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Economics and Finance, Kluwer Academic Publisher, 2002

2) Stavros A. Zenios, Lecture Notes: Mathematical modeling and its

application in finance,

http://www.hermes.ucy.ac.cy/zenios/teaching/399.001/index.html

3) F. Fabozzi and A. Konisbi, The Handbook of Asset/Liability

Management: State-of-Art Investment Strategies, Risk Controls and

Regulatory Required, Wiley.

4) Svetlozar Rachev and Stefan Mittnik, Stable Paretian Models in Finance,

John Wiley & Sons Ltd., 2000

Module S-5/1 - Part 1 -Asset Liability Management – p. 2/84



S.T. RACHEV ◭ � ◮

Overview

1) Introduction

2) Optimization and Risk

3) Optimization Problems, Stochastic Programing and Scenario
Analysis

4) Modeling of the Risk Factors

5) ALM Implementation - a Pension Fund Example
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1) Introduction

1.1) Asset and Liability Streams

1.2) Examples

1.3) Major Tasks of ALM
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Introduction

Asset and Liability Streams

Asset liability management (ALM) attempts to find the optimalinvestment

strategy under uncertainty in both:

• the asset streams

• the liability streams.

⇒ The simultaneous consideration of assets and liabilities can be

advantageous when they have common risk factors.
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Introduction

Asset and Liability Streams

• Traditionally, banks and insurance companies used accrualaccounting for

essentially all their assets and liabilities.

• On the one hand they would take on liabilities, such as deposits, life

insurance policies or annuities.

• On the other hand they would invest the proceeds from these liabilities in

assets such as loans, bonds or real estate.

• All assets and liabilities were held at book value.

• Doing so the approachdisguised possible risksarising from how the

assets and liabilities were structured.
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Introduction

Example:

• A bank borrows USD 100 Mio at 3.00% for a year and lends the same

money at 3.20% to a highly-rated borrower for 5 years.

• For simplicity, we assume that all interest rates are annually compounded

and all interest accumulates to the maturity of the respective obligations.

• The net transaction appears profitable, since the bank is earning a 20

basis point spread.

• However, the transaction also entails considerable risk:

• At the end of a year, the bank will have to find new financing for the loan,

which will have 4 more years before it matures. If interest rates have

risen, the bank may have to pay a higher rate of interest on thenew

financing than the fixed 3.20 it is earning on its loan.
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Introduction

Example:

Suppose, for example that at the end of a year, an applicable 4-year interest

rate is 6.00%

Accrual accounting does not recognize the problem. The bookvalue of the

loan (the bank’s asset) is:

100Mio · 1.032 = 103.2Mio

The book value of the financing (the bank’s liability) is:

100Mio · 1.030 = 103.0Mio

Based upon accrual accounting, the bank earned USD 200,000 inthe first year.
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Introduction

Example:

However, market value accounting recognizes the bank’s predicament. The

respective market values of the bank’s asset and liability are:

100Mio · 1.0325

1.0604
= 92.72Mio

Hence, from a market-value accounting standpoint, the bankhas lost USD

10.28 Mio.

• The bank is in trouble, and the market-value loss reflects this.

• Ultimately, accrual accounting will recognize a similar loss when the

bank will have to secure financing for the loan at the new higher rate.
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Introduction

Example:

The problem in this example was caused by amismatch between assets and
liabilities .

We conclude that it is necessary to find the optimal investment strategy under

consideration of the time horizons of both

• the asset side

• the liability side
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Introduction

Example - Changing Economic Conditions

• Until the end of the 1970s interest rates in developed countries

experienced only modest fluctuations, so losses due to asset-liability

mismatches were small or trivial.

• Because yield curves were generally upward sloping, banks could earn a

spread by borrowing short and lending long.

• Things started to change in the 1970s, which ushered in a period of

volatile interest rates that continued into the early 1980s.

• Managers of many firms, who were accustomed to thinking in terms of

accrual accounting, were slow to recognize the emerging risk.

• Because the firms used accrual accounting, the result was notso much

bankruptcies as crippled balance sheets. Firms gradually accrued the

losses over the subsequent 5 or 10 years.
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Introduction

Example - Changing Economic Conditions

• One of the victims of the changing conditions is the US mutuallife

insurance company the Equitable.

• During the early 1980s, the USD yield curve was inverted, with

short-term interest rates spiking into the high teens.

• The Equitable sold a number of long-term guaranteed interest contracts

(GICs) guaranteeing rates of around 16% for periods up to 10 years.

• Equitable invested the assets short-term to earn the high interest rates

guaranteed on the contracts.

• Short-term interest rates soon came down. When the Equitable had to

reinvest, it couldn’t get nearly the interest rates it was paying on the GICs.

• Eventually Equitable was acquired by the Axa Group.
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Introduction

Example: Fixed-Income Securities

Classic ALM frameworks for constructing portfolios of fixed-income

securities:dedicationandimmunization:

• Dedication: assumes that the future liability payments aredeterministic

and finds an allocation such that bond income is sufficient to cover the

liability payments in each time period.

• Immunization: the portfolio is constructed by matching thepresent values

and interest rate sensitivities of the assets and liabilities. Allocation that

hedges against a small parallel shift in the term structure of interest rates.

⇒ Neglection of the stochastic nature of interest rates and liabilities and the

dynamic nature of investing.

Module S-5/1 - Part 1 -Asset Liability Management – p. 13/84



S.T. RACHEV ◭ � ◮

Introduction

Major Tasks of ALM

Find Adequate Measures and Models for Risk Quantification

• Adequate Risk Measures like

• Value-at-Risk

• Expected Shortfall

• Alternative Measures

• Properties of Risk Measures
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Introduction

Major Tasks of ALM

Capture the behavior of returns by an adequate distributionand model:

• Finding an adequate distribution

• Are asset returns normally distributed?

• Alternative heavy-tailed distributions

• Time-Series Models

• autocorrelation in the returns

• conditional variance etc.
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Introduction

Major Tasks of ALM

Capture the dependence structure between the risk factors:

• Fit Multivariate Distributions

• Dependence Modeling for univariate distributions

• Correlation as measure of dependence

• Copulas
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Introduction

Major Tasks of ALM

Capture the dynamic and stochastic characteristics of assets and
liabilities:

• Scenario analysis techniques

• Stochastic control methods

• Stochastic programming
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1) Optimization and Risk

1.1) Risk Measures

1.2) Properties of Risk Measures

1.3) Risk-Return Optimization
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Optimization and Risk

Risk-Return Optimization

The goal of risk-return optimization is tooptimize a tradeoff between the

risk and return.

Major Issues:

• Adequate Risk Measures

• Portfolio Optimization Problems

• Techniques for Optimization
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Risk Measures

Standard measure of Risk

The standard measure of risk for a portfolio of equities suggested by

Markowitz is thevarianceof the return:

Portfolio consists of

• n assets with corresponding risky returnsR = (r1, ..., rn)′.

• portfolio weightsω = (ω1, ..., ωn)′ such thatωi ≥ 0 and
∑n

i=1 ωi = 1.

⇒ The risk associated with the portfolio returnrp = ω′R is given by

σ2
p = ω′Σω

whereΣ is the covariance matrix ofR.
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Risk Measures

Standard measure of Risk - Modifications

Criticism of the variance as standard risk measure:

• Variancepenalizes both large gains and large losses. However, only

large losses are critical for investors or the survival of the institution.

• Financial returns are typicallyheavy-tailed, and in that case, the variance

does not even exists.
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Risk Measures

Standard measure of Risk - Modifications

Possible Modification: asymmetric risk measure that accounts only for large

losses is thesemivariance:

E
(

[ω′E(R) − ω′R]+
)2

.

Problem: numerical optimization of the semivariance is difficult.

Alternative modification: usedownside formulawhich measures the degree

that the returns are distributed below some target returnr∗:

E
(

[r∗ − ω′R]+
)2

.
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Risk Measures

Standard measure of Risk - Modifications

Use themean absolute deviation (MAD) of the portfolio as risk measure:

mp = E |ω′R − ω′E(R)| ,

Use thescale parameterof a heavy-tailed distribution as measure of risk (see

later sections).
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Risk Measures

Tail Measures

Other risk measures rely only on thetail of the distribution : modeling of the

probability of extreme events becomes more important.

Most prominent measures:

• Value at Risk (VaR)

• Conditional Value at Risk (CVaR)
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Risk Measures

Value at Risk

For a given confidence levelβ ∈ (0, 1), VaR is the minimum value of the loss,

or negative return, that is exceeded no more than 100(1-β)% of the time:

x ∈ R
n: given decision on asset allocationL(x) ∈ R: random variable

representing loss, or negative return, for eachx

ΨL(x, ζ): the distribution function forL(x) : ΨL(x, ζ) = P(L(x) ≤ ζ)

For a given decisionx, the Value at Risk at confidence levelβ is given by:

VaRβ(x) = inf {ζ|ΨL(x, ζ) ≥ β} .
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Risk Measures

Conditional Value at Risk

Define a random variableTβ(x) on theβ-tail of the lossL(x) through the

distribution function:

ΨTβ
(x, ζ) =







0 ζ < VaRβ(x)
ΨL(x,ζ)−β

1−β
ζ ≥ VaRβ(x)

(1)

TheConditional Value at Risk at confidence levelβ is the mean of the tail

random variableTβ(x) with distribution function (1):

CVaRβ(x) = E(Tβ(x)) .
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Risk Measures

VaR and CVaR

CVaR is closely related to the conditional expectation beyond VaR:

E(L(x)|L(x) ≥ VaRβ(x)) ≤ CVaRβ(x) ≤ E(L(x)|L(x) > VaRβ(x)) . (2)

If there is no discontinuity in the distribution function ofL(x) at VaRβ(x),

then equality holds in equation (2).

For this reason, CVaR is also sometimes called theExpected Tail Loss(ETL).
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Risk Measures

Alternative Risk Measures

The literature suggests several alternative risk measures:

• RAROC

• Rachev’s Ratio

• ....

Further examples will be discussed in the lecture.
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Properties of Risk Measures

Coherent Risk Measures

To help define a sensible risk measure, properties that are required of a

coherentrisk measure are introduced (see e.g. Artzner et al):

i. sub-additive:ρ(v + v′) ≤ ρ(v) + ρ(v′),

ii. positive homogeneous:ρ(λv) = λρ(v), ∀λ ≥ 0,

iii. translation invariant:ρ(v + c) = ρ(v) + c, ∀c ∈ R, and

iv. monotonous:ρ(v) ≥ 0, ∀v ≥ 0.

Hereby is:

V the space of real-valued random variables,ρ : V −→ R risk measure,

v, v′ ∈ V random variables are thought of as losses
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Properties of Risk Measures

Coherence of VaR

VaR does not satisfy these properties in general because VaRis not
sub-additive:
Example:

⇒ Lack of subadditivity is very undesirable because diversification is not

promoted.
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Properties of Risk Measures

Coherence of CVaR

The coherence of the set of random variables{L(x)} can be stated as a

function ofx whenL(x) is linear:

L(x) = x1Y1 + ... + xnYn.

In this situation,Yi might be a random variable representing an individual

asset loss, andL(x) is a random variable representing the total portfolio loss.

Coherence of CVaRβ(x) in this framework means

1. CVaRβ(x) is sublinear inx,

2. CVaRβ(x) = c whenL(x) = c ∈ R, and

3. CVaRβ(x) ≤ CVaRβ(x′) whenL(x) ≤ L(x′).
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Properties of Risk Measures

Remarks on Coherent Risk Measures

• Sub-additivity and positive homogeneity guarantee that a coherent risk

measure is convex.

• A lack of convexity of VaR contributes to numerical difficulties in

optimization.

• For the special class of elliptical distribution, VaR is sub-additive and

coherent.

• VaR is easy to work with when normality of distributions is assumed, but

financial data is typically heavy-tailed.

• In addition to coherence, CVaR has a representation that is practical in

minimization problems with scenarios generated from any distributional

assumption.
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Risk-Return Optimization

The mean-variance optimization problem

The classical mean-variance optimization problem is to minimize the risk of

the portfolio for a minimum level of expected return:

min
ω

ω′Σω

s.t. ω′µ = µ0,
∑n

i=1 ωi = 1.

(3)
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Risk-Return Optimization

The mean-variance optimization problem

If the risky returnsR are assumed to follow a multivariate normal distribution

N(µ,Σ), the portfolio returnrp = ω′R is also normally distributed with:

• meanµp = ω′µ

• varianceσ2
p = ω′Σω.

The solution to the above problem is easily solved with Lagrangian

techniques.

Example:
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Risk-Return Optimization

The mean-variance optimization problem

A drawback of optimization problem (3) is that it requires a large number of

parameters to be estimated:

• Assumen risky assets: the covariance matrix consists ofn(n + 1)/2

elements.

• For example: if the universe of assets consists of the S&P500, over

125,000 variances/covariances must be estimated.
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Risk-Return Optimization

The Multi-Factor Equation

A possible solution is to model each asset with a multifactorequation:

ri = µi + βi1F1 + ... + βikFk + ǫi, (4)

where

• Fj is the deviation of the random factor j from its mean

• cov(Fj , Fl) = 0 for all j 6= l

• ǫi are asset specific risks with zero expectation, uncorrelated and

independent of the factors.
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Risk-Return Optimization

The Multi-Factor Equation

Examples of typical factors:

• inflation

• interest rates

• GDP etc.

Example:
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Risk-Return Optimization

The Multi-Factor Equation

The portfoliorp = ω′R can be written as

rp = µp +

k
∑

j=1

βpjFj + ǫp,

where

µp = ω′µ, βpj =

n
∑

i=1

ωiβij , ǫp =

n
∑

i=1

ωiǫi.

It follows the variance of the portfolio is

σ2
p =

k
∑

j=1

β2
pjσ

2
Fj

+

n
∑

i=1

ω2
i σ2

ǫi
.
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Risk-Return Optimization

The Multi-Factor Equation

Two sorts of risk:

• systematic or market risk (first term)

• unsystematic risk of the portfolio (second term)

If equal weight is given to each asset,ωi = 1/n, the unsystematic risk is
bounded byc/n for some constantc, so this risk can be diversified away
asn grows large!!
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Risk-Return Optimization

The Multi-Factor Equation

Using the factor model in the minimum variance optimizationproblem gives:

min
ω

σ2
p =

∑k

j=1 β2
pjσ

2
Fj

+
∑n

i=1 ω2
i σ2

ǫi

s.t. ω′µ = µ0,

βpj =
∑n

i=1 ωiβij

∑n

i=1 ωi = 1.

The factor sensitivitiesβij , factor variances, and specific risk variances can be

estimated through linear regression in equation (4).

⇒ significant reduction in the number of parameter estimates needed as

compared to optimization problem (3).

Module S-5/1 - Part 1 -Asset Liability Management – p. 40/84



S.T. RACHEV ◭ � ◮

Risk-Return Optimization

The Multi-Factor Equation

Example:
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Risk-Return Optimization

The Multi-Factor Equation

Remarks:

• Both of the above are quadratic optimization problem.

• A linear optimization problem can be achieved when the variance of the

portfolio is replaced with its mean-absolute deviationmp.

• SinceR is multivariate normal, the relation holds thatmp =
√

2
π
σp, so

minimizing the mean-absolute deviation will produce thesame optimal
portfolio as minimizing the variance.
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Risk-Return Optimization

Elliptical Distributions

Examples of Elliptical Distributions:
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Risk-Return Optimization

Elliptical Distributions

The class of elliptical distributions offers special properties in portfolio theory

that are useful in minimizing VaR or CVaR:

• For any elliptically distributed random vectorR with finite variance for

all univariate marginals, variance is equivalent to any positive

homogeneous risk measureρ.

• If rp = ω′R andr̃p = ω̃′R are two linear portfolios with corresponding

variancesσ2
p andσ̃2

p:

ρ (rp − E(rp)) ≤ ρ (r̃p − E(r̃p)) ⇐⇒ σ2
p ≤ σ̃2

p.
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Risk-Return Optimization

Elliptical Distributions

In addition ifρ is translation invariant, the solution to the following risk-return

optimization problems coincide:

min
ω

σ2
p

s.t. rp = ω′R,

E(rp) = µ0,
∑n

i=1 ωi = 1,

min
ω

ρ(rp)

s.t. rp = ω′R,

E(rp) = µ0,
∑n

i=1 ωi = 1,

whereµ0 is the desired return.
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Risk-Return Optimization

Elliptical Distributions

Under the assumption assumption of elliptical distributions, the same optimal

portfolios will be obtained by:

• minimization of VaR

• minimization of CVaR

• minimization of the variance

But: due to the heavy-tailed nature of financial returns, elliptical
distributions may not be an adequate assumption!! See the next section
for further details.
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4) Optimization Problems, Stochastic Programing and

Scenario Analysis

3.1) Single- and Multistage Optimization Problems

3.2) Stochastic Programming

3.3) Scenario Generation
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Single- and Multi-Stage Optimization

Single-Stage Optimization

Assume we want to optimize the portfolio according to thr CVaR criterium.

Define

X =







ω ∈ R
n

∣

∣

∣

∣

∣

∣

n
∑

j=1

ωj = 1, ωj ≥ 0, j = 1, ..., n







, (5)

wherex ∈ X represents the portfolio weights inn assets. The random return

on these assets at the end of a time period is represented byR = (r1, ..., rn)′,

and the negative return of the portfolio is given by

L(x) = −x′R.
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Single- and Multi-Stage Optimization

Single-Stage Optimization

If the mean ofR is given by the vectorµ, the risk-return problem is:

min
x∈X

CVaRβ(x) s.t. x′µ ≥ µ0,

whereµ0 is the required portfolio return, and by varyingµ0, the efficient

frontier is obtained.
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Single- and Multi-Stage Optimization

Single-Stage Optimization

If the uncertainty in the return is given through the set of scenarios

{R1, ..., RS} where eachRs ∈ R
n occurs with probabilityps, the problem

can be rewritten as:

min ζ + 1
1−β

∑S

s=1 ps [−x′Rs − ζ]
+

s.t. x′µ ≥ µ0,

x ∈ X, ζ ∈ R,
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Single- and Multi-Stage Optimization

Single-Stage Optimization

By introducing auxiliary variablesys, s = 1, ..., S, a linear program results:

min ζ + 1
1−β

∑S

s=1 psys

s.t. x′µ ≥ µ0,

x′Rs + ζ + ys ≥ 0, s = 1, ..., S,

ys ≥ 0, s = 1, ..., S,

x ∈ X, ζ ∈ R.

⇒ This program is used to compare hedging strategies for e.g. international

asset allocation.
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Single- and Multi-Stage Optimization

Multi-Stage Optimization

Extending the single period risk-return problem to a multi-period setting is

difficult and some modifications are necessary:

• In a multi-period setting, one usually deals with awealth process instead
of returns so that problems will be convex and sometimes linear.

• The general form of a stochastic program with recourse allows any
portfolio allocation to be made in each stage.

• Typically a function of the wealth process, not the return process, is

optimized over the quantities of assets held, not the portfolio weights.

• Instead of risk-return analysis, one can perform risk-reward analysis

where the risk, for instance, is a function of the wealth process and the

reward is the expected terminal wealth.
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Single- and Multi-Stage Optimization

Multi-Stage Optimization

For instance, a multi-period extension of mean-variance analysis could be (see

Maranas et al):

max λE(wT ) − (1 − λ)var(wT ).

Here,wT is the terminal wealth, and the max is taken over all fixed-mixed

decision rules.
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Single- and Multi-Stage Optimization

Multi-Stage Optimization

Remarks:

• In a so-called fixed-mixed rule, the portfolio is reallocated in each time

period to keep a certain percentage of wealth in each asset.

• As λ is varied between zero and one, a type of efficient frontier is

obtained.

• While the number of decision variables are greatly reduced,the problem

becomes non-convex, and a global search algorithm is necessary.
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Single- and Multi-Stage Optimization

CVaR and Multi-Stage Optimization

The coherence of a risk measure in a multi-period setting is also defined in

terms of a wealth processw = (w1, ..., wT ) wherew1 is a known

deterministic wealth:

Also a weighted average of CVaR over the time horizon is coherent!

If CVaRβ(−wt) is the CVaR associated with the negative wealth−wt, then a

coherent risk measure is given by

ρ(w) = ρ(w1, ..., wT ) =
T

∑

t=2

µtCVaRβ(−wt), (6)

where the weights are nonnegative and sum to one.
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Single- and Multi-Stage Optimization

CVaR and Multi-Stage Optimization

In this multi-stage setting coherence means thatρ is:

1. convex:ρ(λw + (1 − λ)w̃) ≤ λρ(w) + (1 − λ)ρ(w̃), ∀λ ∈ [0, 1],

2. positive homogeneous:ρ(λw) = λρ(w), ∀λ ≥ 0,

3. translation invariant:ρ(w1 + c, ..., wT + c) = ρ(w) − c, ∀c ∈ R, and

4. monotonous: ifwt ≤ w̃t a.s. fort = 1, ..., T, thenρ(w) ≥ ρ(w̃).
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Stochastic Programming

Introduction

Stochastic programming offers a framework that can incorporate many of the

characteristics of an ALM problem.

Organisation of the Section:

• General Setup

• Scenario Generation

• The T-Stage ALM Problem

• Application
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General Recourse Problem

A 2-Stage Recourse Problem

In a 2-stage recourse problem, a recourse decision is made after a realization

of uncertainty.

Consider the following asset allocation problem:

• First Stage Decision: the initial portfolio allocation

• Uncertainty: the asset returns

• Recourse Decision: the portfolio adjustments.

→ This 2-stage recourse problem finds the optimal initial and rebalanced

allocations for the given distribution of future stock movements.
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General Recourse Problem

A 2-Stage Recourse Problem

• The first stage has a vector of initial decisionsx1 ∈ R
n1 made att = 1

when there is a known distribution of future uncertainty.

• The second stage decisionsx2 ∈ R
n2 adapt att = 2 after the first stage

uncertaintyξ1 is realized.

• The second stage decisions usually also consider the distribution of future

uncertaintyξ2 realized aftert = 2.
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General Recourse Problem

Mathematical Description

This setup is described mathematically by first consideringhow the optimal

recourse decision is determined. We define:

• x1 the stage decision vector

• ξ1 and a given realization of the first stage uncertainty

• q2(x1, x2, ξ1) is a cost of decisionx2 for the given realization of the first

stage uncertaintyξ1 and the given first stage decisionx1,

• Q2(x1, x2, ξ1, ξ2) is the cost of decisionx2 for given realizations of

uncertaintiesξ1 andξ2 and the given first stage decisionx1,

• B2(ξ1) is thetechnology matrixthat converts a first stage decision into

resources in the second stage, and

• A2(ξ1) is therecourse matrix.
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General Recourse Problem

Mathematical Description

Then the best recourse decision is found through the following second
stage problem:

minx2
q2(x1, x2, ξ1) + Eξ2

(Q2(x1, x2, ξ1, ξ2)| ξ1)

s.t. B2(ξ1)x1 + A2(ξ1)x2 = b2(ξ1),

l2(ξ1) ≤ x2 ≤ u2(ξ1)

(7)
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General Recourse Problem

Remarks:

• It is possible to remove the cost functionQ2 by including the second term

of the objective in the cost functionq2.

• The problem is said to havefixed recoursewhenA2 is independent ofξ1.

• The subscripts indicate at whicht a value is known except in the case of

ξt

• For instance, the realizations ofB2, A2, andb2 are all known att = 2,

which is the beginning of the second stage, butξ2 is not realized until

aftert = 2.
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General Recourse Problem

The full 2-stage recourse problem

The second stage problem as incorporated as follows:

With the optimal value of the second stage problem (7) denoted by

Q1(x1, ξ1), the 2-stage problem minimizes:

• the sum of a first stage costq1(x1) and

• the expected value of the second stage cost EQ1(x1, ξ1):

minx1
q1(x1) + EQ1(x1, ξ1)

s.t. A1x1 = b1,

l1 ≤ x1 ≤ u1.

(8)
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General Recourse Problem

2-Stage and Multistage Problems

• only one recourse decision can be made, instead of a sequenceof

decisions over the time horizon

• a multistage recourse program can provide a more realistic model, but it

is more complex and can often be very difficult to solve numerically

• as in the 2-stage problem, the initial vector of decisionsx1 is made before

the first realization of uncertaintyξ1, and a second stage decisionx2 is

then made based onx1 andξ1

• in theT -stage problem, this process continues for the uncertaintiesξt,

t = 1, ..., T − 1, and the decisions vectorsxt, t = 1, ..., T

• there is usually one additional realization of uncertaintyξT following the

final decisionxT
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General Recourse Problem

The Multistage Problem

TheT -stage recourse program can be defined recursively as an extension of

the 2-stage program:

• ξt = {ξj , j = 1, ..., t} denotes the uncertainty up to and including staget,

for t = 1, ..., T , where eachξj is the uncertainty realized in stagej.

• xt = {xj , j = 1, ..., t} denotes the decisions up to and including staget,

where eachxj is the decision made for stagej.

Then the first stage problem is essentially the same as problem (8):

minx1
q1(x1) + Eξ1

Q1(x
1, ξ1)

s.t. A1x1 = b1,

l1 ≤ x1 ≤ u1,

(9)
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General Recourse Problem

The Multistage Problem
Qt, for t = 1, ..., T − 1 is given by the minimization problems:

Qt(x
t, ξt) = minxt+1

qt+1(x
t+1, ξt) + Eξt+1

(

Qt+1(x
t+1, ξt+1)

∣

∣ ξt
)

s.t. Bt+1(ξ
t)xt + At+1(ξ

t)xt+1 = bt+1(ξ
t),

lt+1(ξ
t) ≤ xt+1 ≤ ut+1(ξ

t),

(10)

andQT (xT , ξT ) is a known function, not the solution to another minimization

problem.
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General Recourse Problem

The Multistage Problem

• it is possible to setQT = 0 by including the second term of the objective

in qT .

• the above problem (9-10) is a form of the multistage recourse problem

that is relevant to the ALM problem that will be presented soon

• alternative forms, such as that found in [?], allow the first constraint of

(10) to depend on all decisions up to timet:

t
∑

τ=1

Bt+1,τ (ξt)xτ + At+1(ξ
t)xt+1 = bt+1(ξ

t), (11)
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Scenario Generation Techniques

Introduction

To numerically solve the recourse problem (9-10), often so-calledscenario
generation techniquesare used. The distribution of(ξ1, ..., ξT ) is

approximated by a set of scenarios:

Figure 1: An exemplary Scenario Tree.
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Scenario Generation Techniques

Scenario Trees

• a first stage optimal allocation is found in the node att = 1

• optimal recourse allocations are found in every node att = 2

• in a 2-stage problem, there is no additional allocation decision made at

the nodes att = 3

• the tree shown in the figure is calledbalanced because each node att = 2

is connected to two nodes att = 3.
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Scenario Generation Techniques

Scenario Trees

• the nodes of the scenario tree are numbered starting with thevalue of one

at t = 1

• let It be the number of nodes up to and including those att

• sets of indicesIt = {It−1 + 1, ..., It}, are defined fort = 2, ..., T + 1,

with I1 = 1

• a scenarios, which is a path through the scenario tree, is then represented

by the set of indices(i2, ..., iT+1) whereit ∈ It
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Scenario Generation Techniques

Scenario Trees

Predecessor and Descendant:

Two useful functions defined on the node indices are the predecessor,pred(·),

and the descendant,dec(·):

• pred(it) returns the node inIt−1 connected toit

• dec(it) returns a subset of nodes inIt+1 connected toit

• at t, the probability of being at nodeit ∈ It is denoted byp(it) so that
∑

it∈It
p(it) = 1

• sometimes it is more useful to use the transition probabilitiesp(it, it+1),

for it+1 ∈ dec(it) where
∑

it+1∈dec(it)
p(it, it+1) = 1.
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Scenario Generation Techniques

Scenario Trees

Predecessor and Descendant:

Two useful functions defined on the node indices are the predecessor,pred(·),

and the descendant,dec(·):

• pred(it) returns the node inIt−1 connected toit

• dec(it) returns a subset of nodes inIt+1 connected toit

• at t, the probability of being at nodeit ∈ It is denoted byp(it) so that
∑

it∈It
p(it) = 1

• sometimes it is more useful to use the transition probabilitiesp(it, it+1),

for it+1 ∈ dec(it) where
∑

it+1∈dec(it)
p(it, it+1) = 1.
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Scenario Generation Techniques

Importance Sampling

One technique in scenario selection is sequential importance sampling:

• general idea: obtain scenarios that are important (in some sense) in the

stochastic program

• sequential importance sampling obtains these scenarios inan iterative

fashion (see e.g. Dupacova, 2000):

1. generate scenarios for a for a given tree structure

2. solve the stochastic program is to obtain values for the importance

sampling criterion at each node.

3. use nodal values to determine where the structure of the scenario tree

should be changed and/or where to resample a subtree
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Scenario Generation Techniques

Importance Sampling - Discretization

Discretization is an alternative to sampling from a distribution:

• a relatively simple technique for discretization ismoment matching(see

e.g. Dupacova, 2000)

• to discretize the normal distribution it is possible to match the first two

moments with three symmetric points

Example:
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Scenario Generation Techniques

Importance Sampling - Discretization

Alternative discretization techniques rely on the minimization of

transportation metrics to approximate a continuous distribution with a discrete

distribution:

• assume that a desired scenario tree structure has already been determined

• the goal is to minimize the difference between the optimal value of the

stochastic program with the true distribution and the optimal value of the

stochastic program with the approximate distribution

Example:
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Scenario Generation Techniques

Generating Sample Paths of Uncertain Data

There are many different methods to generate sample paths ofthe uncertain

data. Sample paths may come from

• expert’s expectation

• historical observations

• time-series model

The remaining problem is then to convert a set of sample pathsinto a scenario

tree.
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Scenario Generation Techniques

Generating Sample Paths of Uncertain Data

There are many different methods to generate sample paths ofthe uncertain

data. Sample paths may come from

• expert’s expectation

• historical observations

• time-series model

The remaining problem is then to convert a set of sample pathsinto a scenario

tree. This can be done e.g. by clustering similar first stage values of the same

paths.

Module S-5/1 - Part 1 -Asset Liability Management – p. 77/84



S.T. RACHEV ◭ � ◮

Scenario Generation Techniques

Deterministic Equivalent Forms

The discrete and finite distribution of a scenario tree allows the stochastic

recourse problem to be written as a deterministic program.

Once a scenario tree is constructed, each nodeit of the scenario tree

determines values forAt(ξ
t−1), Bt(ξ

t−1), bt(ξ
t−1), lt(ξ

t−1), ut(ξ
t−1), and

qt(·, ξ
t−1) which are denoted byAit

, Bit
, bit

, lit
, uit

, andqit
(·).
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Scenario Generation Techniques

Deterministic Equivalent Forms

The recourse problem (9-10) can then be written as

minx1
q1(x1) +

∑

i2∈I2
p(i2)Qi2(x

1)

s.t. A1x1 = b1,

l1 ≤ x1 ≤ u1,

(12)

with Qit
, for it ∈ It, t = 2, ..., T , given by the minimization problems

Qit
(xt−1) = minxt

qit
(xt) +

∑

it+1∈dec(it)
p(it, it+1)Qit+1

(xt)

s.t. Bit
xt−1 + Ait

xt = bit
,

lit
≤ xt ≤ uit

,

(13)

andQiT+1
can be taken to be equal to zero.
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Scenario Generation Techniques

Conversion into a fully linear problem

Alternatively, by introducing auxiliary variables, the piecewise linear problem

can be converted into a fully linear problem (with potentially a huge number

of decision variables).

In this case, theqit
(·) will take the linear form:

qit
(·) = 〈qit

, ·〉, (14)

whereqit
is now a vector of appropriate dimension.
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Scenario Generation Techniques

Conversion into a fully linear problem

The deterministic equivalent for the linear program in arborescent form

carefully considers the structure of the scenario tree:

min 〈q1, x1〉 +
∑

i2∈I2
p(i2)〈qi2 , xi2〉 + · · · +

∑

iT ∈IT
p(iT )〈qiT

, xiT
〉

subject to

A1x1 = b1,

Bi2x1+ Ai2xi2 = bi2 , ∀i2 ∈ I2,
...

BiT
xpred(iT ) + AiT

xiT
= biT

, ∀iT ∈ IT ,

lit
≤ xit

≤ uit
, ∀it ∈ It, t = 1, ..., T.

(15)
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Scenario Generation Techniques

Conversion into a fully linear problem

• this arborescent form implicity includes non-anticipatory constraints that

the decision taken att does not depend on the uncertainty that is realized

in the future.

• the decision vectors arexit
, it ∈ It, t = 1, ..., T , so there is one decision

for each node of the scenario tree except for those atT + 1.
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Scenario Generation Techniques

The split-variable formulation

Assume there areS sample paths in the scenario tree such thatS independent

subproblems are created by allowing all decisions to be scenario dependent:

Then the individual subproblem for scenarios with nodes(i2, ..., iT+1) is

min 〈q1, x
s
1〉 + 〈qi2 , x

s
2〉 + ... + 〈qiT

, xs
T 〉

s.t. A1x
s
1 = b1,

Bi2x
s
1+ Ai2x

s
2 = bi2 ,

...

BiT
xs

T−1 + AiT
xs

T = biT
,

(16)

plus any upper and lower bounds onxs
t .
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Scenario Generation Techniques

The split-variable formulation

When combining all subproblems into one problem, non-anticipatory

constraints must be explicitly considered in this formulation

For any two scenarioss ands′ with a common path up to and includingt,

xs
j = xs′

j , for j = 1, ..., t, must be enforced.

If ps is the probability of scenarios, the overall split-variable representation

for the multistage program is

min
S

∑

s=1

ps (〈q1, x
s
1〉 + 〈qi2 , x

s
2〉 + ... + 〈qiT

, xs
T 〉) ,

subject to a set of constraints (16) for eachs, the non-anticipatory constraints,

and any upper and lower bound constraints onxs
t .
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