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Desirable Properties of an Ideal Risk Measure 

in Portfolio Theory 
 

Abstract 

This paper examines the properties that a risk measure should satisfy in order to characterize 

an investor’s preferences. In particular, we propose some intuitive and realistic examples that 

describe several desirable features of an ideal risk measure. This analysis is the first step to 

understand how to classify an investor’s risk. The risk is an asymmetric, relative, 

heteroskedastic, multidimensional concept that has to take into account asymptotic behavior 

of returns, inter-temporal dependence, risk-time aggregation, further sources of risk, and the 

impact of several economic phenomena that could influence an investor’s preferences. In 

order to consider the financial impact of the several aspects of the risk we propose and 

analyze the relationship between distributional modeling and risk measures. Similarly to the 

notion of ideal probability metric to a given approximation problem, we are in the search for 

an ideal risk measure or ideal performance ratio for a portfolio selection problem. Then we 

emphasize the parallels between risk measures and probability metrics underlying the 

computational advantage and disadvantage of different approaches. 

Key words: risk aversion, portfolio choice, investment risk, reward measure, diversification. 
JEL Classification: G11, G14, G15 
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1. INTRODUCTION 
 

In portfolio theory, a risk measure has always been valued principally because of its 

capacity of ordering investor preferences. In particular, the stochastic-order theory has 

provided some intuitive rules consistent with expected utility theory (see, among others, 

Hanoch and Levy (1969), Rothshild and Stiglitz (1970), and Bawa (1976)). However, it is 

well recognized by expected utility specialists that von Neumann–Morgenstern utility 

functions cannot characterize all types of human behavior observed in financial markets. 

Several researches have emphasized that the investors’ choices are strictly dependent on 

the possible states of the returns(see, among others, Karni (1985)). Thus, investors have 

generally state-dependent utility functions. In order to take into account common attitudes 

and interests that characterize a decision maker’s behavior, Karni (1985), Schervisch, 

Seidenfeld and Kadane (1990), among others, have generalized the classical Von Neumann 

Morgenstern approach to state-dependent utility functions. Moreover, it has been recently 

demonstrated that the state-dependent utility and the target-based approaches are equivalent 

(see Bordley and LiCalzi (2000), Castagnoli (2004)). Therefore, when it is assumed that 

investors maximize their expected state-dependent utility functions, it is implicitly assumed 

that investors minimize the probability of the investment return falling below a specified 

risk benchmark. In particular, even if there are no apparent connections between the 

expected utility approach and a more appealing benchmark-based approach, expected 

utility can be reinterpreted in terms of the probability that the return is above a given 

benchmark (see, also, Castagnoli and LiCalzi (1996,1999)).  

These theoretical results justify many intuitive portfolio choice approaches based on the 

safety-first rules as a criterion for decision-making under uncertainty (see, among others, 

Roy (1952), Tesler (1955/6), and Bawa (1976, 1978) Ortobelli and Rachev (2001)). In 

particular, the most celebrated and used benchmark approaches are based on coherent risk 

measures (see Szegö (2004)). As a matter of fact, the intuitive characteristics of investment 

risk, which are defined in a coherent risk measure, represent one of the most important 

aspects of the analysis by Artzner et al  (1999). However, even if a coherent risk measure 

“coherently” prices risk, it cannot consider exhaustively all the investment characteristics.  
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This paper discusses and reviews some desirable properties of a risk measure in portfolio 

theory, identifying some limits of previous studies on this topic. As a matter of fact, many 

studies proposed in portfolio theory deal with risk measures often used in the statistics 

literature (see Uryasev (2000), Szegö (2002), and (2004) and the references therein). 

However, most of the proposed measures do not take into account several investors’ attitudes 

towards risk. In addition, if a risk measure has to be used in portfolio choice, then the main 

investor’s interest is the consistency with his preferences. In particular, the knowledge of an 

investor’s attitudes toward risk permits an investor to correctly employ any risk measure 

coherently with respect to his preferences  (see, among others, Ortobelli et al (2005)). On the 

one hand, we do not believe that an unique risk measure could capture all aspects of an 

investor’s preferences.  

This paper distinguishes several observable financial phenomena such as the impact of 

aggregated risk, temporal horizon, propagation effect, risk aversion, transaction costs, and 

heteroskedasticity. In addition, it examines some properties that any risk measure has to take 

into account such as investment diversification, computational complexity, multi-parameter 

dependence, asymmetry, non-linearity, and incompleteness. Because we do not believe that a 

single risk measure can take into account all these characteristics, we propose some different 

ways to study the aspects of risk. For this reason,  in Section 2 we summarize some of the 

basic characteristics of risk emphasizing the differences between measures of uncertainty and 

measures of risk. Section 3 shows how some aspects of diversification motivate the use of 

reward-risk ratios. Section 4 describes the parallels between risk measures and probability 

metrics, while Sections 5, 6 and 7 analyze several aspects of risk which impact an   investors’ 

choices. We summarize our principal findings in Section 8. . 

 

2. BASIC CHARACTERISTICS OF INVESTMENT RISK: UNCERTAINTY AND 

RISK  

 

It is well-known that risk is an asymmetric concept related to  downside outcomes, and 

any realistic way of measuring risk should consider upside and downside differently. 

Furthermore, a measure of uncertainty is not necessarily adequate in measuring risk. The 

standard deviation considers both positive and negative deviations from the mean as a 
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potential risk. Thus, in this case, outperformance relative to the mean is penalized just as 

much as underperformance. 

Balzer (1990, 2001), Sortino and Satchell (2001), among others, have proposed that 

investment risk might be measured by a functional of the difference between the 

investment return and a specified benchmark. The benchmark might itself be a random 

variable, such as a liability benchmark (such as an insurance product or defined benefit 

pension fund liabilities), the inflation rate or possibly inflation plus some safety margin, the 

risk-free rate of return, the bottom percentile of return, a sector index return, a budgeted 

return or other alternative investments. In practice, a benchmark is established by an 

investor and the risk benchmark is then communicated to the asset manager selected by the 

investor. The goal of the asset manager is to not to underperform the benchmark. In 

contrast, minimizing the probability of being below a benchmark is equivalent to 

maximizing an expected state dependent utility function (see Castagnoli and LiCalzi 

(1996,1999))). Thus, the benchmark approach is a generalization of the classic von 

Neumann–Morgenstern approach. In addition, the same investor could have multiple 

objectives and hence multiple benchmarks. Thus, risk is a multidimensional phenomenon. 

However, an appropriate choice of benchmarks is necessary in order to avoid incorrect 

evaluation of opportunities available to investors. For example, too often little recognition 

is given to liability targets. This is the major factor contributing to the underfunding of U.S. 

pension funds (see Ryan and Fabozzi (2002)). From this simple discussion, one must 

recognize that risk is a relative (to a given benchmark), asymmetric, and multidimensional 

concept. In addition, Rockafellar et al (2005) and Ortobelli et al (2005)  have emphasized 

that risk cannot be assessed by measuring only the uncertainty of investments.  

There exist many examples in the portfolio selection literature illustrating that the 

standard deviation cannot always be utilized  as a measure of risk because it is a measure of 

uncertainty. However, the two notions of uncertainty and risk are also related. Generally, 

measures of uncertainty, also known as deviation measures, can be introduced axiomatically 

(see Rockafellar et al (2005)). We call a deviation measure any positive functional D defined 

on the space of random variables with finite variance satisfying the following properties:  

 

Dev 1:  D(X + C) = D(X) for all X and constants C 
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Dev 2:  D(0) = 0, and D(aX) = aD(X) for all X and a > 0 

Dev 3:  D(X + Y) ≤ D(X) + D(Y) for all X and Y 

Dev 4: D(X) ≥ 0 for all X, with D(X) > 0 for non-constant X 

 

According to properties Dev 1 and Dev 4, the deviation measure D depends only on the 

centered random variable X – EX and is equal to zero only if X – EX = 0. Therefore we can 

say that the functional D measures the degree of uncertainty in X. Particular examples 

include the standard deviation, the mean absolute deviation and so on. Further, the family of 

the deviation measures does not include only symmetric representatives, i.e. the equality 

D(X) = D(-X) is not guaranteed. The asymmetric representatives include, for instance, the 

semi-standard deviation.  

Attempts to quantify risk have led to the notion of a risk measure. It is a functional that 

assigns a numerical value to a random variable which is interpreted as a loss. Since risk is 

subjective because it is related to an investor’s perception of exposure and uncertainty, risk 

measures are strongly related to utility functions. In particular, the link between expected 

utility theory and the risk of some admissible investments is generally represented by the 

consistency of the risk measure with a stochastic order, i.e. if X is preferred to Y by a given 

class of investors (non-satiable or non-satiable risk averse), then the risk of X is lower than 

the risk of Y from the perspective of view of that class of investors (see Pflug (2000)). We 

shall not discuss here the details of this consistency. Nevertheless, it is important to realize 

that since risk measures associate a single number to a random variable, they cannot capture 

the entire information available in a stochastic order in which the cumulative distribution 

function of the loss is employed.  

A systematic approach towards risk measures has been undertaken in Artzner et al (1999) 

where the family of  coherent risk measures is introduced. A coherent risk measure is any 

functional ρ defined on the space of random variables with finite variance satisfying the 

following properties:  

 

R1. ρ(X + C) = ρ(X) – C, for all X and constants C 

R2. ρ(0) =0, and ρ(aX) =a ρ(X), for all X and all a > 0 

R3. ρ(X + Y) ≤ ρ(X) + ρ(Y), for all X and Y 
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R4. ρ(X) ≤ ρ(Y) when X ≥ Y 

 

Property R2 implies positive homogeneity of the functional. R3 implies sub-additivity and the 

combination of R2 and R3 is sub-linearity, which implies convexity. If we relax the positive 

homogeneity assumption, we obtain the class of convex risk measures. That is, a risk 

measure is said to belong to the class of convex risk measures if it satisfies R1, R4 and the 

additional convexity property:  

 

R5. ρ(aX +(1 - a)Y) ≤ aρ(X) + (1 - a)ρ(Y), for all X, Y and 0 ≤ a ≤ 1 

 

One example of a coherent measure of risk is the conditional value-at-risk (CVaR), also 

known as expected shortfall or expected tail loss (ETL). It is defined as 

( )
0

1
( ) qETL X VaR X dq

!

!
!

= "     (1) 

where VaRα(X)=-infx{x|P(X≤x)≥α} is the value-at-risk (VaR) of the random variable X and 

ETLα(X)=E(X|X≤VaRα(X)) when we assume a continuous distribution for the distribution of 

X. VaR itself is used as a risk measure and while it has an intuitive interpretation, examples 

can be constructed showing that it is not convex. The ETL can be interpreted as the average 

loss beyond value-at-risk.  

There is a relationship between the deviation measures and the coherent risk measures, 

see Rockafellar et al (2005). In particular, in a mean-risk world most of these measures are 

equivalent for risk averse investors (see Ortobelli et al (2005)). On the other hand, Biglova, et 

al (2004) have shown (exploring the relationship between uncertainty measures and risk 

measures and how to employ them in order to obtain optimal choices) that one family cannot 

replace the other in portfolio selection problems. 

 

3. TEMPORAL DEPENDENCE, DIVERSIFICATION AND REWARD-RISK 

ANALYSIS 

 

Let us consider the following example. Figure 1 shows the S&P 500 daily return series 

from January 4, 1995 to January 30, 1998. As we can see, the dispersion around the mean 
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changes sensibly, in particular during the last period of our observations when the Asian 

market crisis began. These oscillations tell us that the process is mean reverting and that the 

dispersion changes over the time. Hence, in some periods there are big oscillations around 

zero and in other periods the oscillations are smaller. Clearly, if the degree of uncertainty 

changes over time, the risk too has to change over time. In this case, the investment return 

process is not stationary; that is, we cannot assume that returns maintain their distribution 

unvaried in the course of time.  

 

[INSERT HERE FIGURE 1] 

 

Under the assumption of stationary and independent realizations, the oldest observations 

have the same influence on our decisions as the most recent ones. Is this assumption 

realistic? Recent studies on investment return processes have shown that historical 

realizations are not independent and exhibit autoregressive behavior. Consequently, we 

observe the clustering of the volatility effect; that is, each observation influences the 

following ones. In particular, the last observations have a greater impact on investment 

decisions than the oldest ones. Thus, any realistic measure of risk should change and evolve 

over time through a proper modeling of the behavior of financial variables. Typically this 

behavior is captured by ARMA-GARCH-type models. 

One of the simplest models proposed in the literature is the exponentially weighted 

moving average model (EWMA) and considers exponential weights (see Longerstaey and  

Zangari (1996)). Under the assumptions of the model, the risk measure follows a predictable 

process and at time t the observation kr  (k<t) is a possible outcome with probability 

(1 ) t k! ! "
"  , where [0,1]!"  is a decay factor that can be estimated with a Root Mean Square 

Error (RMSE ) method (see Longerstaey and Zangari (1996)). Thus if the forecasted risk 

measure of return 
1t

r +  is given by 1/ 1( ( ))t t t tE f r! + +=  for an opportune function f, then the 

risk heteroskedasticity can be modeled assuming that 1/ / 1 (1 ) ( )t t t t tf r! "! "+ #= + # . 

 

[INSERT HERE FIGURES 2 AND 3] 
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Figure 2 shows the S&P 500 daily return series from September 8, 1997 to January 30, 1998. 

Note that a positive return almost always follows a loss. The wavy behavior of returns also 

has a propagation effect on the other markets. This can be seen in Figure 3 which describes 

the DAX 30 daily return series (valued in US dollars) during the same period as the S&P 500 

series. When we observe the highest peaks in the S&P 500 returns, there is an analogous 

peak in the DAX 30 series. This propagation effect is known as cointegration of returns 

series and is a consequence of the globalization because the risk of a country/sector is linked 

to the risk of the other countries/sectors.  

Therefore, it could be important to limit the propagation effect by diversifying risk. As a 

matter of fact, there is considerable evidence that diversification, if opportunely modeled, 

diminishes the probability of big losses. Hence, an adequate risk measure values and 

accounts for the dependence among different investments, sectors, and markets. In particular, 

recall that in order to consider the diversification effect, it is required that a risk measure be a 

convex functional.  

The convexity property only guarantees that diversification could take place once we 

construct a portfolio. In the optimal portfolio selection problem, this property alone is not 

sufficient to find a solution – we need an assumption about the multivariate distribution of 

portfolio items returns. It is through the multivariate modeling that we are able to describe 

the dependence between the returns of the portfolio items. As a matter of fact, investors want 

to diversify the portfolio in order to minimize the risk. Therefore, the diversification makes 

sense only when there exists some values (0,1)a! , such that (1 ) min( ; )
aX a Y X Y

! ! !+ " < , i.e. 

when the risk of a portfolio is lower than the risk of the single investments. Thus, when  

(0,1)a! " : (1 ) min( ; ; (1 ) )
aX a Y X Y X Y

a a! ! ! ! !+ " # + " ,                                                     (2) 

we say that strong diversification holds and it is convenient to diversify the portfolio 

considering both X and Y. However, most of portfolio theory has been developed considering 

both, the mean and the risk of the portfolios. Thus, for most of investors a diversification will 

appear convenient in a mean-risk plane if there exist some values (0,1)a! , such that for a 

given convex measure !  

(1 )

( (1 ) ) ( ) ( )
max ;

aX a Y X Y

E aX a Y E X E Y

! ! !+ "

# $+ "
> % &

' (
.  
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In this case, we say that weak diversification is convenient. Weak diversification is 

generally guaranteed from the existence of some values (0,1)a!  that maximize the ratio 

between the mean and the risk measure. In this case, there exists (0,1)a!  such that  

( ) ( )
(1 )

(1 )(1 )
aX a Y

aX a Y
E aX a Y E X Y

a

!
!

+ "

+ "

#
+ " = "

#
.                                                         (3) 

 

[INSERT HERE FIGURE 4] 

 

Figure 4 provides an example where  weak diversification holds but strong diversification 

does not. Observe that strong diversification implies weak diversification when the financial 

random variables are the gross returns and we assume no short sales plus the limited liability 

hypothesis (i.e. the final wealth is a positive random variable). These definitions of 

diversification serve only to identify when it makes sense to diversify the portfolio. When we 

assume only the convexity property we do not know if it makes sense to diversify a portfolio 

between two investments and we cannot say anything about the optimal portfolio. For 

example, in some cases where we have a portfolio of two linearly dependent returns X and 

Y=bX+c (for opportune b and c), we do not need to diversify the portfolio because one return 

is redundant and in a frictionless market it should be replicated by the other one. Moreover, 

any deviation measure (as the standard deviation) does not present weak diversification when 

two returns X and Y are strongly positive correlated, even if the convexity does not tell us 

anything about the opportunity of  diversifying the portfolio. Another simple example, where 

the convexity holds but weak diversification does not , is shown in Figure 5.  

These different definitions of diversification underline the importance of taking into 

account an investors’s reward and not only risk in the portfolio selection problem. In 

particular, De Giorgi (2005) introduced the first axiomatic definition of reward measures. In 

contrast to the highly restrictive definition proffered by De Giorgi we assume a reward 

measure to be any functional v defined on the space of random variables of interests 

satisfying the following intuitive property:  

 

[INSERT HERE FIGURE 5] 
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a) if any risk averse non-satiable investor prefers X to Y then ( ) ( )v X v Y! , i.e. the functional 

v is isotonic with respect to second stochastic order according to the definition given by De 

Giorgi (2005).  

Considering that in portfolio theory we need only to order the choices for the investors’ 

attitude towards risk, we do not need further axioms to express a choice. However, 

sometimes it could be important to underline that when the wealth under risk is multiplied by 

a positive factor, then reward also must grow with the same proportionality. Thus in some 

cases we require that the functional v be positively homogeneous and v(aX) =a v(X), for all X 

and all a > 0. 

The solution of the optimal portfolio problem is a portfolio that minimizes a given risk 

measure provided that the expected reward is constrained by some minimal value R: 

 

( )

( )
uAwl

Rrrwv

ts

rrw

b
T

b
T

w

!!

"#

#

..

min $

     (4) 

 

The set of all solutions, when varying the value of the constraint, is called the efficient 

frontier. Along the efficient frontier, there is a portfolio that provides the maximum expected 

reward per unit of risk;  that is, this portfolio is a solution to the optimal ratio problem 

 

( )
( )

uAwl

ts

rrw

rrwv

b
T

b
T

w

!!

"

"

..

max

#

     (5) 

 

In both problems (4) and (5), v is a functional measuring the expected reward, the vector 

notation wTr stands for  the returns of a portfolio with composition w = (w1, w2, …, wn), l is a 

vector of lower bounds, A is a matrix,  u is a vector of upper bounds, and rb is some 

benchmark (which could be set equal to zero). The set comprised by the double linear 

inequalities in matrix notation l ≤ Aw ≤ u includes all feasible portfolios. An example of a 

reward-risk ratio is the celebrated Sharpe ratio (see Sharpe (1994)). In this case, the reward 
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measure v is a linear functional and is the expected active portfolio return E(wTr - rb) and the 

risk measure ρ is represented by the standard deviation. Beside the Sharpe ratio, many more 

examples can be obtained by changing the risk and reward functional (see Rachev et al 

(2003) and Biglova et al (2004) and the references therein):  

 

• the STARR ratio: E(wTr - rb)/ETLα(wTr - rb) 

• the Stable ratio: E(wTr - rb)/σrp, where σrp is the portfolio dispersion. Here it is 

assumed that the vector r follows a multivariate sub-Gaussian stable distribution and thus 

σrp= (wTQw)1/2, where Q is the dispersion matrix (see Rachev, Mittnik (2000)).  

• the Farinelli-Tibiletti ratio: (E(max(wTr – t1, 0) γ)) 1/γ / (E(max(t2 - wTr, 0) δ)) 1/δ, where 

t1 and t2 are some thresholds.  

• the Sortino-Satchell ratio: E(wTr - rb) / (E(max(t - wTr, 0) γ)) 1/ γ, γ ≥ 1 

• the Rachev ratio (R-ratio): ETLα(rb - wTr)/ETLβ(wTr - rb) 

• the Generalized Rachev ratio (GR-ratio): ETL(γ, α)(rb - wTr)/ETL(δ, β)(wTr - rb), where 

ETL(γ, α)(X) = (E((max(-X, 0))γ| -X > VaRα(X))) γ* and γ* = min(1, 1/γ).  

• the VaR ratio: VaRα(rb - wTr)/VaRβ(wTr - rb) 

 

In the R- and GR-ratio, the reward functional is non-linear. The R-ratio can be interpreted 

as the ratio between the average (active) profit exceeding a certain threshold and the average 

(active) loss below a certain level. The R-ratio and the GR-ratio have been proposed since 

there is empirical evidence that they are more appropriate for investment decisions in the 

case of heavy-tailed returns (see Biglova et al (2004)).  

Depending on what properties we assume for the reward and the risk measures, we can 

reduce the optimal ratio problem to a simpler one, under some regularity conditions, at the 

price of increasing the dimension. The regularity conditions are basically strict positivity of 

the risk measure in the feasible set and existence of a feasible portfolio with strictly positive 

reward measure. We can consider the following cases (for more details, see Stoyanov et al 

(2005)):  

 

Case 1. The reward functional v is concave and the risk functional ρ is convex. Then the ratio 

is a quasi-concave function and the optimal ratio problem can be solved through a sequence 
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of convex feasibility problems. The sequence of feasibility problem can be obtained using the 

set:  

 

( ) ( )
!
"
#

$$
$%%%

=&
uAwl

rrwtvrrw b
T

b
T

0'  

 

where t is a fixed positive number. For a given t the set X is convex and therefore we have a 

covex feasibility problem. A simple algorithm based on bisection can be devised so that the 

smallest t is found, tmin, for which the set X is non-empty, for more details, see Stoyanov et al 

(2005). If tmin is the solution of the feasibility problem, then 1/tmin is the value of the optimal 

ratio and the portfolios in the set  

 

( ) ( )
!
"
#

$$
$%%%

=&
uAwl

rrwvtrrw b
T

b
T

0min
min

'  

 

are the optimal portfolios of the ratio problem (5).  

 

Case 2: If, in addition to the conditions in Case 1, both functions are positively 

homogeneous, then the optimal ratio problem reduce to a convex programming problem. An 

example of an equivalent convex problem to (5) is 

 

( )
( )

( )

0

1

..

min
,

!

""

!#

#

t

utAxlt

trrxv

ts

trrx

b
T

b
T

tx

$

     (6) 

 

where t is an additional variable. If (xo, to) is a solution to (6), then wo = xo/to is a solution to 

problem (5). There are other connections between problems (5) and (6). Let ρo be the value 

of the objective at the optimal point (xo, to) in problem (6). Then 1/ρo is the value of the 

optimal ratio, i.e. the optimal value of the objective of problem (5). Moreover 1/to is the 
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reward of the optimal portfolio and ρo/to is the risk of the optimal portfolio if the reward 

constraint is satisfied as equality at the optimal solution.  

 

Case 3. If in addition to the conditions in Case 2, the reward function is linear (or 

linearizable), and the risk function is an increasing function of a quadratic form, then the 

optimal portfolio problem reduces to a quadratic programming problem (examples: the 

Sharpe ratio, the Stable ratio). An example of an equivalent problem to the Sharpe ratio 

problem is 

 

( )
( ) ( )

0

1

..

,,min 1
,

!

""

=#

#$#

t

utAxlt

tErErx

ts

xtxt

b
T

T

tx

    (7) 

where Σ1 is the covariance matrix  

 

!
!

"

#

$
$

%

&

'
='

T

br

brb

(

(( 2

1  

 

where Σ is the covariance matrix between portfolio items returns, 2

b
!  is the variance of the 

benchmark portfolio returns, ( ) ( ) ( )( )nbbbbr rrrrrr ,cov,...,,cov,,cov 21=!  is a vector of 

covariances between the benchmark portfolio returns and the returns of the main portfolio 

items. Again, if (xo, to) is a solution to (7), then wo = xo/to is a solution to the version of 

problem (5) in which the reward function is the mathematical expectation and the risk 

function is the standard deviation – the optimal Sharpe ratio problem. The connections 

between problems (7) and (5) are the same as the ones given in Case 2 above as problem (7) 

is just a particular version of problem (6).  

 

Case 4: If the reward function is linear (or linearizable) and the risk function is linearizable, 

then the optimal ratio problem reduces to a linear programming problem. An example of 
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such a problem in which we have the ETL as the risk measure, i.e. the STARR ratio problem, 

is readily obtained from the corresponding version of problem (6) by incorporating the 

linearizations:  

 

( )

Nkdt

utAxlt

Nkdtrrx

tErErx

ts

d
N

k

k
k

b

kT

b
T

N

k

k
dtx

,,2,1,0,0

,,2,1,

1

..

1
min

1
,,,

K

K

=!!

""

="#+#

=#

+ $
=

%

&
%

%

   (8) 

 

where k
r  and k

b
r  k = 1, 2, … N are scenarios for the vector of portfolio items returns and the 

benchmark portfolio returns accordingly, d = (d1, d2, …, dN) is a vector of additional 

variables, θ and t are also additional variables. The relations between (8) and (5) are the same 

as the ones in Case 2. One should bear in mind that in the objective of problem (8) we have a 

linear approximation of the ETL function which is possible due to the available scenarios. 

Thus the objective at the optimal point is an approximation of the optimal ETL. For more 

details about the linearization, see Rockafellar and Uryasev (2002).  

Clearly, as we have noted, the dimension of the optimization problem increases as we  

simplify the problem structure. Certainly, if this trade-off suggests that the computational 

burden actually increases, the reduction may not be considered. For instance the STARR 

ratio problem can be solved either as a linear programming problem or as a convex problem 

or as a sequence of convex feasibility problems depending on which is more practical. 

Unfortunately this classification is not complete in the sense that there are reward-risk ratios 

that are not quasi-concave, such as the R-ratio, the GR-ratio and the Farinelli-Tibiletti ratio. 

One way to solve such a problem is to search for a local solution making use of quasi-

Newton-type techniques.  

It is very important for the optimal ratio problem that the risk measure be strictly positive 

for all feasible portfolios. If there exists a feasible portfolio with a negative risk measure in 

the interior of the feasible set, then the continuity of the risk function in the optimal ratio 
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problem suggests that there will be a feasible portfolio for which the reward-risk ratio 

explodes. The risk function is continuous in an open set, since it is convex. Thus sometimes 

it might be more appropriate to consider linearized versions of the reward-risk ratios, that is 

 

( ) ( )bT
b

T
rrwrrwv !!! "#      (9) 

 

where λ > 0 is a risk aversion parameter.  

For example, the linearized version of the STARR ratio is 

 

E(wTr - rb) – λ ETLα(wTr - rb) 

 

In the special case of λ = 1, if the reward functional is the mathematical expectation and the 

risk measure has the property R1 and is strictly expectation bounded, then expressions of 

type (9) are deviation measures, i.e. they satisfy all axioms Dev 1 through Dev 4 (for more 

details and a proof, see Rockafellar et al (2005)). Strict expectation boundedness means that 

the risk measure satisfies all properties R1, R2, and R3 (not necessarily R4) and also ρ(X) > 

E(-X) for all non-constant X.  

 

Certainly an optimization problem in which we have a linearized reward-risk ratio in the 

objective with a pre-selected value for λ is equivalent to problem (4) with a suitable choice of 

the limit R. Objectives of type (9) can also be regarded as utility functions with a special 

structure. The corresponding optimization problems are reducible to convex ones and it is not 

necessary to impose assumptions about the positivity of the risk function.  

 

4. A PARALLEL BETWEEN UNCERTAINTY MEASURES AND THE THEORY OF 

PROBABILITY METRICS 

 

Let us consider the problem of benchmark tracking. A common formulation of the 

problem is  
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( )bT

w

rrw !
"#
$min  

 

where σ is the standard deviation and X is the set of feasible portfolios. The measure shown 

in the objective function is called the tracking error. It is the standard deviation of active 

returns. In essence, by solving this problem we are trying to stay “close” to the benchmark 

while satisfying the constraints where the degree of proximity is calculated making use of the 

standard deviation. Here the benchmark rb can be either stochastic or non-stochastic.  

Certainly this problem can be reformulated using any uncertainty measure in the 

objective. Even more generally, this problem can be considered from the point of view of the 

theory of probability metrics, the rationale being that, under the most general conditions, the 

distance between two random variables can only be defined via a probability distance.  

Let Λ = Λ(R) be the set of all real-valued random variables on a given probability space 

(Ω, F, Pr). A probability distance µ with a parameter K is a functional defined on the space of 

all joint probability distributions PrX,Y generated by the pairs of random variables !"YX ,  

satisfying 

a) (identity) Pr(X = Y) = 1  µ(X, Y) = 0 

b) (symmetry) µ(X, Y) = µ(Y, X) 

c) (triangle inequality) µ(X, Z) ≤ K(µ(X, Y) + µ(Y, Z)) for all X, Y, Z in Λ 

 

If the parameter K is equal to 1, then the probability distance is called a probability metric in 

line with the usual triangle inequality defining a metric.  

Generally, there are three types of probability distances –primary, simple and compound– 

depending on certain modifications of the identity property – whether µ(X, Y) = 0 implies 

that only certain moment characteristics of X and Y agree or that only the cumulative 

distribution functions of X and Y coincide or that Pr(X = Y) = 1. For the purpose of 

restatement of the benchmark tracking problem, we shall first define the three types and give 

some examples.  

In order to provide a formal definition of a primary probability distance, another notation 

is required. Let h be a mapping defined on Λ with values in RJ, that is we associate a vector 

of numbers with a random variable. The vector of numbers could be interpreted as a set of 
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some characteristics of the random variable. An example of such a mapping is: X  (EX, σX) 

where the first element is the mathematical expectation and the second is the standard 

deviation. In particular, if the random variable is interpreted as investment returns, then the 

first element is the expected return and the second is a measure of the uncertainty. Similarly, 

we can extend the vector to include any (finite) number of characteristics among which we 

can have measures of risk, uncertainty, reward measures, etc.  

Furthermore, the mapping h induces a partition of Λ into classes of equivalence. That is, 

two random variables X and Y are regarded as equivalent, X ~ Y, if their corresponding 

characteristics agree:  

 

X ~ Y   h(X) = h(Y) 

 

Since the probability distance is defined on the space of pairs of random variables, we have 

to translate the equivalence into the case of pairs of random variables. Two sets of pairs (X1, 

Y1) and (X2, Y2) are said to be equivalent if there is equivalence on an element-by-element 

basis, i.e. h(X1) = h(X2) and h(Y1) = h(Y2).  

Let µ be a probability distance such that µ is constant on the equivalence classes induced 

by the mapping h:  

 

(X1, Y1) ~ (X2, Y2)  µ(X1, Y1) = µ(X2, Y2) 

 

Then µ is called primary probability distance. Examples of primary probability distances 

include:  

 

• µ(X, Y) = |EX – EY|, here h is the mapping X  EX.  

• µ(X, Y) = |(E|X|p) 1/p – (E|Y|p) 1/p |, p ≥ 1; here h is the mapping X  (E|X|p) 1/p.  

• µ(X, Y) = |h1(X) – h1(Y)| + | h2(X) – h2(Y)|, here h is the mapping X  (h1(X), h2(X)) 

 

As we have remarked, a simple probability distance is such that µ(X, Y) = 0 implies that  

FX(t) = FY(t) where FX(t) = P(X < t) is the cumulative probability distribution function. 

Examples of simple probability distances include 
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• µ(X, Y) = supt|FX(t) – FY(t)| which is also known as the uniform (or Kolmogorov) 

metric 

• ( ) ( ) ( )! "=

R

YX dttFtFYX ,µ , which is also known as the Kantorovich metric 

• ( ) ( ) ( )
p

R

p
YX dttFtFYX

1

,

!
!
!

"

#

$
$
$

%

&

'= (µ , p ≥ 1, which is also known as the class of Lp 

metrics 

 

A compound probability distance is such that µ(X, Y) = 0 implies Pr(X = Y) = 1. 

Examples include:  

 

• µ(X, Y) = (E|X – Y|p) 1/p.  

• µ(X, Y) = inf{ε > 0: Pr(|X – Y| > ε) < ε} and ( )
YX

YX
EYX

!+

!
=
1

,µ , both are also 

known as the Ky Fan metrics.  

 

For many more examples of the various types of probability distances and approaches to 

construct them, see Rachev (1991).  

The benchmark tracking problem that we started with can be reformulated in the 

following way:  

 

( )bT

w

rrw ,min µ
!"

 

 

where µ is some probability distance. The second argument in the probability distance does 

not change with w; hence in solving the problem we intend to “approach” the benchmark, but 

changing the type the probability distance changes the perspective. If we would like only 

certain characteristics of our portfolio to be as close as possible to the corresponding 

characteristics of the benchmark, we can use a primary probability distance. When the 
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objective for our portfolio is to mimic the entire distribution of the benchmark, not just some 

characteristics of it, then we should use a simple probability distance. Finally, if we would 

like to replicate the benchmark exactly, then we should use a compound probability distance.  

In the initial benchmark tracking problem, we have a compound probability distance as 

the objective function because the standard deviation is just one example of an Lp metric in 

the space of random variables with finite variance. Therefore, relating the benchmark 

tracking problem to the theory of probability distances represents a significant extension of 

the initial problem.  

In addition, it should be noted that, some risk measures and reward-risk ratios have 

properties similar to some probability metrics. For example, let us consider a version of the 

GR-ratio in which γ = δ 

 

GR γ = ETL(γ, α)(rb - wTr)/ETL(γ, β)(wTr - rb) 

 

where ETL(γ, α)(X) = (E((max(-X, 0))γ| -X > VaRα(X))) γ* and γ* = min(1, 1/γ). Letting γ 

approach zero and infinity, at the limit we obtain expressions close to the corresponding 

expressions of the Lp metric. That is, as γ  ∞ we obtain  

 

GR ∞ = ETL(∞, α)(rb - wTr)/ETL(∞, β)(wTr - rb) 

 

where ETL(∞, α)(X) = ess sup(max(-X, 0)| -X > VaRα(X)). Here ess sup stands for the essential 

supremum. At the other limit, as γ  0,  

 

GR 0 = ETL(0, α)(rb - wTr)/ETL(0, β)(wTr - rb) 

 

where ETL(0, α)(X) = Pr({-X > 0} ∩ {-X > VaRα(X)}), i.e. if VaRα(X) > 0, then ETL(0, α)(X) = α 

and if VaRα(X) ≤ 0, then ETL(0, α)(X) = Pr(-X > 0).  

The parallels considered suggest that there is an interesting relationship between the well-

developed theory of probability metrics and the theory of optimal portfolio choice. This 

interplay might throw more light on the relationship between different classes of risk 

measures and/or uncertainty measures. Moreover, it might suggest an approach to select an 
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ideal risk measure or an ideal performance ratio for a particular portfolio choice problem just 

as there is an ideal probability metric for a given approximation problem in probability 

theory. For this reason, we think that the established relationship should be extended and 

better studied in future research.  

 

5. DOWNSIDE RISK AND AGGREGATED RISK 

 

We will use the following empirical example to evaluate and qualify several other aspects 

of investor preferences. Let us consider the portfolio selection among 13 international 

indexes (DAX30, DAX100, CAC 40, FTSE all share, FTSE 100, FTSE Actuaries 350, 

Nikkei 300 weighted average, Nikkei 300 simple average, Nikkei 500, Corn no.2, Coffee 

Brazilian, Dow Jones Industrial, and S&P 500) for the period 1/4/1995-7/18/1997 all 

converted into U.S. dollars. Thus, the vector of returns is given by 1 13' [ ,..., ]r r r=  and vector 

of wealth is 1 13' [ ,..., ]w w w= . In addition, we assume the presence of a riskless asset with a 

daily return of 0 0.0002r =  (six-month return 0 0.024r = ).  

Considering daily data for this period, we first value two “optimal portfolios” when no 

short sales are allowed (i.e., 0
i
w ! ) and it is not possible to invest more than 25% (i.e. 

0.25
i
w ! ) of the initial capital (that we assume to be equal to 1) in a single asset: 

a) The first portfolio is the global minimum variance portfolio (that is a strong risk-

averse choice).  

b) The second portfolio maximizes the Rachev ratio  

ETL30%(r0 - wTr)/ETL10%(wTr - r0)                                                                               (10) 

 

Thus, the first portfolio minimizes the uncertainty and, as intuition suggests, it presents 

the highest level of risk aversion. With the second portfolio we do not minimize the 

uncertainty, but we take into account downside risk (see, among others, Sortino and Satchell 

(2001) and Biglova et al (2004)). As a matter of fact, the risk measure expectd shortfall 

ETL10%(wTr - r0) considers the portfolio downside risk, and the reward measure      

ETL30%(r0-wTr) takes into consideration in a different way possible profits. Therefore, the 
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second portfolio maximizes the excess return considering the greatest profits and at the same 

time minimizing and controlling the biggest losses. 

Alternatively, we compute two other portfolios with the same restrictions of the previous 

ones (i.e., 0 0.25
i
w! ! ), but assuming six months of returns (120 days of returns) with daily 

frequency for the same time period. The two portfolios are again the global minimum 

variance portfolio and the portfolio that the maximizes the Rachev ratio given by (10).  

Figure 6 proposes an ex-post comparison during the period 2/3/1997-7/18/1997 (120 

days) of the final wealth that an investor could obtain if on 1/31/1997 he/she invests in one of 

the four portfolios. In particular, Series dayminvar and daymaxRR describe respectively the 

final wealth behavior of the two daily optimal return portfolios (global minimum variance 

and the portfolio that maximize the Rachev Ratio given by (10)), while  Series monthminvar 

and monthmaxRR represent respectively the final wealth graph of the two six-month optimal 

return portfolios. Figure 6 indicates and emphasizes the differences among the four portfolios 

which are coherent with the different choices made. As a matter of fact, the minimum 

variance portfolios (Series dayminvar and monthminvar) generally present a lower final 

wealth than the maximum ratio portfolios. In addition, we observe that the final wealth 

obtained with optimal portfolios based on six-month returns is generally higher than that 

obtained with optimal portfolios valued on daily returns. Therefore the investor’s temporal 

horizon and the relative aggregated risk influence his/her future choices.  

 [INSERT HERE FIGURE 6] 

 

[INSERT HERE TABLE 1] 

 

This behavior is confirmed by the results reported in Table 1, which shows the ex-ante 

and ex-post VaR and ETL (for two confidence levels, 99% and 95%) based on daily returns 

of the four optimal portfolios. The ex-ante analysis clearly indicates that the minimum 

variance portfolios (portfolios 1 and 3) present a more conservative and risk-averse position 

than portfolios that maximize the Rachev ratio given by (10) (respectively portfolios 2 and 

4). In contrast, the ex-post analysis as expected shows the differences between the first two 

and the last two portfolios. Therefore, Figure 6 and Table 1 not only describe strategies 

derived from different risk-averse positions, but they emphasize the importance of 
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aggregated risk in investors’ preferences. As a matter of fact, the risk portfolio on one day is 

generally different from the risk portfolio based on six months, and the forecasting analysis 

has to take into account the aggregated risk possibly considering also its heteroscedasticity.  

Moreover, the following three questions are raised by this example:  

1) What are the best risk measures: the best ratios and the best reward measures? 

2) Which reward/risk takes into account downside risk and offer flexibility with respect 

to risk aversion? 

3) What different roles are covered by reward measures and ratios?  

In addition, we want to better understand the impact of transaction costs on portfolio 

dynamic strategies. 

 

6. DYNAMIC STRATEGIES, TRANSACTION COSTS, AND COMPUTATIONAL 

COMPLEXITY   

Let us consider the portfolio selection among a risk-free asset with monthly return 

0
0.004r =  and the same 13 international indexes used in the previous example based on the 

period 1/4/1995-1/30/1998 all converted into U.S. dollars. We assume that investors 

recalibrate the portfolio monthly considering that no short sales are allowed and it is not 

possible to invest in a single asset more than 25% of the initial capital (that we assume to be 

equal to 1 in data 2/3/1997). Hence, we consider dynamic strategies with and without 

constant and proportional transaction costs of 0.5%. Then, we compare dynamic portfolio 

strategies with and without constant proportional transaction costs. In particular we assume 

that after k months the investor chooses the portfolio composition ( ) ( ),1 ( ),13,..., 'k k kx x x! "= # $  

that maximizes the Sharpe ratio. That is, it solves the problem  

( )

( )( ) 2

( ),

13

( ),
1

( ( ))

0 0.25

1

kx

k i

k i
i

E X
max subject to

E X E X

x

x
=

!

" "

=#
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where 
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[ , ..., ] '
k kk

r r r=  is 

the k-th ex-post monthly observation of return vector r. In addition, we assume that the 

variance follows the exponential weighted model 1/ / 1 (1 ) ( )t t t t tf X! "! "+ #= + #  with 

0.94! =  (as suggested by RiskMetrics approach in Longerstaey, and Zangari (1996)). Then, 

the investor’s wealth after the k months is given by 
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[INSERT HERE FIGURE 7] 

 

Figure 7 shows the final wealth process with and without transaction costs during the period 

2/3/1997-1/30/98 when the Asian market crisis began. After 12 recalibrations, the difference 

between the final wealth obtained without transaction costs (series 1) and with transaction 

costs (series 2) was about 2%. Therefore, it does not seem that the transaction costs have a 

significant impact in portfolio choice. However, the portfolio composition in some cases 

changes significantly and we have to expect that the impact of transaction costs still depends 

on the optimization problem we are solving. In addition, when the investor’s attitude toward 

risk is riskier, transaction costs have generally a more relevant impact in the choices.  

As we have emphasized in Section 3, the computational complexity of the problem is 

another important aspect. In particular, this is the case if we assess dynamic strategies. Thus 

the complexity of the optimization problem could be much higher when we solve reward-risk 

problems with many assets and further simplifications are necessary to solve large portfolio 

problems.  
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As proposed by Balzer (2001), we could consider other desirable properties of a risk measure 

such as non-linearity and distributional modeling of risk. Next, we briefly summarize these 

properties.  

 

7. NON-LINEARITY AND DISTRIBUTIONAL MODELING 

 

According to Balzer’s definition, the non-linearity of risk is related to an investor’s 

attitude, which is generally considered non-linear with respect to different sources of risk 

(see Balzer (2001)). For example, suppose that investors employ the expected shortfall as a 

risk measure. Let us consider two investments, the returns of which have equal expected 

shortfall ETL5%. For example, suppose that for the first investment the future losses are -2 

with a probability 0.025 and -1 with a probability 0.025. For the second investment, the 

future losses are -30 with a probability 0.002 and -0.3125 with a probability 0.048. Thus, one 

arises from a high probability of some small shortfalls (the first investment), and the other, a 

low probability of a very large shortfall (the second investment). Considering that the two 

investments have the same expected shortfall ETL5%, investors that assume this risk measure 

will be indifferent between the two investments. However, evidence reported by Olsen 

(1997) suggests that most investors perceive a low probability of a large loss to be far more 

risky than a high probability of a small loss. Therefore, investors perceive risk to be non-

linear. This simple counter-example shows that a unique risk measure (even if coherent) 

cannot be sufficient to describe investors’ behavioral tendencies.  

The previous example also underline that a risk measure does not summarize all the 

information relevant to the risk. In order to overcome this incompleteness of risk measures, 

further parameters that characterize the investor’s attitude towards risk are used and 

analyzed, such as skewness and the kurtosis. Typically, a measure of an investment’s 

skewness is introduced to take into account the an investor’s preferences. Generally 

skewness is parameterized with a non-linear measure that partially overcomes and solves the 

empirical misspecification of some linear factor models. For example, let us consider the 

evolution of a unit of random wealth, considering two admissible gross returns F and G (see 

Figure 8). 
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[INSERT HERE FIGURE 8] 
 
 

The gross return 1( , , )F S! " # $%  (series 1) is drawn from an ! -stable distribution with 

index of stability ! =1.5, dispersion 0.008, skewness parameter 
1
! =-1 and daily mean equal 

to 1.0001 (see Rachev and Mittnik (2000) and Samorodnitsky and Taqqu (1994) about stable 

modeling of asset returns). The gross return 2( , , )G S! " # $%  (series 2) is ! -stable 

distributed with the same parameters except for  skewness, that is 
2
!  = 1. From Figure 8, 

intuition suggests that gross return G is preferable to F even if the two gross returns present 

the same mean, dispersion, and index of stability (these three parameters could be used to 

characterize the behavior of symmetric returns).  

This example makes clear that (1) a reward measure and a risk measure are still 

insufficient to describe the complexity of investor’s choices (see, among others, Ortobelli et 

al (2005)) and (2) investors generally prefer positive skewness. In addition, many other 

distributional parameters could have an important impact in the investor choices.  

In order to consider the best approximation of historical return series, many statistical 

studies have emphasized the advantage of an asymptotic approximation (see Rachev and 

Mittnik (2000)). In particular, stable modeling of financial variables permit the correct 

identification of investor behavior. It is well known that daily asset returns r have 

distributions whose tails are heavier than the Gaussian law, that is, for large x 

( ) ( )P r x x L x
!"> �                                                                                                     (11) 

where 0<α<2 and ( )L x  is a slowly varying function at infinity. This tail condition implies 

that the returns are in the domain of attraction of a stable law. That is, given a sequence 

{ }( )i
i N

r

!
of  independent and identically distributed (i.i.d.) observations on r, then, there exist 

a sequence of positive real values { }i i Nd
!

 and a sequence of real values { }i i Na
!

 such that, 

as n→+∞ 

( )

1

1 n
di

n
n i

r a X
d

=

+ !!"#                                                                                                        (12) 
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where " d
!!" " points out the convergence in the distribution, ( , , )X S! " # $%  is an α-stable 

random variable. This convergence result is a consequence of the Stable Central Limit 

Theorem (SCLT) for normalized sums of i.i.d. random variables (see Samorodnitsky and 

Taqqu (1994) and Rachev and Mittnik (2000)) and it is the main justification of stable 

modeling in finance and econometrics. In particular, SCLT permits one to characterize the 

skewness and kurtosis of investment returns in a statistically proper way. Moreover, using 

the maximum likelihood method to estimate the stable parameters, we could also obtain 

appropriate confidence intervals of these parameters. In addition, if ( , , )X S! " # $%  is a 

stable standardized distribution, then, when x tends to infinity, 

( ) (1 )P X x C x
! !

! " # $± > ±�                                                                                        (13) 

where ( )
sin

2
C!

! "!

"

# $ %
= & '

( )
. Thus, returning back to our previous example, we observe that 

for large positive x:   

( ) ( )( ) ( )P return G x P return F x< ! " < !  and ( ) ( )( ) ( )P return G x P return F x> ! > .         

This relation provides theoretical justification of what intuition suggested in the previous 

example. As a matter of fact, gross return G presents lower probability of big losses and a 

larger probability of great earnings than gross return F, even if the two alternative returns 

present the same dispersion, mean, and index of stability. This is another typical way to 

consider multi-parameter dependence of portfolio choices. Thus, modern portfolio theory has 

to answer many more questions regarding risk measures. 

 

8. CONCLUDING REMARKS  

 

Using several examples, in this paper we have described some intuitive characteristics of 

risk measures. Although, we could not claim that this is an exhaustive analysis, the principal 

focus of the paper is identifying the intrinsic properties of risk that all investors have to take 

into account. In particular, the examples presented justify the following desirable features of 

investment risk: 

• Asymmetry of risk 

• Relativity of risk  
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• Multidimensionality of risk  

• Inter-temporal dependence. 

• Non-linearity and distributional modeling 

 

In addition, we demonstrate how any investment choice has to take into account: 

• Stochastic dominance order, correlation, and diversification among different 

sources of risk  

• Differences and common features between risk and uncertainty 

• Impact of downside risk, aggregated risk, reward measures, proper risk measures, 

and risk aversion in investor’s choices.  

• Impact of dynamic strategies, transaction costs and computational complexity. 

 

In summary, some aspects of risk are embedded in the risk measure and other aspects are 

incorporated through proper modeling of the assets returns distribution. For example the 

axioms behind the coherent risk measures demonstrate how some characteristics of risk can 

be implanted in the definition of a risk measure, while other aspects such as  diversification, 

are possible to account for only if the return distribution of the assets is modeled in a realistic 

way. Therefore it is the combination of a risk measure and a stochastic model that investment 

decisions should be based on.  

In addition, we considered the benchmark tracking problem and modified the deviation 

measure in the objective function to be a probability distance. The new problem is more 

flexible and contains the traditional problem as a special example and is a significant 

extension. We also mention a parallel between reward-risk ratios and probability metrics, 

suggesting that such relationships be better studied in future research as they might imply 

interesting connections between classes of risk measures or propose an approach to select an 

ideal risk measure or performance ratio for a given portfolio choice problem.  
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EX-POST ANALYSIS 

 
Optimal portfolios  
on daily data 

Optimal portfolios  
on six months data 

 Portfolio 1  Portfolio 2 Portfolio 3  Portfolio 4 
final wealth 1.1754827 1.25018179 1.230095955 1.26919731 
VaR1% 0.013750795 0.012791431 0.014087966 0.015202632 
VaR5% 0.00981716 0.008574332 0.008925009 0.00946738 
ETL1% 0.014123377 0.01401933 0.014186846 0.01761125 
ETL5% 0.012115733 0.01167852 0.012251441 0.01431338 

EX-ANTE ANALYSIS 

 
Optimal portfolios  
on daily data 

Optimal portfolios  
on six months data 

 Portfolio 1  Portfolio 2 Portfolio 3  Portfolio 4 
VaR1% 0.011551536 0.01455467 0.013398256 0.013954627 
VaR5% 0.006307627 0.00848358 0.009508602 0.009709126 
ETL1% 0.014491413 0.015143569 0.016963572 0.017068158 
ETL5% 0.009442397 0.01085136 0.012251953 0.012705347 

Table 1. Ex-ante and ex-post valuation of the four portfolio risk positions. 
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Figure 1 S&P 500 return time series from 1/4/1995 to  

1/30/1998. 
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Figure 2 S&P 500 return time series from 9/8/1997 to  

1/30/1998. 



 

 

35 

 
 
 
 
 
 

 
 

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Time

D
a
il
y
 r

e
tu

rn
s
 o

f 
D

A
X

 3
0

 

Figure 3 DAX 30 return time series from 9/8/1997 to  

1/30/1998. 
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Figure 4. Graphical example where weak 
diversification holds but the strong 
diversification does not holds.  
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Figure 5. Graphical example where convexity 
holds but the weak diversification does not holds.  
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Figure 6 Ex-post comparison among the final wealth of the four 

optimal portfolios obtained  with daily returns (Series 

dayminvar and daymaxRR) and six months returns and daily 

frequency  (Series monthminvar and monthmaxRR).  
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Figure 7. Ex-post comparison between the final wealth of 
the optimal dynamic strategies obtained maximizing 
monthly Sharpe ratio with (Series 2) and without 
transaction costs (Series 1). 
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Figure 8. Comparison among simulated data with stable 
asymmetric distributions. 


