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1. Introduction

Returns of financial assets exhibit skewness and leptokurtosis revealing risk aversion and
the existence of extreme events. To take these circumstances into account, the family of
α-stable distributions has been heavily discussed and applied throughout the past years
(e.g. Rachev and Mittnik (2000)). In addition to location and shift parameters α-stable
distributions provide the ability to adjust for skewness and kurtosis. But with these ad-
vantages new challenges come along. With the exception of the gaussian distribution, one
crucial drawback of the α-stable distributions in many applications is their generally infi-
nite variance. Moreover, parameterizations that feature high excess kurtosis (i.e. small α)
often come with infinite expectation. Both is due to the fact that an α-stable distribution’s
density function decays only polynomially.

As introduced by Menn and Rachev (2009), and applied in Schmitz et al. (2010) smoothly
truncated α-stable (STS) distributions can be used to cope with the non-existence of
moments of order p > α. STS distributions are obtained by truncating the heavy tails
of an α-stable density function and replacing them by the thin tails of two appropriately
chosen gaussian distributions.

A more recent approach is to temper the Lévy measure ν of a symmetric α-stable distribu-
tion, i.e. by multiplying it with a suitable function that decreases in the absolute value of
the argument of the Lévy measure. Thereby, large jumps occur less frequently than under
the stable assumption (we will discuss this in more detail below). Following the words
of Rosinski (2007), the properties of the resulting class of tempered stable distributions,
respectively a tempered stable process can be described as follows: ”In a short time frame
it is close to an α-stable process, while in a long time frame it approximates a Brownian
motion”. Based on the work of Schmitz et al. (2010) we will apply heavy tailed distri-
butions to the pricing of synthetic CDOs and assess the impact of a tighter dependence
structure. A calibration of iTraxx Europe Series 7 on-the-run CDO tranche spreads will
be done in the second part of this work to challenge the models.
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2. Normal Tempered Stable Process

2.1. Univariate Definition

There are many ways to introduce the Normal Tempered Stable (NTS) distribution:
Rachev et al. (2011) provide the tempering function, Kim et al. (2008) apply exponential
tilting to the symmetric Modified Tempered Stable distribution, whereas we will stick to
Rachev et al. (2011) and Barndorff-Nielsen and Levendorskii (2001) and present the NTS
distribution as the building block of a time-changed Brownian motion. The underlying
idea behind subordination is as follows: Instead of evaluating a stochastic process Y 1

t at
the real time t (i.e. t is non-stochastic) we will introduce a random variable Tt and define
a new process Y 2

t = Y 1
Tt

. This concept is referred to as subordination and the random
time Tt is called subordinator of the process (in many applications Tt is called trading or
business time).

2.1.1. Classical Tempered Stable subordinator

Following the notation used in Rachev et al. (2011), the support of the α-stable distribution
with β = 1, µ = 0 and 0 < α < 1 is the positive real line and hence the corresponding α-
stable process qualifies as a subordinator (Nolan (2012)). If we multiply the Lévy measure
of the α-stable subordinator by the tempering function of the CTS we end up with the
following expression:

ν(dx) =
Ce−θx

xα/2+1
1x>0.

Setting γ =
∫ 1

0 xν(dx) we ensure that the process has only finite variation and a positive
drift. Moreover, if we set C = 1

Γ(1−α
2

)θ
α
2 −1 then

E[Tt] = g′(0) = tCΓ(1− α

2
)θ

α
2
−1 = t

holds, i.e. under the expectation operator Tt will equal real time. We will call the resulting
process the Classical Tempered Stable (CTS) subordinator with parameters (α, θ). Its
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2.2. Equivalent representation and convolution 3

characteristic function is given by

φTt(u) = exp((−2θ1−α
2

α
((θ − iu)

α
2 − θ

α
2 ))t).

2.1.2. Normal Tempered Stable distribution

Let µ, β ∈ R, γ > 0, define Bt as a Brownian Motion and Tt as a CTS subordinator with
parameters (α, θ). Then, we can define the following stochastic process as the Normal
Tempered Stable Process:

Xt = µt+ β(Tt − t) + γBTt . (2.1)

The characteristic function of Xt is given by:

φXt(u) = eiu(µ−β)tφTt(ΨN(β,γ2)) = exp(iu(µ−β)t−2θ1−α
2

α
((θ−iβu+

γ2u2

2
)
α
2−θ

α
2 )t). (2.2)

The random variable Xt has an expected value E[Xt] = µt and variance var[Xt] = γ2t+
β2(2−α

2θ )t. The latter is simply the total variance of all summands in equation 2.1 and thus,
Tt and BTt are uncorrelated. Although there is no linear relationship between Tt and BTt ,
still, there exist higher order dependencies. Apparently, the realisation of Tt determines
the variance of BTt . Now, for the practical application in the remainder a standardisation
- meaning that E[Xt] = 0 and var[Xt] = t hold - would be useful. From the above we
deduce that this will only be the case if µ = 0 and γ =

√
1− β2(2−α

2θ ). To avoid any

negative number below the radical sign |β| <
√

( 2θ
2−α) needs to be satisfied. After all we

arrive at the desired definition of a univariate NTS random variable:

Definition 2.1.1. X1 follows a Normal Tempered Stable distribution iif Xt is a Normal
Tempered Stable process with parameters (α, θ, µ, β, γ), where α ∈ (0, 2), θ, γ > 0 and
β, µ ∈ R.

2.2. Equivalent representation and convolution

So far, we have introduced the NTS distribution following the Barndorff-Nielsen represen-
tation. A second equivalent representation can be found in Rachev et al. (2011):

φNTS(u; α̃, C, λ, b,m)

= exp(ium− iu2−
α̃−1

2
√
πCΓ(1− α̃

2
)b(λ2 − b2)

α̃
2
−1 . . . (2.3)

. . .+ 2−
α̃+1

2 C
√
πΓ(− α̃

2
)((λ2 − (b+ iu)2)

α̃
2 − (λ2 − b2)

α̃
2 )),

with α̃ ∈ (0, 2), C, λ > 0, |b| < λ, and m ∈ R. Both representations are equal if the
following equalities hold:

α̃ = α (2.4)

3



4 2. Normal Tempered Stable Process

λ =

√
2θ
γ2

+ b2 (2.5)

b =
β

γ2
(2.6)

C =
√

2γα
√
πΓ(1− α

2 )θ
α
2
−1

(2.7)

m = µ (2.8)

We obtain the standardized NTS distribution if we set m = 0 and

C = 2
α̃+1

2 (
√
πΓ(− α̃

2
)α̃(λ2 − b2)

α̃
2
−2(α̃b2 − λ2 − b2))−1.

We conclude this subsection by outlining the convolution of independent NTS random
variables as well as the linear transformation of NTS distributed random variables. Under
the representation introduced by Rachev et al. (2011) the following rules apply: Given two
independent random variables X ∼ NTS(α̃, λ, b, C1,m1) and Y ∼ NTS(α̃, λ, b, C2,m2),
then their sum will follow the NTS distribution with the following parameters:

X + Y ∼ NTS(α̃, λ, b, C1 + C2,m1 +m2). (2.9)

Further if k1, k2 ∈ R

k1 + k2X ∼ NTS(α̃,
λ

b
,
b

k2
, kα2C, k2m+ k1) (2.10)

holds. Under the Barndorff-Nielsen representation the convolution of two independent
NTS random variables is a little less convenient. Given X ∼ NTS(α, β1, γ1, θ1, µ1) and
Y ∼ NTS(α, β2, γ2, θ2, µ2), X + Y will only follow the NTS distribution if

γ2
2

γ2
1

=
θ2

θ1
=
β2

β1
.

In this case
X + Y ∼ NTS(α, β1 + β2, θ1 + θ2, γ1+2, µ1 + µ2), (2.11)

where
γ1+2 = (θ1 + θ2)

1
2
− 1
α (

γα1

θ
α
2
−1

1

+
γα2

θ
α
2
−1

2

)
1
α .

Finally, if k1, k2 ∈ R
k1 + k2X ∼ NTS(α, k2β, θ, k2γ, k2µ)

holds.
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2.3. Semi-closed pdf and multivariate definition 5

2.3. Semi-closed pdf and multivariate definition

Let X be a NTS distributed random variable. Then we know from above that the following
equality holds:

X = µ+ β(T − 1) + γBT = µ+ β(T − 1) + γ
√
Tε,

with ε ∼ N(0, 1) and E[T ] = t = 1. The cumulative density function of X is then given
by:

FX(z) = P (X < z) =
∫ ∞

0

∫ z

−∞

1√
2πγ2s

e
− (x−µ−β(s−1))2

2γ2s dxfT (s)ds, (2.12)

where fT denotes the density function of the random variable T . The probability density
function fT can be efficiently obtained by the use of the inverse Fourier transform (see
Scherer et al. (2010))1 :

fT (t) =
1

2π

∫ ∞
−∞

e−iutφT (u)du, (2.14)

For the multivariate case we distinguish between two different configurations. We will
first discuss the case where several random variables are driven by the same subordinator
and subsequently when each random variable is time-changed by its own subordinator.
Assume first that the random variables are driven by the same subordinator:

Xi = µi + βi(T − 1) + γi
√
Tεi,

with i ∈ {1, 2, . . . , d} and Corr(εi, εj) = ρi,j . Then the linear correlation coefficient be-
tween Xi and Xj is given by

Cov[Xi, Xj ] = βiβj
(2− α)

2θ
+ γiγjρi,j .

We note that conditional on T , the covariance between Xi and Xj would be γiγjρi,j .
However, as T affects the mean and variance of the conditional (Gaussian) random variable
the covariance increases by βiβj

(2−α)
2θ in the unconditional case. Hence, we can calculate

the cumulative distribution function for the multivariate NTS distribution as

F (a1, . . . , ad) = P (X1 < a1, . . . , Xd < ad) =
∫ ∞

0
G(t)fT1dt, (2.15)

where

G(t) =
∫ a1−µ1−β1(t−1)

γ1
√
t

−∞
. . .

∫ ad−µd−βd(t−1)

γd
√
t

−∞
fε(x1, . . . , xd)dx1 . . . dxd. (2.16)

1Please note that one could directly determine FX by the following equality given in Rachev et al. (2011):

FX(x) =
exρ

π
<(

Z ∞
0

e
−ixuφX (u+iρ)

ρ−iu du). (2.13)

This will only hold if X is an infinitely divisible random variable and if there is a ρ > 0 such that
|φX(u+ iρ)| <∞ for all u ∈ R (see Rachev et al. (2011), p.138). However, this becomes less attractive
in the multivariate case where the FFT grid grows polynomial but still needs to exhibit a fine structure
to maintain accuracy.

5



6 2. Normal Tempered Stable Process

And the probability density function can written as

fX(x) =
∫ ∞

0

1

(2π)
d
2 |Σ(t)|

1
2

exp(−1
2

(x−m(t))′(Σ(t))−1(x−m(t)))fT1dt, (2.17)

where x = (x1, . . . , xd), m(t) = µ+β(t−1) = {µ1+β1(t−1), . . . , µd+βd(t−1)} and Σ(t) =
[γkγlρk,lt]k,l∈{1,...,d}. If we now consider the case where each random variable is driven by
its own subordinator and assume that all subordinators are mutually independent, e.g.

Xi = µi + βi(Ti − 1) + γi
√
Tiεi,

with i ∈ {1, 2, . . . , d} and Corr(εi, εj) = ρi,j , then the covariance between Xi and Xj is:

Cov[Xi, Xj ] = γiγjE[
√
Ti]E[

√
Tj ]ρi,j .

The multivariate cumulative density function can then be written as:

F (a1, . . . , ad) = P (X1 < a1, . . . , Xd < ad) (2.18)

=
∫ ∞

0
. . .

∫ ∞
0

Φ2(
a1 − µ1 − β1(t1 − 1)

γ1
√
t1

, . . . ,
ad − µd − βd(td − 1)

γd
√
td

,Σ)fT1 . . . fTddt1 . . . dtd,

where Σ = [ρi,j ]i,j∈{1,...,d}. At the end of this paper we have plotted the contour of the
pdf of a stdNTS distributed random variable with a common subordinator (figure 4.1.B))
and mutually independent subordinators (Figure 4.1.A)). Figure 4.2 shows the difference
between the two pdfs (A - B). Clearly, in the case of a common subordinator more prob-
ability mass is located in areas where both realizations of the marginal random variables
exhibit similar values in absolute terms. This is hardly surprising as both marginals are
simulaneously time-changed by the same subordinator, i.e. their variance is always identi-
cal. Besides, figure 4.3 reveals that the tendency for joint extreme events remains high in
both cases. For reasons of illustration we have added the lower tail dependence coefficient
λL for the bivarate gaussian distribution. In contrast to the gaussian copula the lower tail
dependence coefficient2 of the NTS copula remains significant in both cases.

2

λL = lim
u→0

P (X ≤ F−1
X (u)|Y ≤ F−1

Y (u)) (2.19)

6



3. Synthetic Credit Default Obligations

Assume a portfolio of n equally weighted CDS contracts. Then the percentage loss at time
t is given by

Lt =
1−R
n

Nt, (3.1)

where R describes the deterministic recovery rate that is assumed to be the same for all
single names and

Nt =
n∑
i=1

1{τi≤t} (3.2)

counts the number of defaults that have occured until t. For simplicity reasons we as-
sume that compensation payments are only settled on one of the premium payment days
T1, . . . , Tm and that the portfolio loss has been ”tranched” into several disjoint tranches
[a, b], where we will call a attachment and b detachment point of the tranche. In order to
derive a pricing equation, we define the tranche loss as

L
[a,b]
t = (Lt − a)+ − (Lt − b)+

and summarize the present value of all contingent payments to be done by the protection
seller (so-called default leg)

default leg :=
∑
Tm>t

B(t, Tm)
b− a

EQ[L[a,b]
Tm
− L[a,b]

Tm−1
|Ft], (3.3)

where EQ defines the expectation operator under the risk-neutral probability measure
Q and B(t, Tm) is the price of a zero-coupon bond with maturity date Tm at time t.
Analogously, the present value of all expected premium payments is defined as the premium
leg

premium leg := s
[a,b]
0

∑
Tm>t

B(t, Tm)
b− a

(Tm − Tm−1)EQ[1− L[a,b]
Tm
|Ft]. (3.4)

7



8 3. Synthetic Credit Default Obligations

To obtain the fair market spread s
[a,b]
t that balances the two legs we set both legs equal

and solve for s[a,b]
t

s
[a,b]
t :=

∑
Tm>t

B(t, Tm)EQ[(L[a,b]
Tm
− L[a,b]

Tm−1
)|Ft]∑

Tm>t
B(t, Tm)EQ[(Tm − Tm−1)(1− L[a,b]

Tm
)|Ft]

. (3.5)

3.1. Gaussian Copula Model

The Gaussian latent variable model published in Vasicek (1987) has been the underly-
ing concept used in most pricing and risk management models. Likewise, it will be the
foundation for all models discussed in this paper.

In the Gaussian latent variable model the time of default is modelled as the first arrival
time of a homogenous poisson process with constant intensity λD. Interarrival times, are
therefore, exponentially distributed and the surival probability of credit i with time horizon
T , given that no default has occured before t, is

Qi(T ) = expλD(T−t) . (3.6)

As a next step we introduce a standard gaussian random variable Ai and assume that a
credit event occurs before time T if Ai is below a threshold Ci(T ). If we use CDS spreads
to determine implicit default probabilities 1, we can write the probability of default before
time T in mathematical terms as

P (τi ≤ T ) = P (Ai ≤ Ci(T )) = 1−Qi(T ), (3.7)

where τi describes the time of default of credit i. Eventually, with Ai ∼ N(0, 1)

Ci(T ) = Φ−1(1−Q1(T )), (3.8)

follows.

Now to create a dependence structure between various credits in a portfolio a one-factor
modell is used

Ai = viZ +
√

1− v2
i εi, (3.9)

with both Z and εi being independent standard gaussian random variables. Consequently
the risk of credit i can be split into two parts. Z, defined as the market factor influencing
all credits, and εi representing idiosyncratic risk specific to each credit i. Depending on
vi ∈ [0, 1] both factors are weighted. At the same time, the weighting in the one-factor
structure ensures that Ai ∼ N(0, 1). Due to the fact that all random variables are gaussian
the dependance structure between two credits i and j can be properly described by the
linear correlation coefficient ρ = vivj .

1λD =
CDSspread

1−R , see Hull (2002) page 484

8



3.1. Gaussian Copula Model 9

3.1.1. Gaussian Large Homogeneous Pool Model

Assuming a homogeneous credit portfolio, the limiting case of the Vasicek model where the
number of single names n goes to infinity is called the LHP model. Though simplifications
are remarkable, the LHP model first introduced in Li (2000) has become the standard
market model 2. In a homogeneous portfolio (i.e. v = vi, ∀i) the probability of default
before time T conditional on the market factor Z is

p(T |Z) = Φ(
C(T )− vZ√

1− v2
), (3.10)

which is also the case for all other names. Conditional on Z all credits in the portfolio
are independent, and the conditional loss distribution for the portfolio is the binomial
distribution. Apparently the variance falls as O(n−1), and, consequently, the conditional
loss distribution tends to unit point mass of probability located at the expected portfolio
loss. By integrating over Z we can calculate the unconditional portfolio loss distribution:
In the limiting case the portfolio loss conditional on Z is given by

L(T |Z) = (1−R)p(T |Z) = (1−R)Φ(
C(T )− vZ
√1− v2

). (3.11)

The portfolio loss distribution can then be written as

F (K|Z) = P (L(T |Z) ≤ K) = P ((1−R)Φ(
C(T )− vZ√

1− v2
) ≤ K). (3.12)

Isolating the source of uncertainty in the argument

Z ≥ A(K) (3.13)

where
A(K) =

1
v

(C(T )−
√

1− v2Φ−1(
K

1−R
)),

and recalling that Z ∼ N(0, 1), the cumulative distribution function is defined as

F (K) = 1− Φ(A(K)). (3.14)

To price synthetic CDO tranches as in equation 3.5, we need to derive the expected tranche
loss from the results above. Indeed, the tranche survival probability is a non-linear function
of the portfolio loss

Q(t,K1,K2) = 1− E[min(L(t),K2)−min(L(t),K1)]
(K2 −K1)

, (3.15)

where K1 and K2 describe the attachment and detachment point of the tranche respec-
tively. We can separate the summands in the argument of the expectation operator and

2We note that a wide range of extensions exist.
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10 3. Synthetic Credit Default Obligations

cut down the problem to

E[min(L(T ),K)] = E[L(T )1L(T )<K ] +KE[1L(T )≥K ],

where we know that
E[1L(t)≥K ] = P (L(t) ≥ K) = Φ(A(K)).

The first summand appears to be a little more tricky. However, we can show that

E[L(T )1L(t)<K ] = (1−R)
∫ ∞
A(K)

Φ(
C(T )− vZ√

1− v2
)φ(Z)dZ = (1−R)Φ2(C(t),−A(K),−v).

3.2. Extensions using NTS

Earlier on we mentioned that the lower tail dependence of the gaussian copula is asymp-
totically independent. To overcome this drawback we will now present two extensions with
stdNTS distributed marginals.

3.2.1. NTS Copula Model I

Our first extension simply adds the idea of stochastic time to the LHP model. As a result,
Z and εi follow a stdNTS distribution. Moreover, the random variable Z can be skewed,
and the dependence structure between the single names can take on new forms.

We start by defining the same one-factor model

Ai = vZ +
√

1− v2εi, (3.16)

with the difference that Z ∼ stdNTS(α, θ, β) and εi ∼ stdNTS(α, θ, 0). We assume Z
and εi to be time-changed by the same subordinator T ∼ subCTS(α, θ), and breakdown
the random variables into their components

Z = β(T − 1) +

√
1− β2(

2− α
2θ

)
√
TξZ (3.17)

εi =
√
Tξi (3.18)

As defined in equation 2.1, ξz and ξi are two independent standard Gaussian random
variables.

Although the linear correlation coefficient ρξZ ,ξi = 0, Z and εi are not independent as they
are both driven by the same subordinator. Using the results of chapter 2.2 we can easily
show that Ai still follows a stdNTS distribution with the following parameterization

Ai ∼ stdNTS(α, θ, β̃), (3.19)

where β̃ = vβ. The linear correlation coefficient between two credits i and j is again given
by ρi,j = v2.

10



3.2. Extensions using NTS 11

Following the procedure used for the Gaussian LHP model we obtain the portfolio loss
distribution in the limiting case as follows:

P (τi ≤ T ) =P (A ≤ C(T ))

=P (vZ +
√

1− v2ε ≤ C(T ))

=P (vβ(T − 1) + vγ
√
Tξz +

√
1− v2

√
Tξi ≤ C(T )) (3.20)

=ΦN(0,1)(
C(T )− vβ(T − 1)− vγ

√
TξZ√

1− v2
√
T

).

As a result, for a fixed Z (i.e. ξz) and T , the portfolio loss is analogous to equation (3.11)

(1−R)ΦN(0,1)(
C(T )− vβ(T − 1)− vγ

√
TξZ√

1− v2
√
T

). (3.21)

Then the portfolio loss distribution conditional on T is

F (K|T ) =P ((1−R)ΦN(0,1)(
C(T )− vβ(T − 1)− vγ

√
TξZ√

1− v2
√
T

) ≤ K)

=P (ξz >
Φ−1( K

1−R
√

1− v2
√
T − C(T ) + vβ(T − 1)

−vγ
√
T

) (3.22)

=1− ΦN(0,1)(
Φ−1( K

1−R
√

1− v2
√
T − C(T ) + vβ(T − 1)

−vγ
√
T

)

=1− ΦN(0,1)(A(K,T )).

Taking the randomness of T into account

F (K) =
∫ ∞

0
(1− ΦN(0,1)(A(K,T ))f(T )dT. (3.23)

3.2.2. NTS Copula Model II

Loosely speaking, Z represents systematic risk and εi idiosyncratic risk. However, in the
above proposed extension Z and εi depend on the same subordinator. Therefore, if T is
large both systematic and idiosyncratic risk are higher, et vice versa. To overcome this
drawback we will now use two independent subordinators for both random variables. For
reasons of clarity we will use the NTS representation introduced by Rachev et al. (2011).

Again, let the standardized firm value be described by a one-factor model

Ai = vZ +
√

1− v2εi, (3.24)

where Z ∼ stdNTS(α, λv, bv, c1) and εi ∼ stdNTS(α, λ
√

1− v2, b
√

1− v2, c2). Z and εi

are independent, and we can determine the distribution of Ai using the results of chapter
2.2:

Ai ∼ stdNTS(α, λ, b, c1vα + c2(1− v2)
α
2 .

11



12 3. Synthetic Credit Default Obligations

Further, ρAi,Aj = v2, even though linear correlation will not be sufficient to describe the
dependence structure between both. Conditional on Z the expected portfolio loss can be
written as

E[L(T )|Z] = (1−R)p(T |Z) = (1−R)Φεi(
C(T )− vZ√

1− v2
). (3.25)

As n → ∞ the variance of L(T |Z) goes to 0 and again the conditional loss distribution
tends to unit point mass of probability located at the expected portfolio loss. We obtain
the unconditional portfolio loss distribution following the same procedure as used earlier
on

F (K) = P (L(T ≤ K)

= P ((1−R)Φεi(
C(T )− vZ√

1− v2
) ≤ K) (3.26)

= P (Z ≥
C(T )− Φ−1

εi ( K
1−R)

√
1− v2

v
)

= 1− ΦZ(
C(T )− Φ−1

εi ( K
1−R)

√
1− v2

v
).

3.3. Discussion

In this section we will sketch out the main differences between the three models. In a
first step, we will outline how to obtain the joint default probabilities, and, subsequently,
use these results to cast a first glance on the abilities and characteristics of all three
models. Our analysis will be mainly based on the bivariate case. Yet, the results can be
easily extended for a higher dimensional setting. In particular, for n → ∞ we obtain the
respective LHP model. To visualize the results under the LHP assumption we complete
this chapter by exploring the respective portfolio loss density functions.

We begin with the gaussian model where the joint default probability of two credits with
time horizon T is given by

P (τ1 ≤ T, τ2 ≤ T )

=P (A1 ≤ C1(T ), A2 ≤ C2(T ))

=P (vZ +
√

1− v2ε1 ≤ C1(T ), vZ +
√

1− v2ε2 ≤ C2(T )) (3.27)

=
∫ ∞
−∞

Φ(
C1(T )− vZ√

1− v2
)Φ(

C2(T )− vZ√
1− v2

)φ(Z)dZ

=Φ2(C1(T ), C2(T ), ρ = v2).

For the NTS case with a common subordinator (NTS 1) we recall that the covariance

12



3.3. Discussion 13

between two credits is given by

cov(A1, A2) = ρ = v2 (β2(
2− α

2θ
) + γ2)︸ ︷︷ ︸

=1

,

where the first summand stems from the fact that both random variables are subordinated
by the same stochastic process, and the second summand is due to the common market
factor Z. With this in mind, we can define the joint default probability as

P (τ1 ≤ T, τ2 ≤ T )

=P (A1 ≤ C1(T ), A2 ≤ C2(T ))

=P (vZ +
√

1− v2ε1 ≤ C1(T ), vZ +
√

1− v2ε2 ≤ C2(T ))

=
∫ ∞

0

∫ ∞
−∞

Φ(
C1(T )− vβ(T − 1)− vγ

√
Tz√

1− v2
√
T

)Φ(
C2(T )− vβ(T − 1)− vγ

√
Tz√

1− v2
√
T

) . . . (3.28)

. . . φ(z)dzf(t)dt

=
∫ ∞

0

∫ C1(T )−β̃(t−1)

γ̃
√
T

−∞

∫ C1(T )−β̃(t−1)

γ̃
√
T

−∞
φ2(C1(T ), C2(T ), v2γ2)dx1dx2f(t)dt

=ΦNTS
2 (C1(T ), C2(T ), v2γ2)(α,θ,β̃,γ̃),

where β̃ = vβ. Please note that as all variables are standardized we have γ =
√

1− β2(2−α
2θ )

and γ̃ =
√

1− β̃2(2−α
2θ ).

Finally, we obtain the following for the NTS model with mutually independent subordi-
nators (NTS 2):

P (τ1 ≤ T, τ2 ≤ T )

=P (A1 ≤ C1(T ), A2 ≤ C2(T ))

=P (vZ +
√

1− v2ε1 ≤ C1(T ), vZ +
√

1− v2ε2 ≤ C2(T )) (3.29)

=
∫ ∞
−∞

ΦNTS
ε1 (

C1(T )− vz√
1− v2

)ΦNTS
ε2 (

C2(T )− vz√
1− v2

)φNTSZ (z)dz,

where we recommend to evaluate the integral nummerically by first calculating the cumu-
lative distribution function ΦNTS

ε and the probability density function φNTSZ by using the
good properties of the fast fourier transformation.

Having learned about the mathematical foundations we can now move on to compare the
three models. In appendix B we illustrate the differences between the stdNTS and the
standard gaussian distribution. The same applies for the bivariate joint default probability
distribution in the NTS 1 model. In contrast to the bivariate standard gaussian distribution
the bivariate standard NTS distribution provides more mass in the center and in the tails.

13



14 3. Synthetic Credit Default Obligations

Comparing equation 2.27 and 2.28 reveals why this is true. For β = 0 (i.e. γ = 1)
equation 2.27 is equivalent to 2.28 except that it additionally features stochastic variance.
The consquences are as follows: If T is large, the variance of all random variables increases,
i.e. high realizations in absolute terms become more likely. For smaller values of T the
opposite is the case. All in all, this leads to the above mentioned shifts of probability mass
away from the legs (see figure 4.4). Of course, for values of β not equal to zero the NTS 1
model exhibits a skewed density function. Comparing the gaussian model with the NTS
2 model the effects are similar - at least in qualitative terms.

It is hardly surprising that both NTS models exceed the gaussian model in terms of tight
dependence and tail probability. Needless to say that both feature a higher lower tail
dependence coefficient λL than the gaussian model. However, as ρ increases the NTS 2
model excessively outperforms the NTS 1 model in the tail (see figure 4.5). This becomes
more evident as we plot the contour of the copula functions for both models (see figure
4.6). Apparently, the NTS 2 model exhibits a tighter dependence structure than the NTS
1 model. The reason for this is simple. As outlined before, using a common subordi-
nator for all variables destroys the idea of two independent random variables where one
represents systematic and the other idiosyncratic risk. As a result, both random vari-
ables will simultaneously possess a high variance if T is large, and a low variance when
T is small. Now - for instance - assuming a large realization of T and Z when ρ is
not excessively high so that the impact of the εi’s are still significant, then on average
(given b = 0) half of the ε’s would reduce the large realization of Z, while the other
half would amplify it. This is worth noting as the variance of each εi is high (i.e. large
T). Hence, the contour plot of the copula function peaks less in the tails as we would
not expect to have such a high probability for an adverse effect in the NTS 2 model.
Knowing that the default threshold C(T ) will generally be negative for a reasonable de-
fault rate, i.e. small or medium sized negative realizations of Ai will not result in a default,
makes the impact of the common subordinator even more influential.

We can visualize the associated effects on the pricing of synthetic CDOs by looking at the
portfolio loss density function under the LHP assumption. Figure 4.7 shows the portfolio
loss density function for a reasonable rate of default and a time horizon of 5 years. We note
that more systematic risk (i.e. larger v) moves more mass to the tails of the portfolio loss
density function, or in other words increases the probability for no or just a few defaults
as well as the probability for plenty of defaults. Comparing the shape of the NTS 1 curve
with the gaussian and the NTS 2 curve leaves the first impression that the NTS 1 model
incorporates more systematic risk. However, a closer look reveals that it does feature less
probability mass in the right tail than the NTS 2 model. Thus, we would expect that the
NTS 1 model underprices the equity tranche and the super senior tranche in comparison
to the NTS 2 model. As we restrict the activity of the subordinator (i.e. increase λ) in
both NTS based models this phenomenon decreases. Indeed, letting α go to 2 and λ to
infinity while b equals zero all models tend to become equal.

14



4. Model calibration

To assess the strengths and weaknesses of the previously introduced models we will now
move on and calibrate them to a real set of financial time series. We will evaluate their
capabilities with respect to the goodness of fit.

4.1. Data

We use iTraxx Europe Series 7 on-the-run (March 20 to September 20, 2007) 5 year index
spreads and the corresponding first five standard tranche spreads with attachement /
detachment points: 0%, 3%, 6%, 9%, 12%, 22%.

The first reason for choosing this set of data was liquidity and the accompanying low bid-
ask spread. iTraxx Europe series are among the most actively traded credit portfolios and
synthetically replicate an equally weighted portfolio of 125 investment grade single names.
The index gets rolled every six months and covers five different sectors. Beyond the rating,
liquidity in their CDS trading is a selection criterion for singles names to become an index
member.

The second reason is that it covers various states of the economy. This will allow us
to assess a model’s performance in the outburst of the crisis when market expectations
and risk aversion changed remarkably. Compared to a complete in-crisis data set, we will
additionally reduce the impact of frozen markets and large bid-ask spreads. Though the
time series does not contain any defaults, it has been heavily affected by the outburst of
the financial crisis.

Like implied volatility in equity option pricing, implied correlation in general is not con-
stant over different tranches. In line with equity derivatives pricing, this phenomenon is
called the correlation smile or skew. Yet, unlike the volatility smile / skew, the shape
of implied correlation as a function of detachment points does not necessarily have any
similarity with a smile or skew. In fact, depending on the underlying approach - base
or compound correlation - the shape is remarkably different. Still, the message is the

15



16 4. Model calibration

same. The correlation smile reflects nothing as the models incapability to reproduce mar-
ket spreads using a flat correlation. Implied correlation is simply abused as another degree
of freedom without any economic justification.

Thus, we will use the extent to which a model is capable to reproduce market spreads as
an optimisation criterion when calibrating the models. In detail, we use a constrained non-
linear optimisation routine to determine the most suitable free parameters (parameters of
the copula and ρ) to reduce the relative root mean squared error (rRMSE)1:

rRMSE =

√√√√ 1
n

n∑
k=1

(
smodelk − smarketk

smarketk

)2

, where the index k denotes the respective tranche in ascending order.

We have implemented the model variants listed below. Where used the base correlation
approach to calculate implied correlation, as it is the market standard for most synthetic
credit portfolios.

• Gaussian model: free parameter ρ.

• NTS 1 model: free parameter α, θ and ρ. β has been set to zero.

• NTS 2 model with β = 0: free parameters α, λ and ρ.

• NTS 2 model: free parameters α, λ, β and ρ.

In the Gaussian case we have directly minimized the rRMSE. In all other variants, we have
determined the ρ that sets the equity tranche model spread equal to the market spread and
subsequently used this ρ to calculate the rRMSE that considers all tranches. Consequently,
the model’s equity tranche spread will always perfectly match the corresponding market
spread. Through variation of the parameters of the copula function, we then search for
the parameter set that leads to the globally minimal rRMSE. Although this approach is
slightly dominated by the one used for the Gaussian model (in terms of optimality) it is
less computationally heavy. Indeed, as the Gaussian model turns out to be inferior to all
other models examined, this should not bias the results of our analysis.

4.2. Results

The main findings are as follows:

• The NTS 2 model is the only model that reprices market spreads acceptably with a
flat correlation coefficient (see figure 4.8). Thus, the implied base correlation smile
nearly disappears under the NTS 2 assumption.

• Implied base correlation is significantly lower in the NTS 2 model, as a result of the
endogenously stronger consideration of correlation risk.

1see Schmitz et al. (2010)
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4.2. Results 17

• In line with our previous concerns, the results suggest that the random variables Z
and εi should be independently distributed.

• Allowing for values of β unequal to zero leads to a better fit of market prices.

• Under the NTS approach, changes in base correlation account for a greater propor-
tion of the overall spread movement.

The corresponding figures and tables can be found at the end of this chapter: In table 4.1,
we summarize the maximum absolute relative deviation of model vs. market spread and
the parameter range of values for each model. Figure 4.8 shows the rRMSE over time and
figure 4.9 to 4.12 plot the base correlation surface for the various models.

For the Gaussian model, we observe that if a flat correlation parameter is used, the mis-
pricings are tremendous for all considered tranches. In general, the equity tranche as well
as the 9% − 12% and the 12% − 22% tranches are underpriced, whereas the 3% − 6%
and the 6% − 9% tranches are overpriced. In other words, the Gaussian copula provides
insufficient probability mass in the tails. As a matter of fact, implied base correlation
increases as a function of detachments, when we allow for varying base correlations (see
figure 4.9). We explained the reasons for this before, when we demonstrated the Gaussian
models inability to account for extreme joint events.

In line with our previous concerns, the NTS 1 model fails to be a sufficient alternative
to the Gaussian model. In particular, when market spreads widened, the NTS 1 model
is anything but better. Although the model possesses a significantly higher lower tail
dependence coefficient it constantly underprices the senior tranche (12% − 22%). This
gives evidence to our belief that idiosyncratic and systematic risk should be independently
modelled. The parameters α and θ behave reasonably over time and affect that more
probability mass goes to the tails of the copula function with the outburst of the crisis.

The combination of significant tail dependence and independent risk factors appears to be
a suitable solution: In both configurations of the NTS 2 model, mispricings are negligible
over the first 80 days. After that, when market spreads increased, the NTS 2 model
started to overprice the senior tranches. Its ability to account for extreme joint events
clearly distinguishes it from the previous two models. If we allow β 6= 0, the rRMSE can
be reduced as this dams the underpricing of the mezzanine tranches. However, adding
another free parameter increases the complexity of the optimisation problem. As a last
point, we observe that all parameters behave reasonably, e.g. α decreases with the outburst
of the crisis and β becomes even more negative. Hence, we have no reason to believe that
the model’s performance is solely based on its many degrees of freedom. It rather accounts
for the various drawbacks of the Gaussian copula.

17



18 4. Model calibration

Figure 4.1.: Contour plot of bivariate stdNTS pdf (α = 1.8, b = −0.1, λ = 0.2, ρ1,2 = 0.2)

Figure 4.2.: Common subordinator vs. mutually independent subordinators, (α = 1.8,
b = −0.1, λ = 0.2)
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4.2. Results 19

Figure 4.3.: stdNTS: lower tail dependence, (α = 1.8, b = −0.1, λ = 0.2, ρ1,2 = 0.2)

Tranche 0− 3% 0− 3% 0− 3% 0− 3% 0− 3%
Gaussian 0.7139 1.4391 0.6214 0.9385 0.9967
NTS 1 (β = 0) 0 1.4864 1.1495 0.7939 0.5098

α ∈ [1.7475, 1.9739] θ ∈ [1e− 04, 0.0040]
NTS 2 (β = 0) 0 0.2953 0.2038 0.3502 0.7752

α ∈ [1.01, 1.9263] λ ∈ [3.69e− 04, 0.8212]
NTS 2 0 0.2135 0.1069 0.2036 0.5515

α ∈ [1.0008, 1.99] λ ∈ [8.26e− 04, 0.6368] b ∈ [−5.2156, 0.5483]

Table 4.1.: Maximum absolute relative deviation of model vs. market spread and param-
eter range of values
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20 4. Model calibration

Figure 4.4.: Comparison of joint default probability distributions (NTS - Gauss), NTS
marginal distribution (α = 1.6, b = 0, λ = 0.2, ρ = 0.3)

Figure 4.5.: Comparison of the lower tail dependence coefficient λL, NTS marginal distri-
bution (α = 1.6, b = 0, λ = 0.2)
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Figure 4.6.: Contour plots of NTS 1 and NTS 2 copula functions, NTS marginal distribu-
tion (α = 1.6, b = −0.05, λ = 0.2)
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Figure 4.7.: Comparison of LHP portfolio loss density functions, NTS marginal distribu-
tion (α = 1.6, ρ = 0.2)

Figure 4.8.: Relative root mean squared error
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Figure 4.9.: Gaussian copula model - implied base correlation surface
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Figure 4.10.: NTS 1 copula model - implied base correlation surface
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Figure 4.11.: NTS 2 copula model (b = 0) - implied base correlation surface
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Figure 4.12.: NTS 2 copula model - implied base correlation surface
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Appendix

A. Appendix A: CTS subordinator - effect of parameters

We illustrate the behaviour of the shape of the density function for various parameteriza-
tions in Figure A.1. Table A.1 shows the effects on the first four standardized moments.
Please be aware that the distribution is standardized such that E[T ] = 1 holds.

Looking at the figures we observe that irrespective of what parameter we increase the
density function peaks higher and more probability mass moves to the righthand side
of the plot while the density function starts to decrease more rapidly. In addition, the
variance decreases in α and θ. However, the effect of α and θ on skewness and kurtosis
are adverse. While a higher α leads to more skewness and excess kurtosis the opposite is
true for θ. We note that the magnitude ot the effect of a small change in parameter on
skewness and kurtosis is more intense for large values of α as well as for small values of θ.

α θ Variance Skewness Excess Kurtosis
1.6 0.2 1 6 66
1.6 0.02 10 18.97 666
1.6 2 1.90 0.1 6.6
0.8 0.2 3 4.62 34.67
1.9 0.2 0.25 10.5 215.25

Table A.2.: CTS subordinator - effect of parameters for t = 1
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28 Appendix

Figure A.1.: CTS subordinator - effect of parameters for t=1

B. Appendix B: standard NTS - effect of parameters

Analogous to Appendix A, we discuss the effect of a change in parameter on the shape of
the density function as well as on the skewness and the kurtosis of the distribution.

We first remind ourselves that the Normal Tempered Stable distribution can be obtained
by tempering the Lévy measure of a symmetric α-stable distribution. While α defines the
Lévy measure of the α-stable distribution θ steers the tempering. Thus we conclude that a
lower α leads to an increase in the probability for large jumps and as θ increases those jumps
get more heavily tempered. Another common way to illustrate the effect of θ is to consider
it as a rate of decay. As θ increases, i.e. the tails decay faster the density function simply
has to peak higher and provide more mass in the tails as the distribution is standarized.
This explains why the kurtosis falls in θ and α. Loosely speaking, the standardized gaussian
distribution is a limiting case of the normal tempered stable distribution as α goes to 2.
Though as α ∈ (0, 2) this case can never be reached and both distributions will differ from
each other as follows: In generel, the stdNTS distribution will peak higher and provide
more mass in the tails then the standardized gaussian distribution. Again, as we’re talking
about standardized distribution, i.e. the distribution is scaled to unit variance, the stdNTS
exhibits less mass on both legs (see Figure B.2).

Finally, β is related to the distribution’s skewness. A negative value of β leads to a
negatively skewed density function (et vice versa) while in case β = 0 the density function
remains symmetric.
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B. Appendix B: standard NTS - effect of parameters 29

α θ β Skewness Excess Kurtosis
1.6 0.2 0 0 3
1.6 0.2 -0.1 0.2640 3.1625
1.6 0.2 0.1 -0.26400 3.4185
1.6 0.02 0 0 30
1.6 2 0 0 0.3
0.8 0.2 0 0 9
1.9 0.2 0 0 0.75

Table B.3.: standard NTS - effect of parameters

Figure B.2.: standard NTS - effect of parameters, unless otherwise specified α = 1.6, θ =
0.2, β = 0.
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Figure B.3.: standard NTS vs. standard Gauss
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