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Introduction

Asset and Liability Streams

Asset liability management (ALM) attempts to find the optinmylestment
strategy under uncertainty in both:

the asset streams

the liability streams.

= The simultaneous consideration of assets and liabiliaeshe
advantageous when they have common risk factors.
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4 Introduction
o

Asset and Liability Streams

Traditionally, banks and insurance companies used acaogalunting for
essentially all their assets and liabilities.

On the one hand they would take on liabilities, such as dégpdide
Insurance policies or annuities.

On the other hand they would invest the proceeds from thabdities in
assets such as loans, bonds or real estate.

All assets and liabilities were held at book value.

Doing so the approaadthisguised possible risksarising from how the
assets and liabilities were structured.
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4 Introduction
o

Example:

A bank borrows USD 100 Mio at 3.00% for a year and lends the same
money at 3.20% to a highly-rated borrower for 5 years.

For simplicity, we assume that all interest rates are amypaampounded
and all interest accumulates to the maturity of the respecibligations.

The net transaction appears profitable, since the banknsgeaa 20
basis point spread.

However, the transaction also entails considerable risk:

At the end of a year, the bank will have to find new financing far lban,
which will have 4 more years before it matures. If interegtsdnave
risen, the bank may have to pay a higher rate of interest ondive
financing than the fixed 3.20 it is earning on its loan.
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4 Introduction
o

Example:

Suppose, for example that at the end of a year, an applicajganinterest
rate is 6.00%

Accrual accounting does not recognize the problem. The bable of the
loan (the bank’s asset) is:

100Mio - 1.032 = 103.2Mi0

The book value of the financing (the bank’s liability) is:

100M170 - 1.030 = 103.0M 20

Based upon accrual accounting, the bank earned USD 200,006€ iimst year.
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4 Introduction
o

Example:

However, market value accounting recognizes the bankigament. The
respective market values of the bank’s asset and liabilgy a

100Mio - 1.032°
1.060%

Hence, from a market-value accounting standpoint, the baskost USD
10.28 Mio.

= 92.72M710

The bank is in trouble, and the market-value loss reflecss thi

Ultimately, accrual accounting will recognize a similassonvhen the
bank will have to secure financing for the loan at the new hgaie.
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Introduction

Example:

The problem in this example was caused byiamatch between assets and
liabilities.

We conclude that it is necessary to find the optimal investre@ategy under
consideration of the time horizons of both

the asset side

the liability side
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4 Introduction
o

Example - Changing Economic Conditions

o S.T. RACHEV

Until the end of the 1970s interest rates in developed camtr
experienced only modest fluctuations, so losses due to-leesisidity
mismatches were small or trivial.

Because yield curves were generally upward sloping, bankksl@arn a
spread by borrowing short and lending long,.

Things started to change in the 1970s, which ushered in agefi
volatile interest rates that continued into the early 1980s

Managers of many firms, who were accustomed to thinking indexin
accrual accounting, were slow to recognize the emergilkg ris

Because the firms used accrual accounting, the result wa®motich
bankruptcies as crippled balance sheets. Firms graduaiiyed the
losses over the subsequent 5 or 10 years.
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4 Introduction
o

Example - Changing Economic Conditions

One of the victims of the changing conditions is the US mulié=l
Insurance company the Equitable.

During the early 1980s, the USD yield curve was invertedhwit
short-term interest rates spiking into the high teens.

The Equitable sold a number of long-term guaranteed inteoeggracts
(GICs) guaranteeing rates of around 16% for periods up tcehsy

Equitable invested the assets short-term to earn the higrest rates
guaranteed on the contracts.

Short-term interest rates soon came down. When the Eqeitetl to
reinvest, it couldn’t get nearly the interest rates it wagmpgon the GICs.

Eventually Equitable was acquired by the Axa Group.
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4 Introduction
o

Example: Fixed-Income Securities

Classic ALM frameworks for constructing portfolios of fix@acome
securitiesdedication andimmunization:

Dedication: assumes that the future liability paymentsiaterministic
and finds an allocation such that bond income is sufficienbteicthe
liability payments in each time period.

Immunization: the portfolio is constructed by matching finesent values
and interest rate sensitivities of the assets and liadslitAllocation that
hedges against a small parallel shift in the term structtineterest rates.

= Neglection of the stochastic nature of interest rates amllilies and the
dynamic nature of investing.
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Introduction

Major Tasks of ALM

Find Adequate Measures and Models for Risk Quantification

Adequate Risk Measures like
Value-at-Risk
Expected Shortfall
Alternative Measures

Properties of Risk Measures
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Introduction

Major Tasks of ALM

Capture the behavior of returns by an adequate distributionand model:

Finding an adequate distribution
Are asset returns normally distributed?
Alternative heavy-tailed distributions

Time-Series Models
autocorrelation in the returns
conditional variance etc.
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Introduction

Major Tasks of ALM

Capture the dependence structure between the risk factors:

Fit Multivariate Distributions

Dependence Modeling for univariate distributions
Correlation as measure of dependence
Copulas
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Introduction

Major Tasks of ALM

Capture the dynamic and stochastic characteristics of asseand
liabilities:

Scenario analysis technigues
Stochastic control methods

Stochastic programming
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1) Optimization and Risk

1.1) Risk Measures
1.2) Properties of Risk Measures

1.3) Risk-Return Optimization
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Optimization and Risk

Risk-Return Optimization

The goal of risk-return optimization is fptimize a tradeoff between the
risk and return.

Major Issues:

Adequate Risk Measures
Portfolio Optimization Problems

Techniques for Optimization
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Risk Measures

Standard measure of Risk

The standard measure of risk for a portfolio of equities sstgd by
Markowitz is thevariance of the return:

Portfolio consists of

n assets with corresponding risky retuls= (rq, ..., r,)’.

portfolio weightsw = (wy, ...,wy)’ such thaty, > 0and> " | w; = 1.

= The risk associated with the portfolio returh = w’'R is given by

ag — J'Yw

whereY Is the covariance matrix aR.
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Risk Measures

Standard measure of Risk - Modifications

Criticism of the variance as standard risk measure:

Variancepenalizes both large gains and large losseBlowever, only
large losses are critical for investors or the survival ef itstitution.

Financial returns are typicallyeavy-tailed and in that case, the variance
does not even exists.
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Risk Measures

Standard measure of Risk - Modifications

Possible Modification: asymmetric risk measure that accoonly for large
losses is theemivariance

E (WE(R) — w'R]*)”

Problem: numerical optimization of the semivariance ifialitt.

Alternative modification: usdownside formulawhich measures the degree
that the returns are distributed below some target rettirn
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Risk Measures

Standard measure of Risk - Modifications

Use themean absolute deviation (MAD) of the portfolio as risk measure:

m, = E|w'R — W'E(R)]|,

Use thescale parameterof a heavy-tailed distribution as measure of risk (see
later sections).
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Risk Measures

Tail Measures

Other risk measures rely only on ttaal of the distribution : modeling of the
probability of extreme events becomes more important.

Most prominent measures:

Value at Risk (VaR)
Conditional Value at Risk (CVaR)
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4 Risk Measures
o

Value at Risk

For a given confidence levgl € (0, 1), VaR is the minimum value of the loss,
or negative return, that is exceeded no more than 100¥d of the time:

x € R™: given decision on asset allocatidnz) € R: random variable
representing loss, or negative return, for each
Uy (x,(): the distribution function fol.(z) : ¥ (x,() =P (L(x) < ()

For a given decision, the Value at Risk at confidence levgls given by:

VaRs(x) = inf {¢| W (2,C) > B}
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Risk Measures

Conditional Value at Risk

Define a random variabl€s (z) on thes-tail of the lossL(z) through the
distribution function:

0 ¢ < VaRs(z)

(1)
\IJL xr,Q)—
()8 (> VaRg(x)

\IJTg (337 C) — {

The Conditional Value at Risk at confidence leve} is the mean of the talil
random variablds(x) with distribution function {):

CVaRs(z) = E(Ts(x)).
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Risk Measures

VaR and CVaR

CVaR is closely related to the conditional expectation inelf\daR:

E (L(x)|L(z) > VaRs(x)) < CVaRs(z) < E(L(z)|L(z) > VaRs(z)). (2)

If there is no discontinuity in the distribution function 6fx) at VaRs(z),
then equality holds in equatio)(
For this reason, CVaR is also sometimes calledekeected Tail Loss(ETL).
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Risk Measures

Alternative Risk Measures
The literature suggests several alternative risk measures
RAROC

Rachev’s Ratio

Further examples will be discussed in the lecture.
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Properties of Risk Measures

Coherent Risk Measures

To help define a sensible risk measure, properties that quereel of a
coherentisk measure are introduced (see e.g. Artzner et al):

. sub-additive:p(v +v") < p(v) + p(v'),
li. positive homogeneousgi(A\v) = Ap(v), VA >0,
lii. translation invariantp(v 4 c) = p(v) +¢, Vce€ R, and

Iv. monotonousp(v) >0, Vv > 0.

Hereby is:
V the space of real-valued random variabjes) — R risk measure,
v,v" € V random variables are thought of as losses
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Properties of Risk Measures

Coherence of VaR

VaR does not satisfy these properties in general because Vagnot

sub-additive:
Example:

= Lack of subadditivity is very undesirable because divaraiion is not
promoted.
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Properties of Risk Measures

Coherence of CVaR

The coherence of the set of random varialjlésr)} can be stated as a
function ofx whenL(z) is linear:

Lz)=x1Y1+ ... + ., Yn.

In this situation,Y; might be a random variable representing an individual
asset loss, anfl(x) is a random variable representing the total portfolio loss.
Coherence of CVaR z) in this framework means

1. CVaRs(z) is sublinear inz,
2. CVaRs(x) = cwhenL(x) = c € R, and
3. CVaRs(z) < CVaRs(z') whenL(z) < L(x').
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Properties of Risk Measures

Remarks on Coherent Risk Measures

Sub-additivity and positive homogeneity guarantee thatreecent risk
measure is convex.

A lack of convexity of VaR contributes to numerical difficels in
optimization.

For the special class of elliptical distribution, VaR is sadiditive and
coherent.

VaR is easy to work with when normality of distributions isased, but
financial data is typically heavy-tailed.

In addition to coherence, CVaR has a representation thaacigal in
minimization problems with scenarios generated from astridutional
assumption.
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Risk-Return Optimization

The mean-variance optimization problem

The classical mean-variance optimization problem is tammze the risk of
the portfolio for a minimum level of expected return:

min W' Xw
w

s.t. w'u= o, (3)
2limiwi =1
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Risk-Return Optimization

The mean-variance optimization problem

If the risky returnsi are assumed to follow a multivariate normal distribution
N (u, ), the portfolio returnr, = w’R is also normally distributed with:

meanu, = w'p

varianceag — W' Yw.

The solution to the above problem is easily solved with Lagian

techniques.
Example:
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Risk-Return Optimization

The mean-variance optimization problem

A drawback of optimization problen3j is that it requires a large number of
parameters to be estimated:

Assumen risky assets: the covariance matrix consists @f + 1) /2
elements.

For example: if the universe of assets consists of the S&RHE
125,000 variances/covariances must be estimated.
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Risk-Return Optimization

The Multi-Factor Equation

A possible solution is to model each asset with a multifaetpration:

ri = Wi + B F1 4+ ... + Bi Fr + €, (4)

where

F’; is the deviation of the random factor j from its mean
cov(Fj, F;) = 0forall j # 1

¢; are asset specific risks with zero expectation, uncorict e
Independent of the factors.
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Risk-Return Optimization

The Multi-Factor Equation

Examples of typical factors:

* Inflation
* Interest rates
* GDP etc.

Example:
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Risk-Return Optimization

The Multi-Factor Equation

The portfolior, = w’R can be written as

k
T'p :Up+zﬁijj + €p;

j=1

where

n n
0 _ — e
Hp = W [ Bpj = E wiBij; €p = E Wik
i=1 i=1

It follows the variance of the portfolio is

k n
2 2 2 2 2
o= B0k, + ) _widl.
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Risk-Return Optimization

The Multi-Factor Equation

Two sorts of risk:

systematic or market risk (first term)

unsystematic risk of the portfolio (second term)

If equal weight is given to each assety; = 1/n, the unsystematic risk is
bounded byc¢/n for some constantc, so this risk can be diversified away
asn grows large!!
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Risk-Return Optimization

The Multi-Factor Equation

Using the factor model in the minimum variance optimizagwablem gives:

. 2 k 2 2 n 2 2
11111 O-p_z O-Fj_l_Zi:lin-ei

w J=1/pj
s.t. wu = po,
Bpj = 2im1 Wil
2imgwi =L

The factor sensitivitie; ;, factor variances, and specific risk variances can be
estimated through linear regression in equatin (

= significant reduction in the number of parameter estimagesied as
compared to optimization probler)(
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Risk-Return Optimization

The Multi-Factor Equation

Example:
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Risk-Return Optimization

The Multi-Factor Equation

Remarks:

Both of the above are quadratic optimization problem.

A linear optimization problem can be achieved when the vaeaf the
portfolio is replaced with its mean-absolute deviatiap.

SinceR? is multivariate normal, the relation holds that, = \/%ap, SO
minimizing the mean-absolute deviation will produce slagne optimal
portfolio as minimizing the variance.
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Risk-Return Optimization

Elliptical Distributions

Examples of Elliptical Distributions:
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Risk-Return Optimization

Elliptical Distributions

The class of elliptical distributions offers special prapess in portfolio theory
that are useful in minimizing VaR or CVaR:

For any elliptically distributed random vect& with finite variance for
all univariate marginals, variance is equivalent to anyitpes
homogeneous risk measuyse

If r, = w'R andr, = &'R are two linear portfolios with corresponding
variancess. anda .

NN
VA
M

'tiow

p(rp —E(rp)) < p(fp, —E(7p)) = o
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Risk-Return Optimization

Elliptical Distributions

In addition if p is translation invariant, the solution to the followingkdgeturn
optimization problems coincide:

o 2 o
min o, min p(ry)
st. r,=uw'R, st. r,=wR,
E(ry) = po, E(rp) = o,
Z?:1 wi = 1, Z?:1 Wi = 1,

wherep, is the desired return.
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Risk-Return Optimization

Elliptical Distributions

Under the assumption assumption of elliptical distribagicche same optimal
portfolios will be obtained by:

minimization of VaR
minimization of CVaR

minimization of the variance

But: due to the heavy-tailed nature of financial returns, ellptical
distributions may not be an adequate assumption!! See the mésection
for further details.

O S.T. RACHEV I O > Module S-5/1 - Part 1 -Asset Liability Management — p. 46



ﬁ
4) Optimization Problems, Stochastic Programing and
Scenario Analysis

3.1) Single- and Multistage Optimization Problems
3.2) Stochastic Programming

3.3) Scenario Generation
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Single- and Multi-Stage Optimization

Single-Stage Optimization
Assume we want to optimize the portfolio according to thr R\@iterium.

Define

wER D) wi=1lw; >0,j=1,...n, (5)

j=1

X

wherez € X represents the portfolio weightsinassets. The random return
on these assets at the end of a time period is representBd=byry, ..., 7, ),
and the negative return of the portfolio is given by

L(z) = —2'R.
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Single- and Multi-Stage Optimization

Single-Stage Optimization

If the mean ofR Iis given by the vectop, the risk-return problem is:

migcl CVaR;(xz) s.t. z'p > po,
TE

wherepy is the required portfolio return, and by varyipg, the efficient
frontier is obtained.
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Single- and Multi-Stage Optimization

Single-Stage Optimization

If the uncertainty in the return is given through the set @&r&rios
{R', ..., R°} where each?® ¢ R™ occurs with probability?, the problem

can be rewritten as:

: S
min ¢+ ﬁ S pt[2'RF — (]
S.t. x' > o,
re X, eR,
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Single- and Multi-Stage Optimization

Single-Stage Optimization

By introducing auxiliary variableg®, s = 1, ..., S, a linear program results:

3 S S,,S
min ¢+ =5 X0 PY

S.L. T’ > po,
R +(+y* >0, s=1,...5,
y® >0, s=1,...,85,
re X,(eR.

= This program is used to compare hedging strategies for d@aynational
asset allocation.
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4 Single- and Multi-Stage Optimization
* Multi-Stage Optimization

Extending the single period risk-return problem to a mpérod setting is
difficult and some modifications are necessatry:.

In a multi-period setting, one usually deals witlvaalth process instead
of returns so that problems will be convex and sometimes linear.

The general form of a stochastic program with recourse albow
portfolio allocation to be made in each stage.

Typically a function of the wealth process, not the returogesss, Is
optimized over the quantities of assets held, not the partéeeights.

Instead of risk-return analysis, one can perform risk-rev@nalysis
where the risk, for instance, is a function of the wealth pescand the
reward is the expected terminal wealth.
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Single- and Multi-Stage Optimization

Multi-Stage Optimization

For instance, a multi-period extension of mean-varianedyars could be (see
Maranas et al):

max AE(wr) — (1 — Nvar(wr).

Here,w is the terminal wealth, and the max is taken over all fixedadix
decision rules.
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Single- and Multi-Stage Optimization

Multi-Stage Optimization

Remarks:

In a so-called fixed-mixed rule, the portfolio is reallochte each time
period to keep a certain percentage of wealth in each asset.

As )\ is varied between zero and one, a type of efficient frontier is
obtained.

While the number of decision variables are greatly reduttexiproblem
becomes non-convex, and a global search algorithm is regess
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Single- and Multi-Stage Optimization

CVvaR and Multi-Stage Optimization

The coherence of a risk measure in a multi-period settintgss@efined in
terms of a wealth process = (wy, ..., wr) wherew; is a known
deterministic wealth:

Also a weighted average of CVaR over the time horizon is cohent!

If CVaRg(—wy) is the CVaR associated with the negative wealih,, then a
coherent risk measure is given by

p(w) = p(wy, ..., wp) = Z,utCVaRg(—wt), (6)

where the weights are nonnegative and sum to one.
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Single- and Multi-Stage Optimization

CVaR and Multi-Stage Optimization
In this multi-stage setting coherence means that
convex:p(Aw + (1 — AN)w) < Ap(w) + (1 — A)p(w), VA € [0,1],

positive homogeneoug(\w) = Ap(w), VA >0,

translation invariantp(wy + ¢, ..., wr + ¢) = p(w) — ¢, Ve € R, and

A

monotonous: itv; < wy a.s. fort =1, ..., T, thenp(w) > p(w).
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Stochastic Programming

Introduction

Stochastic programming offers a framework that can inc@igomany of the
characteristics of an ALM problem.

Organisation of the Section:

General Setup

Scenario Generation

The T-Stage ALM Problem
Application
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General Recourse Problem

A 2-Stage Recourse Problem

In a 2-stage recourse problem, a recourse decision is medeaakalization
of uncertainty.

Consider the following asset allocation problem:

First Sage Decision: the initial portfolio allocation
Uncertainty: the asset returns

Recourse Decision: the portfolio adjustments.

— This 2-stage recourse problem finds the optimal initial axhlanced
allocations for the given distribution of future stock mowents.
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General Recourse Problem

A 2-Stage Recourse Problem

The first stage has a vector of initial decisianse R™* made at = 1
when there is a known distribution of future uncertainty.

The second stage decisians € R™2 adapt at = 2 after the first stage
uncertainty¢; is realized.

The second stage decisions usually also consider thebdistm of future
uncertainty¢, realized aftet = 2.
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4 General Recourse Problem
o

Mathematical Description

This setup is described mathematically by first considenmg the optimal
recourse decision is determined. We define:

x1 the stage decision vector

¢, and a given realization of the first stage uncertainty

q2(x1,x2,&1) IS @ cost of decision, for the given realization of the first
stage uncertainty; and the given first stage decision,

Q2(z1,12,&1,&2) IS the cost of decisiom;, for given realizations of
uncertaintieg; and¢&; and the given first stage decision,

Bs(&1) is thetechnology matrixhat converts a first stage decision into
resources in the second stage, and

A5 (&) Is therecourse matrix

O S.T. RACHEV I O > Module S-5/1 - Part 1 -Asset Liability Management — p. 60



General Recourse Problem

Mathematical Description

Then the best recourse decision is found through the followig second
stage problem:

minxQ QQ($1,$2,€1)+E€2 (Q2($1,$2,€1,€2>|€1)
S.1. Bg(fl)xl -+ Ag(fl)xg = bg(fl), (7)
15(&1) < 29 <wug(éy)
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General Recourse Problem

Remarks:

It is possible to remove the cost functig@)y by including the second term
of the objective in the cost functiap.

The problem is said to havéed recoursavhen A, is independent of; .

The subscripts indicate at whi¢ka value is known except in the case of

&t

For instance, the realizations 8%, A,, andb, are all known at = 2,
which is the beginning of the second stage, {3us not realized until

aftert = 2.
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General Recourse Problem

The full 2-stage recourse problem

The second stage problem as incorporated as follows:
With the optimal value of the second stage probl&jdenoted by

Q1(z1,£&1), the 2-stage problem minimizes:

the sum of a first stage cogt(z;) and
the expected value of the second stage copt(k+, &1):

min,, qi(x1) +EQ1(x1,&1)
S.1L. Alxl = bl, (8)

I <z <.
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4 General Recourse Problem
o

2-Stage and Multistage Problems

only one recourse decision can be made, instead of a seqoknce
decisions over the time horizon

a multistage recourse program can provide a more realisigembut it
IS more complex and can often be very difficult to solve nuoadly

as in the 2-stage problem, the initial vector of decisionss made before
the first realization of uncertainty;, and a second stage decisionis
then made based an and¢;

In theT'-stage problem, this process continues for the unceraifiti
t=1,...,7 — 1, and the decisions vectars, t = 1,...,T

there is usually one additional realization of uncertagtyfollowing the
final decisionz
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General Recourse Problem

The Multistage Problem

TheT-stage recourse program can be defined recursively as armsexieof
the 2-stage program:

¢ =1{¢,;,7 =1,...,t} denotes the uncertainty up to and including stage
fort =1,...,T, where eaclg; is the uncertainty realized in stage

zt ={z;,7 =1,...,t} denotes the decisions up to and including stage
where eaclr; is the decision made for stage

Then the first stage problem is essentially the same as pnagBle

min,, ¢i1(z1) + E¢, Q1(xt, &)
S.1. Al.flfl = bl, (9)

ll le Sula
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General Recourse Problem

The Multistage Problem
Q:, fort =1,....,T — 1is given by the minimization problems:

Qt(xtagt) — Hlin$t+1 Qt+1(37t+17€t) + E€t+1 (Qt—l-l(xﬂ—lvgﬁ_l)‘ 5t)
S.1. Bt_|_1(£t).fl?t -+ At—|—1(£t)xt—|—1 — bt+1(£t),

li41(8") < w1 < uera(€9),
(10)

andQr(z?, 1) is a known function, not the solution to another minimizatio
problem.
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General Recourse Problem

The Multistage Problem

It is possible to sef); = 0 by including the second term of the objective
N qr.

the above problenB(10) is a form of the multistage recourse problem
that is relevant to the ALM problem that will be presentedrsoo

alternative forms, such as that found #},[allow the first constraint of
(10) to depend on all decisions up to tinte

Z Bt+1,7(§t)5’77 + At+1(€t)xt—l—1 — bt+1(£t)a (11)
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Scenario Generation Techniques

Introduction

To numerically solve the recourse proble®al(0), often so-calle&dcenario
generation techniquesare used. The distribution ¢f, ...,&7) IS
approximated by a set of scenarios:

Il
o)
—
Il ==
e

t=1 t

Figure 1: An exemplary Scenario Tree.
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Scenario Generation Techniques

Scenario Trees

a first stage optimal allocation is found in the node at 1
optimal recourse allocations are found in every node-at2

In a 2-stage problem, there is no additional allocationgsienimade at
the nodes at = 3

the tree shown in the figure is calledlanced because each nodetat 2
IS connected to two nodesiat 3.
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Scenario Generation Techniques

Scenario Trees

the nodes of the scenario tree are numbered starting witvatbe of one
att =1

let I; be the number of nodes up to and including those at

sets of indiceg; = {I; 1+ 1,...,I;}, are defined fot =2, ..., T + 1,

a scenaria, which is a path through the scenario tree, is then repredent
by the set of indice$is, ..., i71 1) Wherei;, € Z;
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Scenario Generation Techniques

Scenario Trees
Predecessor and Descendant:

Two useful functions defined on the node indices are the pesd®rpred(-),
and the descendantgc(-):

pred(i;) returns the node iff;_; connected to;,

dec(i;) returns a subset of nodesip, ; connected to;

att, the probability of being at node € 7, is denoted by(i;) so that
Zz‘tezt p(it) =1

sometimes it is more useful to use the transition probaslit(i;, i; 1),
for i, 1 € dec(iy) Wherezit+1€dec(it)p(z’t,z'tﬂ) = 1.
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Scenario Generation Techniques

Scenario Trees
Predecessor and Descendant:

Two useful functions defined on the node indices are the pesd®rpred(-),
and the descendantgc(-):

pred(i;) returns the node iff;_; connected to;,

dec(i;) returns a subset of nodesip, ; connected to;

att, the probability of being at node € 7, is denoted by(i;) so that
Zz‘tezt p(it) =1

sometimes it is more useful to use the transition probaslit(i;, i; 1),
for i, 1 € dec(iy) Wherezit+1€dec(it)p(z’t,z'tﬂ) = 1.
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Scenario Generation Techniques

B

Importance Sampling

One technique in scenario selection is sequential impogtaampling:

general idea: obtain scenarios that are important (in s@mge3 in the

stochastic program

sequential importance sampling obtains these scenarasiterative

fashion (see e.g. Dupacova, 2000):

1. generate scenarios for a for a given tree structure

2. solve the stochastic program is to obtain values for thmmance
sampling criterion at each node.

3. use nodal values to determine where the structure of #r1easio tree
should be changed and/or where to resample a subtree
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Scenario Generation Techniques

Importance Sampling - Discretization

Discretization is an alternative to sampling from a disthbn:

a relatively simple technique for discretizatiomm®ment matching(see
e.g. Dupacova, 2000)

to discretize the normal distribution it is possible to niettee first two
moments with three symmetric points

Example:
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Scenario Generation Techniques

Importance Sampling - Discretization

Alternative discretization techniques rely on the miniatian of
transportation metrics to approximate a continuous thstion with a discrete

distribution:

assume that a desired scenario tree structure has alreadylbtrmined

the goal is to minimize the difference between the optimale/af the
stochastic program with the true distribution and the optivalue of the
stochastic program with the approximate distribution

Example:
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Scenario Generation Techniques

Generating Sample Paths of Uncertain Data

There are many different methods to generate sample pathe ahcertain
data. Sample paths may come from

expert’s expectation
historical observations

time-series model

The remaining problem is then to convert a set of sample patbhs scenario
tree.
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Scenario Generation Techniques

Generating Sample Paths of Uncertain Data

There are many different methods to generate sample pathe ahcertain
data. Sample paths may come from

expert’s expectation
historical observations
time-series model
The remaining problem is then to convert a set of sample patbhs scenario

tree. This can be done e.g. by clustering similar first stageegaof the same
paths.
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Scenario Generation Techniques

Deterministic Equivalent Forms

The discrete and finite distribution of a scenario tree alltine stochastic
recourse problem to be written as a deterministic program.

Once a scenario tree is constructed, each rpdethe scenario tree
determines values fot, (£171), By (€71), b (€71, L (€171), ue (€871), and
q: (-, £71) which are denoted by\;,, B;., b;,, l;,, u;,, andg;, (-).
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Scenario Generation Techniques

Deterministic Equivalent Forms

The recourse problen®{10) can then be written as

minxl qdi1 (331) + 212 cTs p(iQ)Qi2 (xl)
S.1. Alajl = bl, (12)

ll S X1 S Uy,
with Q,,, fori, € Z,,t = 2,..., T, given by the minimization problems
Q’it (:Ct_l) — minﬂct di, (xt) + Zit-ﬂ Edec(iy) p(ih it—i-l)Q’iH-l (xt)

S.L Bitxt_l + Aitxt = bit, (13)

L, < xp <y,

and@);,., can be taken to be equal to zero.
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Scenario Generation Techniques

Conversion into a fully linear problem

Alternatively, by introducing auxiliary variables, thegpewise linear problem
can be converted into a fully linear problem (with potemyial huge number
of decision variables).

In this case, the;, () will take the linear form:

Gi. (*) = (Qi¢s ) (14)

whereg;, IS now a vector of appropriate dimension.
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Scenario Generation Techniques

Conversion into a fully linear problem

The deterministic equivalent for the linear program in agsgent form
carefully considers the structure of the scenario tree:

min  {(q1,T1) + i er, P12)(Giys Tin) + -+ D2 ez, PUT ) Qg s Tir)

subject to
Ay = by,
Bi,r1+  Aiyx, = b, Vig €Iy,

BiTxpred(iT) + A,L'TwiT = b'iTv Yir € I,

lq;t < z; < ug,, Viy € 1y, t=1,...,T.
(15)
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Scenario Generation Techniques

Conversion into a fully linear problem

this arborescent form implicity includes non-anticipgtoonstraints that
the decision taken a&tdoes not depend on the uncertainty that is realized
In the future.

the decision vectors arg,, i; € Z;,t = 1,...,’T', so there is one decision
for each node of the scenario tree except for thoge-atl.
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Scenario Generation Techniques

The split-variable formulation

Assume there ar§ sample paths in the scenario tree such ghatdependent
subproblems are created by allowing all decisions to beassacedependent:

Then the individual subproblem for scenasiwvith nodes(is, ..., i741) IS

min (g1, 1) + (¢, 23) + o + {Gig, T7)

S.1L. Alflfi — b17
Bi,xi+ A;,x5 = b, (16)
BiTCIj%—l + A'LT:U% — b’iTv

plus any upper and lower bounds gh
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Scenario Generation Techniques

The split-variable formulation

When combining all subproblems into one problem, non-grdiory
constraints must be explicitly considered in this formiolat

For any two scenariosands’ with a common path up to and includimg

z; =z5,forj =1,...,t, must be enforced.

If p* is the probability of scenaris, the overall split-variable representation
for the multistage program is

min Zp CJ1,£IZ'1 <Qi27x§> T T <QiT7x%>)7

subject to a set of constraintsd) for eachs, the non-anticipatory constraints,
and any upper and lower bound constraints:gn

O S.T. RACHEV I O > Module S-5/1 - Part 1 -Asset Liability Management — p. 84



	Literature Recommendations
	Overview
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Optimization and Risk
	Risk Measures
	Risk Measures
	Risk Measures
	Risk Measures
	Risk Measures
	Risk Measures
	Risk Measures
	Risk Measures
	Risk Measures
	Properties of Risk Measures
	Properties of Risk Measures
	Properties of Risk Measures
	Properties of Risk Measures
	Risk-Return Optimization
	Risk-Return Optimization
	Risk-Return Optimization
	Risk-Return Optimization
	Risk-Return Optimization
	Risk-Return Optimization
	Risk-Return Optimization
	Risk-Return Optimization
	Risk-Return Optimization
	Risk-Return Optimization
	Risk-Return Optimization
	Risk-Return Optimization
	Risk-Return Optimization
	Risk-Return Optimization
	Single- and Multi-Stage Optimization
	Single- and Multi-Stage Optimization
	Single- and Multi-Stage Optimization
	Single- and Multi-Stage Optimization
	Single- and Multi-Stage Optimization
	Single- and Multi-Stage Optimization
	Single- and Multi-Stage Optimization
	Single- and Multi-Stage Optimization
	Single- and Multi-Stage Optimization
	Stochastic Programming
	General Recourse Problem
	General Recourse Problem
	General Recourse Problem
	General Recourse Problem
	General Recourse Problem
	General Recourse Problem
	General Recourse Problem
	General Recourse Problem
	General Recourse Problem
	General Recourse Problem
	Scenario Generation Techniques
	Scenario Generation Techniques
	Scenario Generation Techniques
	Scenario Generation Techniques
	Scenario Generation Techniques
	Scenario Generation Techniques
	Scenario Generation Techniques
	Scenario Generation Techniques
	Scenario Generation Techniques
	Scenario Generation Techniques
	Scenario Generation Techniques
	Scenario Generation Techniques
	Scenario Generation Techniques
	Scenario Generation Techniques
	Scenario Generation Techniques
	Scenario Generation Techniques
	Scenario Generation Techniques

