non-satiable risk-averse investors. In addition, we want to 

                                                 
12 We consider daily returns from 1/3/1995 to 1/30/1998 on DAX 30, DAX 100 Performance, CAC 40, FTSE all share, 
FTSE 100, Nikkei 225 Simple average, , Nikkei 225 stock average, Dow Jones Industrials, Fuel Oil No2, S&P 500, and 
we consider puts and calls on DAX 30, CAC 40, FTSE 100, Nikkei 225, Dow Jones Industrials,  and S&P 500. We 
convert all the returns into U.S. dollars with the respective exchange rates. 
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value the difference between the optimal choices obtained with the best of the three 

parameter models and the mean-variance optimal choices. Thus, we assume that each 

investor has one among the following utility functions:  

1) ( ' ) log(1 ' )U x r x r= + ; 

 2) 
( )1 '

( ' )
x r

U x r
α

α
+

=  with 15, 25, 45, 55α = − − − − ;  

3) ( ' ) exp( (1 ' ))U x r k x r= − − +  with k = 10, 20, 30, 55, 65, 75.  

Then, as in the previous analysis, we compute the absolute difference between the two 

optimal portfolio that realizes the best and the worst performance among the three 

different approaches, i.e. , ,best i worst i
i

x x−∑ . In addition, we calculate the absolute 

difference between the portfolio that realizes the best performance bestx  and the optimal 

portfolio that maximizes the expected utility on the mean variance efficient frontier that 

we point out with ,0 ,1 ,22, ,...,MV MV MV MVx x x x⎡ ⎤= ⎣ ⎦ . Thus, the measure , ,best i MV i
i

x x−∑  

indicates in absolute terms how much the portfolio composition changes considering 

either a three parametric approach or the two parametric one.  

Table 5 summarizes this empirical comparison. An analysis of the results 

substantially confirms the previous findings.  In fact, the optimal solutions are either on 

the mean-standard deviation-skewness frontier or on the mean-MiniMax-skewness 

frontier. However, as we could expect, we observe much greater differences in the 

portfolio composition. Moreover, there exist significant differences between the mean-

variance model and the three parametric ones. In particular, our empirical analysis 

suggests that: 

1) The skewness parameter has an important impact in the portfolio choices when 

contingent claims are included in the optimization problem.   
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2) In the presence of  returns with heavy tails and asymmetries, three parameters are 

still insufficient to evaluate the complexity of the portfolio choice problem,.  

3) More risk-averse investors approximate their optimal choices on the mean-

variance-skewness efficient frontier, while less risk-averse agents choose investments on 

the mean-MiniMax-skewness efficient. 

6. CONCLUDING REMARKS  

In this paper we demonstrate  that risk measures properties characterize the use of a risk 

measure. In particular, dispersion measures must be maximized at a fixed level of wealth 

under risk  in order to obtain optimal portfolios for non-satiable investors. Thus, standard 

deviation, as with every dispersion measure, is not a proper risk measure. We observe 

that most of the risk measures proposed in the literature can be considered equivalent 

when the returns depend only on the mean and the risk. In this case, two-fund separation 

holds. However, when the return distributions present heavy tails and skewness, the 

returns cannot be generally characterized by linear models. In this case, we can only say 

that two-fund separation holds among portfolios with the same asymmetry parameters 

when the riskless asset is present. 

Finally, a preliminary empirical analysis shows that there are still motivations to 

analyze the impact of different risk measures and of skewness in portfolio theory and that 

three parameters are still insufficient to evaluate the complexity of a portfolio choice 

problem, in particular when we consider contingent claim returns.  

Further analysis, comparison, and discussion are still necessary to decide which risk 

measure gives the best performance. Probably, for this purpose it is better to compare 

only mean-risk models because the impact that a risk measure has in portfolio choice is 

much more evident. On the other hand, many other aspects of distributional behavior of 

asset returns should be considered. As a matter of fact, several studies on the empirical 

behavior of returns have reported evidence that conditional first and second moments of 

stock returns are time varying and potentially persistent, especially when returns are 

measured over long horizons. Therefore, it is not the unconditional return distribution 

which is of interest but the conditional distribution which is conditioned on information 
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contained in past return data, or a more general information set. In addition, the 

assumption of conditional homoskedasticity is often violated in financial data where we 

often observe volatility clustering and the class of auto-regressive (moving average) with 

auto-regressive conditional heteroskedastic AR(MA)-GARCH models is a natural 

candidate for conditioning on the past of return series. In this context the complexity of 

portfolio selection problems could grow enormously (see, among others, Tokat et al 

(2003), Bertocchi et al (2005)). However, in some cases, it can be reduced by either 

considering the asymptotic behavior of asset returns (see for example Rachev and Mittnik 

(2000) and Ortobelli et al. (2003, 2004) and the reference therein) or considering 

alternative equivalent optimization problems that reduce the computational complexity. 

(see Rachev et al (2004, 2005), Biglova et al. (2004)). 
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Properties 

Proper risk 
Measures  

Uncertainty 
Measures 

Consistency with respect to first order stochastic 
dominance due to additive shifts 

yes no 

Consistency with respect to first order stochastic 
dominance 

yes no 

Monotony yes no 
Consistency with respect to second order stochastic 
dominance 

yes no 

Consistency with respect to Rothschild-Stiglitz 
stochastic order 

no yes 

Positively homogeneous yes yes 
Convexity yes yes 
Subadditive yes yes 
Positive no yes 
Gaivoronsky-Pflug translation invariant no yes 
Translation invariant yes no 
Functional translation invariant yes yes 
Coherent risk measure yes no 
Deviation measure no yes 
Expectation-bounded risk measure yes no 

Table 1. Properties of uncertainty measures and proper risk measures. 
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RISK  MEASURES PROPERTIES 
( )xVaR Wα  

Value at Risk 
{ }inf Pr( )xz W z α− ≤ >  

Safety risk measure that is monotone; consistent with FSD
stochastic order; positively homogeneous; and translation
invariant. 
 

( )xCVaR Wα   
Conditional Value at Risk 

( ( ))x x xE W W VaR Wα− − ≥  

Safety risk measure that is monotone; consistent with FSD, 
SSD, R-S stochastic orders; positively homogeneous; convex;
sub-additive; linearizable; coherent; translation invariant and
expectation-bounded. 

( )xMM W  
MiniMax

{ }sup Pr( ) 0xc R W c− ∈ ≤ =  

Safety risk measure that is monotone; consistent with FSD, 
SSD, R-S stochastic orders; positively homogeneous; convex;
sub-additive; linearizable; coherent; translation invariant and
expectation-bounded. 

Safety First  

( )Pr xW λ≤  
Safety risk measure that is consistent with FSD stochastic 
order and monotone. 

Lower Partial Moment 

( )( )qq
xE W Y −− , 

where q≥1is the power index, 
Y is the target wealth. 

Safety risk measure that is monotone; consistent with FSD,
SSD, R-S stochastic orders; convex; and sub-additive. 
 
 

, ( )q xCVaR Wα  

Power CVaR 

( )/ ( )q
x x xE W W VaR Wα− ≥  

where q≥1 is the power index.

Safety risk measure that is monotone; consistent with FSD,
SSD, R-S stochastic orders; convex; and sub-additive. 
 
 

 

Table 2  Properties of safety risk measures 
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RISK  MEASURES PROPERTIES 
Standard Deviation 

( )2( ( ))x xE W E W−  
Deviation measure that is positive; consistent w.r.t. R-S 
stochastic order; positively homogeneous; convex; sub-
additive; and G-P translation invariant. 

MAD 
( ( ) ).x xE W E W−  

Deviation measure that is positive; consistent w.r.t. R-S 
stochastic order; positively homogeneous; convex; sub-
additive; linearizable; and G-P translation invariant. 

Mean-absolute moment 

( )1/
( ( ) )

qq
x xE W E W− , 

where  q≥1. 

Deviation measure that is positive; consistent w.r.t. R-S 
stochastic order; convex; positively homogeneous; G-P
translation invariant and sub-additive. 
 

Gini's mean difference 
( )xE W Y− , 

where Y points out an i.i.d. 

copy of wealth xW . 

Deviation measure that is positive; consistent w.r.t. R-S 
stochastic order; positively homogeneous; convex; sub-
additive; linearizable; and G-P translation invariant. 
 
 

Exponential entropy (only for 
wealth that  admit a density 
distribution) 

( )log ( )WxE f t
e
−

 
where ( )

xWf t  is the density of 

wealth xW . 

Deviation measure that is positive; consistent w.r.t. R-S 
stochastic order; positively homogeneous; convex; sub-
additive; and G-P translation invariant. 
 
 

Colog of xW  
( log( ))

( ) (log( )).
x x

x x

E W W
E W E W

−

−
 

Risk measure that is positive; consistent w.r.t. FSD due to 
additive shifts and R-S stochastic order; positively 
homogeneous; convex and sub-additive.  

 

Table 3  Properties of Dispersion Risk Measures 
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Figure 1. ___ Efficient portfolios for non-satiable 

investors;- - - Non-optimal portfolios. 
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Figure 2. Three-parameter efficient frontiers for risk-averse investors (without 
and with the riskless asset). 
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Figure 3. Three-parameter efficient frontiers for risk-averse investors considering portfolios 

of derivatives. 
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Expected Utility 
 
 

Mean –
Standard 
Deviation-
Skewness 

 

Mean-MAD-
Skewness 

 
 

Mean-
Minimax–
Skewness
 

Difference between 
portfolio 

composition 
23

, ,
0

best i worst i
i

x x
=

−∑  

E(log(1+x’r)) M W B 0% 

( ) 51 1
5 pE r

−− ⎛ ⎞
+⎜ ⎟

⎝ ⎠
 M 

 
W 
 

B 
 

0% 
 

( ) 101 1
10 pE r

−− ⎛ ⎞
+⎜ ⎟

⎝ ⎠
 M 

 
W 
 

B 
 

8.50% 
 

( ) 151 1
15 pE r

−− ⎛ ⎞
+⎜ ⎟

⎝ ⎠
 B 

 
W 
 

M 
 

18.10% 
 

( ) 501 1
50 pE r

−− ⎛ ⎞
+⎜ ⎟

⎝ ⎠
 B 

 
M 
 

W 
 

38.10% 
 

-E(exp(-8(1+ pr ))) M W B 0% 
-E(exp(-10(1+ pr ))) W M B 4.30% 
-E(exp(-11(1+ pr ))) W M B 6.90% 
-E(exp(-12(1+ pr ))) B W M 6.40% 
-E(exp(-13(1+ pr ))) B W M 9.10% 
-E(exp(-50(1+ pr ))) B M W 37.30% 

Table 4 Attitude to risk of some investors on three parametric efficient 
frontiers and analysis of the models’ performance. We maximize the expected 
utility on the efficient frontiers considering daily returns from 1/3/1995 to 
1/30/1998 on 23 risky international indexes and a fixed riskless return. We 
write "B" when the expected utility is the highest among the three models, we 
write "M" when the expected utility is the "medium value" among the three 
models and we write "W" when the model presents the lowest expected utility. 
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Expected Utility 
 
 

Mean-
Standard 
Deviation-
Skewness

 

Mean-
MAD-

Skewness
 

Mean-
MiniMax-

Skewness
 

Difference 
between portfolio 

composition 
22

, ,
0

best i worst i
i

x x
=

−∑  

Difference 
between portfolio 

composition 
22

, ,
0

best i MV i
i

x x
=

−∑  

E(log(1+x’r)) W M B 6.21% 81.33% 

( ) 151 1
15 pE r

−− ⎛ ⎞
+⎜ ⎟

⎝ ⎠
 W 

 
M 
 

B 
 

8.02% 
 

45.16% 
 

( ) 251 1
25 pE r

−− ⎛ ⎞
+⎜ ⎟

⎝ ⎠
 M 

 
W 
 

B 
 

14.52% 
 

25.10% 
 

( ) 451 1
45 pE r

−− ⎛ ⎞
+⎜ ⎟

⎝ ⎠
 B 

 
W 
 

M 
 

27.73% 
 

38.37% 
 

( ) 551 1
55 pE r

−− ⎛ ⎞
+⎜ ⎟

⎝ ⎠
 B 

 
M 
 

W 
 

48.17% 
 

52.09% 
 

-E(exp(-10(1+ pr ))) W M B 6.59% 86.33% 
-E(exp(-20 (1+ pr ))) W M B 10.52% 50.09% 
-E(exp(-30(1+ pr ))) M W B 17.49% 26.72% 
-E(exp(-55(1+ pr ))) B W M 26.44% 28.06% 
-E(exp(-65(1+ pr ))) B W M 35.94% 43.22% 
-E(exp(-75(1+ pr ))) B M W 42.31% 46.33% 

Table 5 Attitude to risk of some investors on three parametric efficient frontiers and analysis 
of the models’ performance when we consider portfolios of asset derivatives. We maximize 
the expected utility on the efficient frontiers considering a fixed riskless return, the 
approximated historical daily returns of 12 asset derivatives and daily returns on 10 risky 
international indexes. We write "B" when the expected utility is the highest among the three 
models, we write "M" when the expected utility is the "medium value" among the three 
models and we write "W" when the model presents the lowest expected utility. 


