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Probability metrics with applications in finance

Abstract

In the paper, we consider the application of the theory of proba-
bility metrics in several areas in the field of finance. First, we argue
that specially structured probability metrics can be used to quantify
stochastic dominance relations. Second, the methods of the theory
of probability metrics can be used to arrive at a general axiomatic
treatment of dispersion measures and probability metrics can be used
to describe continuity of risk measures. Finally, the methods of prob-
ability metrics theory are applied to the benchmark-tracking problem
significantly extending the problem setting.

Key words: probability metrics, stochastic dominance, dispersion mea-
sure, deviation measure, risk measure, benchmark-tracking



1 Introduction

The development of the theory of probability metrics started with the in-
vestigation of problems related to limit theorems in probability theory. The
limit theorems have a very important place in probability theory, statistics,
and all their applications. A well-known example is the celebrated Central
Limit Theorem (CLT), the Generalized CLT, the max-stable CLT, functional
limit theorems, etc. In general, the applicability of the limit theorems stems
from the fact that the limit law can be regarded as an approximation to the
stochastic model considered and, therefore, can be accepted as an approxi-
mate substitute. The central question arising is how large an error we make
by adopting the approximate model. This question can be investigated by
studying the distance between the limit law and the stochastic model and
whether it is, for example, the sum or maxima of independent and identi-
cally distributed (i.i.d.) random variables makes no difference as far as the
universal principle is concerned.

Generally, the theory of probability metrics studies the problem of mea-
suring distances between random quantities. On one hand, it provides the
fundamental principles for building probability metrics — the means of mea-
suring such distances. On the other, it studies the relationships between
various classes of probability metrics. The second realm of study concerns
problems which require a particular metric while the basic results can be
obtained in terms of other metrics. In such cases, the metrics relationship is
of primary importance.

Certainly, the problem of measuring distances is not limited to random
quantities only. In its basic form, it originated in different fields of math-
ematics. Nevertheless, the theory of probability metrics was developed due
to the need for metrics with specific properties. Their choice is very often
dictated by the stochastic model under consideration and to a large extent
determines the success of the investigation. Rachev (1991) provides more
details on the methods of the theory of probability metrics and its numerous
applications in both theoretical and more practical problems.

In this paper, our goal is to study the application of probability metrics
in the field of financial economics and more specifically within the field of
portfolio theory.! There are many problems which can be generalized by us-
ing probability metrics or extended by applying the methods of the theory.
We start with a brief introduction into the theory of probability metrics. The
axiomatic construction is described and interpretations of various metrics is

!Modern portfolio theory was first formulated by Markowitz (1952). In 1990 he was
awarded the Nobel prize in economic sciences for this contribution.



given from a financial economics viewpoint. The first topic in financial eco-
nomics that we discuss is the stochastic dominance theory which arises from
expected utility theory. Expected utility theory is a fundamental approach
for describing how choices under uncertainty are made. It is very basic not
only for the field of finance but for microeconomic theory. The second fi-
nancial economics topic is risk and dispersion measures. We generalize the
axiomatic treatment of dispersion measures by probability metrics and quasi-
metrics. Finally, we consider the benchmark-tracking problem in portfolio
theory and its extension to relative deviation metrics which are constructed
according to the methods of probability metrics theory.

2 Probability metrics

Generally speaking, a functional which measures the distance between ran-
dom quantities is called a probability metric. These random quantities can
be of a very general nature. For instance, with financial economics in view,
they can be random variables (r.v.s), such as daily equity returns or daily
exchange rate movements, or stochastic processes, such as the price evolu-
tion of a commodity in a given period, or much more complex objects such
as the daily movement of the shape of the yield curve. We limit the discus-
sion to one-dimensional r.v.s only. Rachev (1991) provides a more general
treatment.

Probability metrics are defined axiomatically. Denote by X := X(R) the
set of all r.v.s on a given probability space (§2,2, P) taking values in (R, B;)
where By denotes the Borel o-algebra of Borel subsets of R, and by £X,
the space of all joint distributions Prxy generated by the pairs X,Y € X.
Probability metrics are denoted by i and are defined on the space of all joint
distributions £X5,

u(X,Y) == pu(Prxy).

The axiomatic construction is based on a number of properties which we list
below. The formal definition is given afterwards.
Consider the following properties.

ID. pu(X,Y)>0and u(X,Y) =0, if and only if X ~Y
D. u(X,Y)>0and u(X,Y) =0, if X ~Y

These two properties are called the identity properties. The notation X ~ Y

denotes that X is equivalent to Y. The meaning of equivalence depends on
the type of metrics. If the equivalence is in almost sure sense, then the metrics
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are called compound. If ~ means equality of distribution, then the metrics
are called simple. Finally, if ~ stands for equality of some characteristics of
X and Y, then the metrics are called primary. The axiom ID is weaker than
ID.

The next axiom is called the symmetry aziom. It makes sense in the
general context of calculating distances between elements of a space,

SYM.  u(X,Y) = (Y, X)
The third axiom is the triangle inequality,
TL w(X,Y)<wX,2)+p(Z,Y) for any X,Y, Z

The triangle inequality is important because it guarantees, together with 1D,
that p is continuous in any of the two arguments,

(X, Y) = (X, 2)] < p(Z,Y).

The triangle inequality can be relaxed to the more general form called
triangle inequality with parameter K,

TL w(X,Y)< KX, Z)+u(Z,Y)) for any X,Y,Z and K > 1.

Notice that the traditional version TI appears when K = 1. Furthermore,
the three pairs of r.v.s in TI should be chosen in such a way that there exists
a consistent three-dimensional random vector (X,Y, Z) and the three pairs
are its two-dimensional projections.

The formal definition is given below.

Definition 1. A mapping p : LXo — [0,00] is said to be

e a probability metric of ID, SYM and TI hold,

e a probability semimetric if _T[), SYM, TI hold

e a probability distance with parameter K, if ID, SYM, and TI hold

e a probability semidistance with parameter K, if fl/), SYM, and TI hold

2.1 Examples of probability distances

The difference between probability semi-metrics and probability semi-dis-
tances is in the relaxation of the triangle inequality. Probability semi-distan-



ces can be constructed from probability semi-metrics by means of an addi-
tional function H(z) : [0,00) — [0, 00) which is non-decreasing and continu-
ous and satisfies the following condition

o H(2t)

R= s

which is known as Orlicz’s condition. There is a general result which states

that if p is a metric function, then H(p) is a semi-metric function and satisfies

the triangle inequality with parameter K = Kpy. We denote all functions
satisfying the properties above and Orlicz’s condition (2.1) by H.

In this section, we provide examples of probability distances. We also

provide interpretation of the formulae assuming that the random variables

describe financial quantities.

< 00 (2.1)

2.1.1 Primary distances

Common examples of primary metrics include,

1. The engineer’s metric

EN(X,Y):=|EX — EY|

where X and Y are r.v.s with finite mathematical expectation, EX <
oo and FY < .

2. The absolute moments metric

MOM,,(X,Y) := |m?(X) —m?(Y)|, p > 1

where mP(X) = (E|X|P)/? and X and Y are r.v.s with finite moments,
E|X|P <ooand E|Y|P < o0, p> 1.

2.1.2 Simple distances

Common examples of simple metrics and distances are stated below.

1. The Kolmogorov metric

p(X,Y) = sup | Fx(z) — Fy (x) (2.2)

z€R



where Fx(z) is the distribution function of X and Fy (x) is the distrib-
ution function of Y. The Kolmogorov metric is also called the uniform
metric. It is applied in the CLT in probability theory.

If the r.v.s X and Y describe the return distribution of two common
stocks, then the Kolmogorov metric has the following interpretation.
The distribution function Fx(x) is by definition the probability that X
loses more than a level z, Fx(z) = P(X < z). Similarly, Fy(z) is the
probability that Y loses more than x. Therefore, the Kolmogorov dis-
tance p(X,Y) is the maximum deviation between the two probabilities
that can be attained by varying the loss level z. If p(X,Y) = 0, then
the probabilities that X and Y lose more than a loss level x coincide
for all loss levels.

Usually, the loss level x, for which the maximum deviation is attained,
is close to the mean of the return distribution, i.e. the mean return.
Thus, the Kolmogorov metric is completely insensitive to the tails of
the distribution which describe the probabilities of extreme events —
extreme returns or extreme losses.

. The Lévy metric

L(X,Y) := inf{Fx(z—¢)—¢ < Fy(a) < Fx(a+e)+e, Yo € R} (2.3)

The Lévy metric is difficult to calculate in practice. It has important
theoretic application in probability theory as it metrizes the weak con-
vergence.

The Kolmogorov metric and the Lévy metric can be regarded as met-
rics on the space of distribution functions because p(X,Y) = 0 and
L(X,Y) = 0 imply coincidence of the distribution functions Fx and
Fy.

The Lévy metric can be viewed as measuring the closeness between
the graphs of the distribution functions while the Kolmogorov metric
is a uniform metric between the distribution functions. The general
relationship between the two is

L(X,Y) < p(X,Y) (2.4)

For example, suppose that X is a r.v. describing the return distribu-
tion of a portfolio of stocks and Y is a deterministic benchmark with
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a return of 2.5% (Y = 2.5%). (The deterministic benchmark in this
case could be either the cost of funding over a specified time period or
a target return requirement to satisfy a liability such as a guaranteed
investment contract.) Assume also that the portfolio return has a nor-
mal distribution with mean equal to 2.5% and a volatility o. Since the
expected portfolio return is exactly equal to the deterministic bench-
mark, the Kolmogorov distance between them is always equal to 1/2
irrespective of how small the volatility is,

p(X,25%)=1/2, Vo>0.

Thus, if we rebalance the portfolio and reduce its volatility, the Kol-
mogorov metric will not register any change in the distance between the
portfolio return and the deterministic benchmark. In contrast to the
Kolmogorov metric, the Lévy metric will indicate that the rebalanced
portfolio is closer to the benchmark.

. The Kantorovich metric

K(X,Y) = /R |Fx(z) — Fy(x)|dx. (2.5)

where X and Y are r.v.s with finite mathematical expectation, £ X <
oo and FY < oo.

The Kantorovich metric can be interpreted along the lines of the Kol-
mogorov metric. Suppose that X and Y are r.v.s describing the return
distribution of two common stocks. Then, as we explained, Fx(z) and
Fy (z) are the probabilities that X and Y, respectively, lose more than
the level . The Kantorovich metric sums the absolute deviation be-
tween the two probabilities for all possible values of the loss level x.
Thus, the Kantorovich metric provides aggregate information about
the deviations between the two probabilities.

In contrast to the Kolmogorov metric, the Kantorovich metric is sen-
sitive to the differences in the probabilities corresponding to extreme
profits and losses but to a small degree. This is because the difference
|Fx(x) — Fy(x)| converges to zero as the loss level (x) increases or de-
creases and, therefore, the contribution of the terms corresponding to
extreme events to the total sum is small. As a result, the differences in
the tail behavior of X and Y will be reflected in k(X,Y’) but only to
a small extent.



4. The Kantorovich distance

(a(X,Y) ::/0 H(F{\(2) — Fi\(@))de, HeH  (2.6)

where the r.v.s X and Y have finite mathematical expectation, E|X| <
o0, E|Y| < 0o. If we choose H(t) = t?, p > 1, then (£;(X,Y))"? turns
into the L, metric between inverse distribution functions, ¢,(X,Y),
defined as

1/ min(1,1/p)
) , p>0.  (2.7)

6y = ([ 1o - i o

Under this slight extension, the limit case p — 0 appears to be the
total variation metric o(X,Y’)

Oh(X,)Y)=0(X,Y):= sup |P(Xe€A—-PYecA)l| (238)

all events A

The other limit case provides a relation to the uniform metric between
inverse distribution functions W (X,Y),

(X,Y) = W(X,Y) = swp [F () - Fr' ()] (29)
0<t<1

The uniform metric W(X,Y) has the following interpretation in fi-
nance. Suppose that X and Y describe the return distribution of two
common stocks. Then the quantity —Fy'(¢) is known as the value-at-
risk (VaR) of common stock X at confidence level (1 —¢)100%. It is
used as a risk measure and represents a loss threshold such that los-
ing more than it happens with probability ¢. The probability ¢ is also
called the tail probability because the VaR is usually calculated for high
confidence levels, e.g. 95%, 99%, and the corresponding loss thresholds
are in the tail of the distribution.

Therefore, the difference Fiy'(t) — Fy'(t) is nothing but the difference
between the VaRs of X and Y at confidence level (1 —¢)100%. Thus,
the probability metric W(X,Y) is the maximal difference in absolute
value between the VaRs of X and Y when the confidence level is varied.
Usually, the maximal difference is attained for values of ¢ close to zero



or one which corresponds to VaR levels close to the maximum loss or
profit of the return distribution. As a result, the probability metric
W(X,Y) is entirely centered on the extreme profits or losses.

5. The Birnbaum-Orlicz average distance

01(X,Y) i / H(\Fy(z) — Fy(z)))dz, HeH (2.10)

where the r.v.s X and Y have finite mathematical expectation, E|X| <
o0, B|Y| < oo. If we choose H(t) = P, p > 1, then (05(X,Y))"? turns
into the L, metric between distribution functions, 6,(X,Y)

00 1/min(1,1/p)
0,(X,Y) = (/ Fy(t) — Fy(t)|pdt) Cp>0. (2.11)

o0

At limit as p — 0,

0,(X,Y) := / I{t: Fx(t) # Fy(t)}dt (2.12)

—0o0

where the notation /{A} stands for the indicator of the set A. That is,
the simple metric 6(X,Y") calculates the Lebesgue measure of the set

{t: Fx(t) £ Fy(t)}
If p — oo, then we obtain the Kolmogorov metric defined in (2.2),
6.(X,Y) = p(X,Y).

2.1.3 Compound distances

Common examples of compound metrics are stated below.

1. The p-average compound metric

L,(X,Y) = (E[X —YP)/7, p>1 (2.13)

where X and Y are r.v.s with finite moments, F|X|P < co and E|Y|P <
oo, p = 1.
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From the viewpoint of finance, we can recognize two widely used mea-
sures of deviation which belong to the family of the p-average compound

metrics. If p is equal to one, we obtain the mean absolute deviation
between X and Y,

Li(X,Y)=E|X-Y]|

Suppose that X describes the returns of a stock portfolio and Y de-
scribes the returns of a benchmark portfolio. Then the mean absolute
deviation is a way to measure how closely the stock portfolio tracks the
benchmark.

2. The Ky Fan metric

K(X,Y):=inf{e > 0: P(IX — Y| > ¢) < £} (2.14)

where X and Y are real-valued r.v.s. The Ky Fan metric has an impor-
tant application in the theory of probability as it metrizes convergence
in probability of real-valued random variables.

Assume that X is a random variable describing the return distribution
of a portfolio of stocks and Y describes the return distribution of a
benchmark portfolio. The probability

P(\X—Y\>5):P<{X<Y—6}U{X>Y+e}>

concerns the event that either the portfolio will outperform the bench-
mark by € (i.e., earn a return that exceeds the return on the benchmark
by €) or it will underperform the benchmark by € (i.e., earn a return
that is less than the benchmark by €). Therefore, the quantity 2e can
be interpreted as the width of a performance band. The probability
1 — P(|X — Y| > ¢) is actually the probability that the portfolio stays
within the performance band.

As the width of the performance band decreases, the probability P(|X —
Y| > ¢) increases. The Ky Fan metric calculates the width of a perfor-
mance band such that the probability of the event that the portfolio
return is outside the performance band is smaller than half of it.

3. The Birnbaum-Orlicz compound metric

0,(X,Y) = (/_oo 2t X, Y)dt) e (2.15)

[e.9]
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where 7(1; X,Y) = P(X <t <Y)+ P(Y <t < X).

The function 7(¢; X,Y’), which is the building block of the Birnbaum-
Orlicz compound metric, can be interpreted in the following way. Sup-
pose that X and Y describe the return distributions of two common
stocks. The function argument, ¢, can be regarded as a performance di-
vide. The term P(X <t < Y') is the probability that X underperforms
t and, simultaneously, Y outperforms ¢. If ¢ is a very small number,
then the probability P(X <t < Y) will be close to zero because the
stock X will underperform it very rarely. If ¢ is a very large number,
then P(X <t < Y) will again be close to zero because stock Y will
rarely outperform it. A similar conclusion holds for the other term of
7(t; X,Y) as it only treats the random variables in the opposite way.
Therefore, we can conclude that the function 7(¢; X,Y") calculates the
probabilities of the relative underperformance or outperformance of X
and Y, and has a maximum for moderate values of the performance
divide t.

In the case of p = 1, we have the following relationship,
0,(X,Y)=FEX-Y|=L,(X,Y).

2.2 Ideal probability metrics

The ideal probability metrics are probability metrics which satisfy two ad-
ditional properties which make them uniquely positioned to study problems
related to limit theorems in probability theory. The two additional properties
are the homogeneity property and the regularity property.

The homogeneity property of order r € R is

HO.  p(eX,cY) = |c['u(X,Y) for any X,Y and constant ¢ € R.

The homogeneity property has the following interpretation in portfolio
theory. If X and Y are r.v.s describing the random return of two portfolios,
then converting proportionally into cash, for example, 30% of the two port-
folios results in returns scaled down to 0.3X and 0.3Y. Since the returns
of the two portfolios appear scaled by the same factor, it is reasonable to
assume that the distance between the two scales down proportionally.

The regularity property is

RE. wX+2Y+2Z)<uY,X)forany X,Y and Z
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and the weak regularity property is

WRE. u(X+2,Y+2) <u(Y,X) for any X,Y and Z independent
of X and Y.

The regularity property has the following interpretation in portfolio the-
ory. Suppose that X and Y are r.v.s describing the random values of two
portfolios and Z describes the random price of a common stock. Then buying
one share of stock Z per portfolio results in two new portfolios with random
wealth X + Z and Y + Z. Because of the common factor in the two new
portfolios, we can expect that the distance between X 4+ Z and Y + Z is
smaller than the one between X and Y.

The formal definition of ideal probability metrics follows below.

Definition 2. A compound probability semidistance i s said to be an
ideal probability semidistance of order r if it satisfies properties HO and RE.
If the semidistance is simple, we replace RE with WRE.

The conditions which need to be satisfied in order for the ideal metrics to
be finite are given below. Suppose that the probability metric pu(X,Y) is a
simple ideal metric of order r. The finiteness of (X, Y’) guarantees equality
of all moments up to order 7,

w(X,Y) < oo — EXF-Y" =0, k=12,....,n<r

Conversely, if all moments kK =1,2,...,n < r agree and, in addition to this,
the absolute moments of order r are finite, then metric u(X,Y") is finite,

EX* = EY*
E|X|" < o0 = u(X,Y) < oo
ElY|" < o0

where k =1,2,...,n<r.

The conditions which guarantee finiteness of the ideal metric u are very
important when investigating the problem of convergence in distribution of
random variables in the context of the metric u.2 Consider a sequence of
r.v.s X1, Xs,...,X,,... and a r.v. X which satisfy the conditions,

EXF=EX* vn, k=1,2,....n<r

2Tt is said that the metric ;v metrizes the convergence in distribution if a sequence of
random variables X;,..., X, ... converges in distribution to the random variable X, if
and only if p(X,,X) — 0asn — oco.
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and

E|X|" < o0, E|X,|" < oo, Vn.

For all known ideal metrics u(X,Y’) of order r > 0, given the above moment
assumptions, the following holds: u(X,, X) — 0 if and only if X,, converges
to X in distribution and the absolute moment of order r converge,

1(Xn, X)— 0 ifandonly if X, -5 X and E|X,.|" — E|X").

This result has the following interpretation. Suppose that X and Y
describe the returns of two portfolios. Choose an ideal metric p of or-
der 3 < r < 4, for example. The convergence result above means that if
u(X,Y) =~ 0, then both portfolios have very similar distribution functions
and also they have very similar means, volatilities and skewness.

Note that, generally, the c.d.f.s of two portfolios being “close” to each
other does not necessarily mean that their moments will be approximately
the same. It is of crucial importance which metric is chosen to measure
the distance between the distribution functions. The ideal metrics have this
nice property that they guarantee convergence of certain moments. Rachev
(1991) provides an extensive review of the properties of ideal metrics and
their application.

2.3 Examples of ideal probability metrics

There are examples of both compound and simple ideal probability metrics.
For instance, the p-average compound metric £,(X,Y") defined in (2.13) and
the Birnbaum-Orlicz metric ©,(X,Y’) defined in (2.15) are ideal compound
probability metrics of order one and 1/p respectively. In fact, almost all
known examples of ideal probability metrics of order » > 1 are simple metrics.

Almost all of the simple metrics discussed in the previous section are ideal.
The last three examples include metrics which have not been discussed in the
previous section.

1. The L,-metrics between distribution functions 6,(X,Y') defined in equa-
tion (2.11) is an ideal probability metric of order 1/p, p > 1.

2. The Kolmogorov metric p(X,Y’) defined in equation (2.2) is an ideal
metric of order 0. This can also be inferred from the relationship
p(X,)Y)=0,(X,Y).
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. The L,-metrics between inverse distribution functions ¢,(X,Y") defined
in equation (2.7) is an ideal metric of order 1.

. The Kantorovich metric K(X,Y) defined in equation (2.5) is an ideal
metric of order 1. This can also be inferred from the relationship
K(X,Y)=04(X,Y).

. The total variation metric o(X,Y") defined in equation (2.8) is an ideal
probability metric of order 0.

. The uniform metric between inverse c.d.f.s W(X,Y") defined in equa-
tion (2.9) is an ideal metric of order 1.
. The Zolotarev ideal metric

The general form of the Zolotarev ideal metric is

o

CX,Y) = / Fyx(2) — Fuy(2)] da (2.16)

—00

where s = 1,2,... and

Fuste) = [ G @2.17)

The Zolotarev metric ¢ (X,Y) is ideal of order r = s, see Zolotarev
(1986).
. The Rachev metric

The general form of the Rachev metric is

o0

00 /v
Cs,p,a<X7 Y) = (/_ |Fsx(z) — Foy ()| |gj"ap/d;(;> (2.18)

where p’ = max(1,p), « > 0, p € [0,00], and F; x(x) is defined in
equation (2.17). If a = 0, then the Rachev metric ¢, ,,(X,Y) is ideal
of order r = (s — L)p/p' + 1/p'.

Note that ¢, ,,(X,Y) can be represented in terms of lower partial
moments,

1 o N
CopalX,Y) = G- (/ |E(t— X)5 — E(t — X)5|" [¢]*” dt) .

15



9. The Kolmogorov-Rachev metrics

The Kolmogorov-Rachev metrics arise from other ideal metrics by a
process known as smoothing. Suppose the metric p is ideal of order
0 <r < 1. Consider the metric defined as

ps(X,Y) =sup |h|°u(X +hZ, X + hZ) (2.19)
heR

where Z is independent of X and Y and is a symmetric random variable

Z L _7Z. The metric ps(X,Y) defined in this way is ideal of order
r = s. Note that while (2.19) always defines an ideal metric of order s,
this does not mean that the metric is finite. The finiteness of u, should
be studied for every choice of the metric pu.

The Kolmogorov-Rachev metrics are applied in estimating the conver-
gence rate in the Generalized CLT and other limit theorems. Rachev
and Riischendorf (1998) and Rachev (1991) provide more background
and further details on the application in limit theorems.

2.4 Minimal metrics

The minimal metrics have an important place in the theory of probability
metrics. Denote by p a given compound metric. The functional fi defined by
the equality

v 4

LX) =inf{u(X,Y): X2 X, YLV} (2.20)

is said to be the minimal metric with respect to px.®> The minimization pre-
serves the essential triangle inequality with parameter K; = K, and also the
identity property assumed for pu.

Many of the well-known simple metrics arise as minimal metrics with
respect to some compound metric. For example,

gp(Xu Y) = ﬁp(Xa Y)

~

0,(X,Y)=0,X,Y).

The Kolmogorov metric (2.2) can be represented as a special case of the
simple metric 6,

3Rachev (1991) provides a mathematical proof that the functional defined by equation
(2.20) is indeed a probability metric.
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p(X,)Y)=0,(X,Y)
and, therefore, it also arises as a minimal metric

p(X)Y)=0,(X,Y).

Not all simple metrics arise as minimal metrics. A compound metric such
that its minimal metric is equivalent to a given simple metric is called pro-
tominimal with respect to the given simple metric. For instance, ©1(X,Y)
is protominimal to the Kantorovich metric k(X,Y’). As we noted, not all
simple metrics have protominimal ones and, also, some simple metrics have
several protominimal ones, see Rachev (1991) for further theory.

3 Stochastic orders and probability metrics

In this section, we illustrate an application of probability metrics in the the-
ory of stochastic orders. In the field of finance, the theory of stochastic
orders is closely related to the expected utility theory which describes how
choices under uncertainty are made. The expected utility theory was intro-
duced in von Neumann and Morgenstern (1944). According to it, investor’s
perferences are described in terms of an investor’s wutility function. If no
uncertainty is present, the utility function can be interpreted as a mapping
between the available alternatives and real numbers indicating the “relative
happiness” the investor gains from a particular alternative. If an individual
prefers good “A” to good “B”, then the utility of “A” is higher than the util-
ity of “B”. Thus, the utility function characterizes individual’s preferences.
Von Neumann and Morgenstern showed that if there is uncertainty, then it is
the expected utility which characterizes the preferences. The expected utility
of an uncertain prospect, often called a lottery, is defined as the probability
weighted average of the utilities of the simple outcomes.

Denote by Fx(x) and Fx(z) the c.d.f.s of two uncertain prospects X and
Y. An investor with utility function u(z) prefers X to Y, or is indifferent
between them, if and only if the expected utility of X is not below the
expected utility of Y,

XY = Eu(X) > Eu(Y)

where



The basic result of von Neumann-Morgenstern is that the preference order of
the investor, which should satisfy certain technical conditions, is represented
by expected utility in which the investor’s utility function is unique up to a
positive linear transform.

Some properties of the utility function are derived from common argu-
ments valid for investors belonging to a certain category. For example, con-
cerning certain prospects, all investors who prefer more to less are called
non-satiable and have non-decreasing utility functions, all risk-averse in-
vestors have concave utility functions, all investors favoring positive to neg-
ative skewness have utility functions with non-negative third derivative. In
fact, assuming certain behavior of the derivatives of u(z), we obtain utility
functions representing different classes of investors.

Suppose that there are two portfolios X and Y, such that all investors
from a given class do not prefer Y to X. This means that the probability
distributions of the two portfolios differ in a special way that, no matter
the particular expression of the utility function, if an investor belongs to the
given class, then Y is not preferred by that investor. In this case, we say
that portfolio X dominates portfolio Y with respect to the class of investors.
Such a relation is often called a stochastic dominance relation or a stochastic
ordering.

Stochastic dominance relations of different orders are defined by assuming
certain properties for the derivatives of u(z). Denote by U, the set of all util-
ity functions, the derivatives of which satisfy the inequalities (—1)**1u® (z) >
0, k = 1,2,...,n where u®)(z) denotes the k-th derivative of u(z). Thus,
for each n, we have a set of utility functions which is a subset of U,,_1,

U ci,c...cl, c...

Imposing certain properties on the derivatives of u(x) requires that we
make more assumptions for the moments of the random variables we consider.
We assume that the absolute moments E|X|* and E|Y|*, k= 1,...,n of the
random variables X and Y are finite.

Definition 3. We say that the portfolio X dominates the portfolio Y in
the sense of the n-th order stochastic dominance, X >, Y, if no investor
with a utility function in the set U, would prefer Y to X,

X =, Y if Eu(X)> Eu(Y), Vu(z) € U,.

Particular examples include the first-order stochastic dominance (FSD)
which concerns the class of non-satiable investors, the second-order stochastic
dominance (SSD) which concerns the non-satiable, risk-averse investors and
SO on.
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There is an equivalent way of describing the n-th order stochastic domi-
nance in terms of the c.d.f.s of the ventures only. The condition is,

Xr,Y =  FP)<F"), vz eR (3.21)

where F )((")(x) stands for the n-th integral of the c.d.f. of X defined recur-
sively as

F(z) = / FU D (t)dt.

—00

In fact, an equivalent form of the condition in (3.21) can be derived,

XY — Et—X)"'"<E{t-Y)"', VteR (3.22)

where (t — 2)7"" = max(t — z,0)""!. This equivalent formulation clarifies
why it is necessary to assume that all absolute moments until order n are
finite.

Since in the n-th order stochastic dominance we furnish the conditions
on the utility function as n increases, the following relation holds,

XY —= XY — ... —= X>»r,Y

Further on, it is possible to extend the n-th order stochastic dominance
to the a-order stochastic dominance in which «« > 1 is a real number and in-
stead of the ordinary integrals of the c.d.f.s, fractional integrals are involved.
Ortobelli et al. (2007) provide more information on extensions of stochas-
tic dominance orderings and their relation to probability metrics and risk
measures.

The conditions for stochastic dominance involving the distribution func-
tions of the ventures X and Y represent a powerful method to determine if
an entire class of investors would prefer any of the portfolios. For example,
in order to verify if any non-satiable, risk-averse investor would not prefer Y
to X, we have to verify if condition (3.21) holds with n = 2. Note that a
negative result does not necessarily mean that any such investor would actu-
ally prefer Y or be indifferent between X and Y. It may be the case that the
inequality between the quantities in (3.21) is satisfied for some values of the
argument, and for others, the converse inequality holds. Thus, only a part
of the non-satiable, risk-averse investors may prefer X to Y'; it now depends
on the particular investor we consider.

Suppose the verification confirms that either X is preferred or the in-
vestors are indifferent between X and Y, X >, Y. This result is only quali-
tative, there are no indications whether Y would be categorically disregarded
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by all investors in the class, or the differences between the two portfolios are
very small. Similarly, if we know that no investors from the class prefer Y to
Z, Z =5 Y, then can we determine whether Z is more strongly preferred to
Y than X is?

The only way to approach this question is to add a quantitative element
through a probability metric since only by means of a probability metric
can we calculate distances between random quantities. For example, we can
choose a probability metric 4 and we can calculate the distances pu(X,Y") and
w(Z,Y). If u(X,Y) < u(Z,Y), then the return distribution of X is “closer”
to the return distribution of Y than are the return distributions of Z and Y.
On this ground, we can draw the conclusion that Z is more strongly preferred
to Y than X is, on condition that we know in advance the relations X =5 Y
and Z ig Y.

However, not any probability metric appears suitable for this calculation.
Suppose that Y and X are normally distributed r.v.s describing portfolio
returns with equal means, X € N(a,0%) and Y € N(a,0%), with 6% < o%.
Z is a prospect yielding a dollars with probability one. The c.d.f.s Fx(x)
and Fy (z) cross only once at z = a and the Fy(x) is below Fy (z) to the left
of the crossing point. Therefore, no risk-averse investor would prefer Y to X
and consequently X =5 Y. The prospect Z provides a non-random return
equal to the expected returns of X and Y, EX = EY = a, and, in effect,
any risk-averse investor would rather choose Z from the three alternatives,
Z =y X = Y.

A probability metric with which we would like to quantify the SSD order
should be able to indicate that, first, u(X,Y) < u(Z,Y) because Z is more
strongly preferred to Y and, second, u(Z, X) < u(Z,Y) because Y is more
strongly rejected than X with respect to Z. The assumptions in the example
give us the information to order completely the three alternatives and that
is why we are expecting the two inequalities should hold.

Let us choose the Kolmogorov metric defined in equation (2.2). Applying
the definition to the distributions in the example, we obtain that p(X, Z) =
p(Y.Z) = 1/2 and p(X,Y) < 1/2. As a result, the Kolmogorov metric is
capable of showing that Z is more strongly preferred relative to Y but cannot
show that Y is more strongly rejected with respect to Z.

The example shows that there are probability metrics which are not ap-
propriate to quantify a stochastic dominance order. The task of finding a
suitable metric is not a simple one because the structure of the metric should
be based on the conditions defining the dominance order. Inevitably, we can-
not expect that one probability metric will appear suitable for all stochastic
orders, rather, a probability metric may be best suited for a selected stochas-
tic dominance relation.
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Technically, we have to impose another condition in order for the prob-
lem of quantification to have a practical meaning. The probability metric
calculating the distances between the ordered r.v.s should be bounded. If
w(X,Y) = oco and u(Z,Y) = oo, then we cannot compare the investors’
preferences.

Concerning the FSD order, a suitable choice for a probability metric is
the Kantorovich metric defined in (2.5). Note that the condition in (3.21)
with n = 1 can be restated as Fy(x) — Fy(x) <0, Yz € R. Thus, summing
up all absolute differences gives an idea how “close” X is to Y which is a
natural way of measuring the distance between X and Y with respect to the
FSD order. The Kantorovich metric is finite as long as the random variables
have finite means. This is a natural assumption for applications in the field
of financial economics.

In the general case of the n-th order stochastic dominance, the condition
in equation (3.22) is very similar to the Rachev ideal metric ¢, , ,(X,Y") given
in equation (2.18). There are additional assumptions that have to be made
for the r.v.s X and Y ensuring that the Rachev ideal metric is finite. These
assumptions are related to the equality of certain moments.

3.1 Return versus payoff

The lotteries in expected utility theory are usually interpreted as probability
distributions of payoffs. As a consequence, the stochastic dominance theory
is usually applied to random payoffs instead to returns.

On the other hand, modern portfolio theory, as well as other cornerstone
theories, is developed for random log-returns. It is argued that the invest-
ment return is a more important characteristic than investment payoff when
comparing opportunities. In effect, when searching for consistency between
modern portfolio theory and stochastic dominance, a problem arises. Even
though log-returns and payoffs are directly linked, it turns out that, gener-
ally, stochastic dominance relations concerning two log-return distributions
are not equivalent to the corresponding stochastic dominance relations con-
cerning their payoff distributions. In this section, we establish a link between
the two types of stochastic dominance relations.

Suppose that investors’ preference relations are defined on random ven-
ture payoffs. That is, the domain of the utility function u(x) is the positive
half-line which is interpreted as the collection of all possible outcomes in
terms of dollars from a given venture. Assume that the payoff distribution
is actually the price distribution P, of a financial asset at a future time ¢. In
line with the von Neumann-Morgenstern theory, the expected utility of P,
for an investor with utility function u(z) is given by
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Pu(P) = /0 " w(2)dFp () (3.23)

where Fp, () = P(P, < x) is the c.d.f. of the random variable P,. Further-
more, suppose that the price of the financial asset at the present time is Fp.
The expected utility of the log-return distribution has the form,

Bo(r) = | " o(y)dE, () (3.24)

—0o0
where v(y) is the utility function of the investor on the space of log-returns
which is unique up to a positive linear transform. Note that v(y) is defined
on the entire real line as the log-return can be any real number. The next
proposition establishes a link between the two utility functions.

Proposition 1. The relationships between the utility function u(zx), x >
0, defined on the random payoff of an investment and the utility function
v(y), y € R, defined on the random return of the same investment is given

by,

v(y) = au(Poexp(y)) +b, a>0 (3.25)

and

u(z) = co(log(x/Py)) +d, ¢ > 0. (3.26)

Proof. Consider the substitution z = Pyexp(y) in equation (3.23). Under
the new variable, the c.d.f. of P, changes to

Fa(Bespl) = PUE < Proxp() = P (log 3t <)

which is, in fact, the distribution function of the log-return of the financial
asset 1, = log(P;/Fy). The integration range changes from the positive half-
line to the entire real line and equation (3.23) becomes

Bulr) - [ " (Prexp(y))dF (y). (3.27)

Compare equations (3.27) and (3.24). From the uniqueness of the expected
utility representation, it appears that (3.27) is the expected utility of the
log-return distribution. Therefore, the utility function v(y) can be computed
by means of the utility function u(z) and the representation is unique up to
a positive linear transform. ]
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Note that the two utilities in equations (3.27) and (3.24) are identical (up
to a positive linear transform) and this is not surprising. In our reasoning,
the investor is one and the same. We only change the way we look at the
venture, in terms of payoff or log-return, but the venture is also fixed. As a
result, we cannot expect that the utility gained by the investor will fluctuate
depending on the point of view.

Because of the relationship between the functions u and v, properties
imposed on the utility function u may not transfer to the function v and vice
versa. Concerning the n-th order stochastic dominance, the next proposition
establishes a useful relationship.

Proposition 2. Suppose that the utility function v(y) from equation
(3.24) belongs to the set U, i.e. it satisfies the conditions

(=)™ (y) >0, k=1,2,....n

where v (y) denotes the k-th derivative of v(y). The function u(z) given by
(3.26) also belongs to the set U,. Furthermore, suppose that Py = Pg are the
present values of two financial assets with random prices P} and P? at some
future time t. Then the following implication holds for n > 1

P! =, P? == e
where v} and r? are the log-returns for the corresponding period. If n = 1,
then

Ptltlpf < rtlilrtz.

Proof. Denote by

U, = {u=fv),vel,}
where the transformation f is defined by (3.26). The first statement is verified
directly by differentiation. Thus, we establish that U, C U,. Since the
inverse transformation defined by (3.25) does not preserve the corresponding
derivatives properties for n > 1, we have a strict inclusion, U, C U, for
n>1. If n=1, then Uy = U,.

Suppose that P! =, P?, n > 1. Then, according to the definition of the
stochastic dominance relation, Eu(P}!) > Eu(P?), Vu € U,. As a conse-
quence, Eu(P}) > Eu(P?), Yu € U,. From the definition of the class U,,, the
uniqueness of the expected utility representation, and the assumption that
Py = P?, we deduce that Ev(r}) > Ev(r?), Yv € U, and, therefore, r} =, 2,
n > 1. The same reasoning and the fact that U, =U proves the final claim
of the proposition. O
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Note that the condition B} = P? is important. If the present values of
the two financial assets are not the same, then such relationships may not
exist.

4 Dispersion measures

In financial economics, measures of dispersion are used to characterize the
uncertainty related to a given quantity such as the stock returns for exam-
ple. Generally, dispersion measures can be constructed by means of different
descriptive statistics. They calculate how observations in a dataset are dis-
tributed, whether there is high or low variability around the mean of the dis-
tribution. Examples include the standard deviation, the interquantile range,
and the mean-absolute deviation. The central absolute moment of order £ is

defined as

my, = E|X — EX|*

and an example of a dispersion measure based on it is

(me)/* = (BIX — BX|)V.

The common properties of the dispersion measures can be synthesized into
axioms. Rachev et al. (2007) provide the following set of general axioms. We
denote the dispersion measure of a r.v. X by D(X).

DI. D(X +C) < D(X) for all X and constants C' > 0.
D2. D(0) =0 and D(AX) = AD(X) for all X and all A > 0.
D3. D(X) >0 for all X, with D(X) > 0 for non-constant X.

According to D1, adding a positive constant does not increase the disper-
sion of a r.v. According to D2 and D3, the dispersion measure D is equal to
zero only if the r.v. is a constant. This property is very natural for any mea-
sure of dispersion. For example, it holds for the standard deviation, MAD,
and semi-standard deviation.

An example of a dispersion measure satisfying these properties is the colog
measure defined by

colog(X) = E(Xlog X) — E(X)E(log X).
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where X is a positive random variable. The colog measure is sensitive to
additive shifts and has applications in finance as it is consistent with the
preference relations of risk-averse investors, see Rachev et al. (2007).

4.1 Dispersion measures and probability metrics

Suppose that p is a compound probability metric. In this case, if u(X,Y) =
0, it follows that the two random variables are coincident in all states of
the world. Therefore, the quantity (X, Y’) can be interpreted as a measure
of relative deviation between X and Y. A positive distance, u(X,Y) > 0,
means that the two variables fluctuate with respect to each other and zero
distance, p(X,Y) = 0, implies that there is no deviation of any of them
relative to the other.

This idea is closely related to the notion of dispersion but it is much
more profound because we obtain the notion of dispersion measures as a
special case by considering the distance between X and the mean of X,
w(X, EX). In fact, the functional u(X, EX) provides a very general notion
of a dispersion measure as it arises as a special case from a probability met-
ric which represents the only general way of measuring distances between
random quantities.

4.2 Deviation measures

Rockafellar et al. (2006) provide an axiomatic description of convex disper-
sion measures called deviation measures. Besides the axioms of dispersion
measures, the deviation measures satisfy the property

D4 DX +Y)<D(X)+D(Y) for all X and Y.

and D1 is replaced by

D1. D(X 4+ C) = D(X) for all X and constants C' € R.

As a consequence of axiom ]3V1, the deviation measure is influenced only
by the difference X — EX. If X = EX in all states of the world, then the
deviation measure is a constant and, therefore, it is equal to zero because of
the positivity axiom. Conversely, if D(X) = 0, then X = EX in all states of
the world. Properties D2 and D4 establish the convexity of D(X).

Apparently not all deviation measures are symmetric; that is, it is pos-
sible to have D(X) # D(—X) if the random variable X is not symmetric.
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Nevertheless, symmetric deviation measures can easily be constructed. The
quantity D(X) is a symmetric deviation measure if we define it as

DX) = 5(D(X) + D(~X)),

where D(X) is an arbitrary deviation measure.

4.3 Deviation measures and probability quasi-metrics

One of the axioms defining probability semidistances is the symmetry axiom
SYM. In applications in financial economics, the symmetry axiom is not
important and we can omit it. Thus, we extend the treatment of the defining
axioms of probability semidistances in the same way as it is done in the field
of functional analysis. In case the symmetry axiom, SYM, is omitted, then
quasi- is added to the name.

Definition 4. A mapping p : LXy — [0, 00] is said to be
e a probability quasi-metric if ID and TI hold,

e a probability quasi-semimetric z'ffla and TI hold,

e a probability quasi-distance if ID and TI hold,

e a probability quasi-semidistance if ID and TI hold.

Note that by removing the symmetry axiom we obtain a larger class in which
semimetrics appear as symmetric quasi-semimetrics.

In this section, we demonstrate that the deviation measures arise from
probability quasi-metrics equipped with two additional properties — transla-
tion invariance and positive homogeneity. A probability quasi-metric is called
translation invariant and positively homogeneous if it satisfies the following
two properties

TINV. w(X+2Z,Y+27Z)=pY,X) for any X,Y, Z.

PHO. p(aX,aY)=au(X,Y) for any X,Y and a > 0.

Proposition 3. The functional pup defined as

up(X,Y) = D(X - Y) (4.28)

1s a positively homogeneous, translation invariant probability quasi-semimetric
if D is a deviation measure. Furthermore, the functional D,, defined as
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D,(X)=puX - EX,0) (4.29)
1 a deviation measure if i is a a positively homogeneous, translation invari-

ant probability quasi-metric.

Proof. We start with the first statement in the proposition. We verify if pp
defined in equation (4.28) satisfies the necessary properties.

—~

ID. up(X,Y) > 0 follows from the non-negativity of D, property D3.
Further on, if X = Y in almost sure sense, then X — Y = 0 in
almost sure sense and pup(X,Y) = D(0) = 0 from Property D2.

TI. Follows from property D4:

WX, Y)=D(X-Y)=D(X—-Z+(Z-Y))
<DX—-2)+D(Z-Y)=upX,2)+uZ2Y)

TINV. A direct consequence of the definition in (4.28).

PHO. Follows from property D2.

We continue with the second statement in the proposition. We verify if D,
defined in equation (4.28) satisfies the necessary properties.

D1. A direct consequence of the definition in (4.29).
D2. Follows from ID and PHO. D, (0) = (0,0) = 0 and

Du(AX) = Mu(X — EX,0) = AD,,(X)

D3. Follows because p is a probability metric. If D,(X) = 0, then
X — EX is equal to zero almost surely which means that X is a
constant in all states of the world.

D4. Arises from TI and TINV.
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DX +Y)=uX —EX+Y —EY,0)=uX — EX,—-Y + EY)
(X — EX,0) + u(0,~Y + EY)
w(X — EX,0) + u(Y — EY,0)

D(X)+ D(Y)

I IA

]

As a corollary from the proposition, all symmetric deviation measures
arise from the translation invariant, positively homogeneous probability met-
rics.

Note that because of the properties of deviation measures, up is a quasi-
semimetric and cannot become a quasi-metric. This is because D is not
sensitive to additive shifts and this property is inherited by up,

ND(X +G,Y+b) = MD<X,Y),

where a and b are constants. In effect, up(X,Y) = 0 implies that the two
random variables differ by a constant, X =Y + ¢, in all states of the world.

Due to the translation invariance property, equation (4.29) can be equiv-
alently re-stated as

D, (X) = u(X,EX). (4.30)

In fact, as we remarked, equation (4.30) represents a very natural generic
way of defining measures of dispersion. Starting from equation (4.30) and
replacing the translation invariance property (TINV) by the weak regularity
property (WRE) of ideal probability metrics, the sub-additivity property
(D4) of D,(X) breaks down and a property similar to D1 holds instead of

D1,

Du(X +C) = u(X +C,EX +C) < u(X, EX) = D,(X)

for all constants C'. In fact, this property is more general than D1 as it holds
for arbitrary constants.

5 Risk measures

We have remarked that probability metrics provide the only way of measur-
ing distances between random quantities. It turns out that a small distance
between random quantities does not necessarily imply that selected charac-
teristics of those quantities will be close to each other. If we want small
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distances measured by a probability metric to imply similar characteristics,
the probability metric should be carefully chosen.

In finance, a risk measure p is defined as the mapping p : X — R. It
can be viewed as calculating a particular characteristic of a r.v. X. There
are problems in finance in which the goal is to find a r.v. closest to another
r.v. For instance, such is the benchmark tracking problem which is at the
heart of passive portfolio construction strategies. Essentially, we are trying
to construct a portfolio so as to track the performance a given benchmark.
In some sense, this can be regarded as finding a portfolio return distribution
which is closest to the return distribution of the benchmark. Usually, the
distance is measured through the standard deviation of the difference r, — 1,
where r, is the portfolio return and ry is the benchmark return.*

Suppose that we have found the portfolio tracking the benchmark most
closely with respect to the tracking error. Generally, the risk of the portfolio
is close to the risk of the benchmark only if we use the standard deviation as
a risk measure because of the inequality,

|o(rp) = ()| < o(rp = 1).

The right part corresponds to the tracking error and, therefore, smaller track-
ing error results in o(r,) being closer to o(ry).

In order to guarantee that the small distance between the portfolio return
distributions corresponds to similar risks, we have to find a suitable probabil-
ity metric. Technically, for a given risk measure we need to find a probability
metric with respect to which the risk measure is a continuous functional,

[p(X) = p(Y)] < pu(X,Y),

where p is the risk measure and p stands for the probability metric. We
continue with examples of how this can be done for the value-at-risk (VaR)
and average value-at-risk (AVaR).

1. VaR

The VaR at confidence level (1 — €)100%, or tail probability €, is de-
fined as the negative of the lower e-quantile of the return or payoff
distribution,

VaR.(X) = —irzlf{af]P(X <) >el=—-Fl(e) (5.31)

4In the parlance of portfolio management, this is quantity is referred to as the “active
return”.
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where € € (0,1) and Fy'(e) is the inverse of the distribution function
of X.

Suppose that X and Y describe the return distributions of two portfo-
lios. The absolute difference between the VaRs of the two portfolios at
any tail probability can be bounded by,

VaR (X) —VaR.(Y)| < max |VaR,(X) — VaR,(Y)|

p€e(0,1)

= max |Fy'(p) — Fx'(p)|
pe(091)

= W(X,Y)

where W (X,Y') is the uniform metric between inverse distribution
functions defined in equation (2.9). If the distance between X and
Y is small, as measured by the metric W(X,Y'), then the VaR of X is
close to the VaR of Y at any tail probability level e.

. AVaR

The AVaR at tail probability € is defined as the average of the VaRs
which are larger than the VaR at tail probability e. Therefore, by
construction, the AVaR is focused on the losses in the tail which are
larger than the corresponding VaR level. The average of the VaRs is
computed through the integral

AVaR.(X) = * / VaR,(X)dp (5.32)

€Jo
where VaR,(X) is defined in equation (5.31).

Suppose that X and Y describe the return distributions of two portfo-
lios. The absolute difference between the AVaRs of the two portfolios
at any tail probability can be bounded by,

1 €
[AVaR(X) = AVaR.(Y)| < - /0 [Ft(p) — Fy ' (p)ldp

< / F5'(p) — Fy\(p)ldp
(X.Y)

where x(X,Y) is the Kantorovich metric defined in equation (2.5). If
the distance between X and Y is small, as measured by the metric
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k(X,Y), then the AVaR of X is close to the AVaR of Y at any tail
probability level €. Note that the quantity

w(XY) = ¢ [ IFR ) - )l

can also be used to bound the absolute difference between the AVaRs.
It is a probability semi-metric giving the best possible upper bound on
the absolute difference between the AVaRs.

6 Strategy replication

An important problem for fund managers is comparing the performance of
their portfolios to a benchmark. The benchmark could be a market index or
any other portfolio. In general, there are two types of strategies that man-
agers follow: active or passive. An active portfolio strategy uses available
information and forecasting techniques to seek a better performance than a
portfolio that is simply diversified broadly. Essential to all active strategies
are expectations about the factors that could influence the performance of an
asset class. The goal of an active strategy is to outperform the benchmark
after management fees by a given number of basis points. A passive portfolio
strategy involves minimal expectational input and instead relies on diversi-
fication to match the performance of some benchmark. In effect, a passive
strategy, commonly referred to as indexing, assumes that the marketplace
will reflect all available information in the price paid for securities. There
are various strategies for constructing a portfolio to replicate the index but
the key in these strategies is designing a portfolio whose tracking error rela-
tive to the benchmark is as small as possible. Tracking error is the standard
deviation of the difference between the return on the replicating portfolio
and the return on the benchmark.

The benchmark tracking problem can be formulated as the optimization
problem

min o (w'r — r?)

wew
where w = (wy, ..., w,) is a vector of portfolio weights, W is a set of admis-
sible vectors w, r = (r1,...,r,) is a vector of stocks returns, r° is the return

of a benchmark portfolio, w'r = > w;r; is the return of the portfolio in
which w; is the weight of the i-th stock with return r;, and o(X) stands for
the standard deviation of the random variable X. The goal is to find a port-
folio which is closest to the benchmark in a certain sense, in this case, the
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“closeness” is determined by the standard deviation. Each feasible vector of
weights w defines a portfolio with return w’r. Therefore, where appropriate,
instead of W we use X to denote the feasible set of random variables w'r.

A serious disadvantage of the tracking error is that it penalizes in the
same way the positive and the negative deviations from the mean excess
return while our attitude towards them is asymmetric, see, among others,
Szegd (2004) and the references therein. There is overwhelming evidence from
the literature in the field of behavioral finance that people pay more attention
to losses than to respective gains. This argument leads to the conclusion that
a more realistic measure of “closeness” should be asymmetric.

The minimal tracking error problem can be restated in the more general
form

: / b
min pw(w'r, r?) (6.33)

where £(X,Y") is a measure of the deviation of X relative to Y. Due to this
interpretation, we regard u as a functional which measures relative deviation
and we call it a relative deviation metric or simply, r.d. metric.

In Stoyanov et al. (2007), it is argued that a reasonable assumption for
the r.d. metrics is that they are positively homogeneous, regular quasi-
semimetrics satisfying the additional property

WX +c1,Y +c) = p(X,Y) for all X,V and constants ¢y, cs.

In fact, this property is always satisfied if we consider the functional p on
the sub-space of zero-mean random variables.

As a corollary, this property allows measuring the distance only between
the centered portfolios returns because u(X — EX,Y — FY) = u(X,Y). It
may be argued that in practice the expected return of the portfolio is a very
important characteristic and it seems that we are eliminating it from the
problem. This is certainly not the case because this characteristic, as some
others, can be incorporated into the constraint set W of problem (6.33). For
example, a reasonable candidate for a constraint set of a long-only portfolio
problem? is

W={w:vw'e=1, w'Er > Erb}.

where e = (1,...,1) and w'Er > Er® means that the optimal portfolio should
have an expected return that is not below the benchmark.

°In portfolio management, a long-only portfolio is one in which only long positions in
common stocks are allowed. A long position means the ownership of a stock. A short
position means that the stock was sold short.
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6.1 Examples of r.d. metrics

We distinguish between simple and compound quasi-semimetrics and the
same distinction is valid for the r.d. metrics.

6.1.1 Compound metrics

We can illustrate how a probability metric can be modified so that it becomes
an r.d. metric. Let us choose two classical examples of compound probability
metrics — the average compound metric £,(X,Y") defined in (2.13) and the
Birnbaum-Orlicz compound metric ©,(X,Y") defined in (2.15).

Consider, first, the average compound metric. It satisfies all necessary
properties but it is symmetric, a property we would like to break. One
possible way is to replace the absolute value by the max function. Thus we
obtain the asymmetric version

L:(X,Y) = (E(max(X —Y,0)")"?, p>1. (6.34)

In Stoyanov et al. (2006) we show that £3(X,Y") is an ideal quasi-semimetric;
that is, using the max function instead of the absolute value breaks only the
symmetry axiom SYM.

The intuition behind removing the absolute value and considering the
max function is the following. In the setting of the benchmark-tracking
problem, suppose that the r.v. X stands for the return of the benchmark
and Y denotes the return of the portfolio. Minimizing £(X,Y), we actually
decrease the average portfolio underperformance.

The same idea, but implemented in a different way, stays behind the
asymmetric version of the Birnbaum-Orlicz metric

00 1/p
o, v) = | [wwxyypal oz (6.35)
where 7*(t; X,Y) = P(Y <t < X). Stoyanov et al. (2006) show that (6.35)
is an ideal quasi-semimetric. That is, considering only the first summand of
the function 7(¢; X,Y’) from the Birnbaum-Orlics compound metric breaks
the SYM axiom only.

Just as in the case of £3(X,Y’), suppose that the r.v. Y represents the
return of the portfolio and X represents the benchmark return. Then, for a
fixed value of the argument ¢, which we interpret as a threshold, the function
7* calculates the probability of the event that the portfolio return is below the
threshold ¢ and, simultaneously, the benchmark return is above the threshold.
As a result, we can interpret ©,(X,Y’) as a measure of the probability that
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the portfolio loses more than the benchmark. Therefore, in the benchmark-
tracking problem, by minimizing @;(X,Y’), we are indirectly minimizing the
probability of the portfolio losing more than the benchmark.

In order for (6.34) and (6.35) to become r.d. metrics, we consider them
on the sub-space of zero-mean random variables.

6.1.2 Simple r.d. metrics

Simple r.d. metrics can be obtained through the minimization formula in
equation (2.20). It is possible to show that, if x is a functional satisfying
properties ID or fﬁ, TT or ﬁ, then [ also satisfies ID or fﬁ, TI or TI. That
is, omitting the symmetry property results only in asymmetry in the minimal
functional fi. In addition, it is easy to check that if PHO holds for u, then
the same property holds for i as well. These results, and one additional
concerning convexity, are collected in the following proposition. Concerning
the regularity property RE, there is a separate theorem which guarantees
that if p is regular, so is the minimal functional /.

Proposition 4. Suppose that p is a positively homogeneous, compound
quasi-semimetric. Then [i defined in (2.20) is a positively homogeneous,
simple quasi-semimetric. If u satisfies the convexity property

paX +(1-a)Y,2) < au(X,2) + (1L —au(Y,Z)  (6.30)
for any X,Y, Z, then [i satisfies

flaX +(1—a)V,Z) < ai(X,2)+ (1 — a)a(Y, Z) (6.37)

where the pairs of r.v.s ()?,2), (}7, Z), X4 X,Y LY and Z £ Z are such
that the minimum in (2.20) is attained.

Proof. We prove only that the minimal metric satisfies the PHO property
and (6.37). The remaining facts are proved in Rachev (1991), page 27. The
PHO property is straightforward to check,

faX,aY) = inf{u(X,Y): X LaX,Y L aY'}
= inf{a* (X /a,Y/a): X/a L X,Y a2V}
=’ inf{u(X/a,Y Ja) : X /a L X, Y/a L Y}
=a’u(X,Y).
Assume that the compound metric p is convex in the sense of (6.?16) in

which X, Y, Z are arbitrary r.v.s. We can always find pairs of r.v.s (X, Z),
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(Y,Z) such that X £ X, Y £V and Z £ Z, and also i(X,Z) + ¢ >
w(X,Z) and j(Y, Z) + € > u(Y, Z), in which i denotes the minimal metric.
In Rachev (1991), page 27, it is proved that the two bivariate laws can

be consistently embedded in a triple (X Y, Z ) so that the corresponding
bivariate projections are the given pairs. Smce (6.36) is true for any choice
of three r.v.s, it will be true for the triple (X, Y, Z),

)+ (1 —a)u(Y,Z), a€(0,1)
)+ (1 —a)p(Y,Z) + ¢

p(aX + (1= a)Y,Z) < ap(

< X,Z
. (6.38)
< af(X,Z
Knowing the trlple ()? , }7, Z ), we can calculate the distribution of the
convex combination X, = aX + (1 - a)Y In a similar vein, we can find a
pair (X,, Z) such that X, L Xa, 7272 7 and u(Xa,Z) +e> (X, Z)
which, applied to the left hand-side of (6.38), yields

ji(Xa, Z) < p(aX + (1 - a)Y, Z)
As a result, letting € — 0 in (6.38), we obtain

(1(Xe, Z) < afi(X,2) + (1 — a)iu(Y, Z).
O

The convexity condition (6.36) is important for the optimal properties
of the minimization problem in (6.33). The condition (6.36) ensures that
the optimization problem is convex. Unfortunately, the convexity property
breaks down for the minimal r.d. metric. The resulting property in (6.37)
is weak to guarantee nice optimal properties of the minimization problem in
(6.33).

Sometimes, it is possible to calculate explicitly the minimal functional.
The Cambanis-Simons-Stout theorem provides explicit forms of the minimal
functional with respect to a compound functional having the general form

N%Z)(X? Y) = E¢(X’ Y)

where ¢(z,y) is a specific function called quasi-antitone, see Cambanis et al.
(1976). The function ¢(x, y) is called quasi-antitone if it satisfies the following

property

P(z,y) + o', y) < o(2',y) + oz, y) (6.39)
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for any ' > x and y' > y. This property is related to how the function
increases when its arguments increase. Also, the function ¢ should satisfy
the technical condition that ¢(z,x) = 0. General examples of quasi-antitone
functions include

a) o¢(x,y) = f(x —y) where f is a non-negative convex function in R, for
instance ¢(x,y) = |[x — y|P, p > 1.

b) ¢(x,y) = —F(x,y) where F(z,y) is the distribution function of a two
dimensional random variable.

Theorem 1. (Cambanis-Simons-Stout) Given X,Y € X with finite mo-
ments E¢(X,a) < oo and E¢(Y,a) < oo, a € R where ¢(x,y) is a quasi-
antitone function, then

Ao(X.Y) = / B(F5 (1), Fy (1))t

in which Fy'(t) = inf{x : Fx(x) > t} is the generalized inverse of the c.d.f.
Fx(x) and also fig(X,Y) = ugs(Fx'(U), Fy'(U)) where U is a uniformly
distributed r.v. on (0,1).

Applying the Cambanis-Simons-Stout theorem to the compound func-
tional in equation (6.34), we obtain

1/p

L(X,)Y) = Uol(max(F);l(t) — FyN),0)Pdt|  , p>1. (6.40)

where X and Y are zero-mean random variables.

Besides the Cambanis-Simons-Stout theorem, there is another method of
obtaining explicit forms of minimal and maximal functionals. This method
is, essentially, direct application of the Fréchet-Hoeffding inequality between
distribution functions,

max(Fx(z) + Fy(y) = 1,0) < P(X < z,Y <)
< min(Fx (2), Fr(y)).
We show how this inequality is applied to the problem of finding the
minimal r.d. metric of the Birnbaum-Orlicz quasi-semi-metric defined in

(6.35) by taking advantage of the upper bound.
Consider the following representation of the 7* function defined in (6.35),
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™ X,Y)=PY <t, X <t)
—P(Y <t)—P(Y <t,X <1).

Now by replacing the joint probability by the upper bound from the Frechet-
Hoeffding inequality, we obtain

T*(t; X,Y) > Fy(t) — min(Fx (t), Fy (t))
= max(Fy(t) — Fx(1),0).

Raising both sides of the above inequality to the power p > 1 and integrating
over all values of t does not change the inequality. In effect, we obtain

[ [ w0 - Fxt0), o>>pdt] " erxy)

—00

which gives, essentially, the corresponding minimal r.d. metric,

00 1/p
9;()(, Y)= {/ (max(Fy (t) — FX(t),O))pdt] , p> 1. (6.41)
where X and Y are zero-mean random variables.

We have demonstrated that the Cambanis-Simons-Stout theorem and the
Frechet-Hoeffding inequality can be employed to obtain explicitly the mini-
mal functionals in equations (6.40) and (6.41),

LX,Y) = Ly(X,Y)

p
Ak

0,(X,Y)=0,X,Y)

6.1.3 An example on the convexity of r.d. metrics

In this section, we provide an example illustrating that the convexity property
(6.36) in Proposition 4 does not hold for the minimal r.d. metric. The
example is based on the functional pu(X,Y) = Lo(X,Y) defined in (2.13).
It is a compound metric satisfying the condition in (6.36). We show that
the minimal metric £,(X,Y) = L£5(X,Y) given in (2.7) does not satisfy the
convexity property (6.36).

Suppose that X € N(0,0%), Y € N(0,0%) and Z € N(0,0%). Then we
can calculate a closed-form expression for the minimal metric,
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wexy) = ([ (FE ) - R0 "
_ ( /0 (oxF(H) - ayF_l(t))th)

) (/01 (ox —ay)F_l(t))Zdt> 1/2 (6.42)

— lox — oy ( /0 1(F1(t))2dt)1/2

= |ox — oy

1/2

in which F~! is the inverse of the c.d.f. of the standard normal distribution.

In order to illustrate the convexity property, we have to calculate the
distribution of the convex combination X, = aX + (1 —a)Y, 0 < a < 1.
In it, the pair ()A(C, 17) is a bivariate projection of the triple ()Z', Y, Z) which
is a three-dimensional vector of r.v.s having as two dimensional projections
the pairs (X, Z) and (Y, Z) yielding the minimal metric. In the case of the
L5(X,Y) metric, these two bivariate projections can be computed explicitly
from the Cambanis-Simons-Stout theorem,

(Y, 2) = (i (), F;'(U))

~

where U is a uniformly distributed r.v. on (0,1). This result shows that
the r.v.s are functionally dependent and (X,Y) = (FxH(U), Fy ' (U)). This
bivariate distribution corresponds to a bivariate Gaussian law with perfectly
positively correlated components. As a result, the distribution of the convex
combination is Gaussian, X, € N(0, (aocx + (1 — a)oy)?). Therefore, by
equation (6.42), the left hand-side of (6.37) equals,

15(X,, Z) = laox + (1 — a)oy — o).

It remains to verify if the inequality in (6.37) holds. This is a straight-
forward calculation,
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I9(Xa, Z) = |laocx + (1 — a)oy — 04|
= la(ox —0z) + (1 —a)(oy — 02)|
< lalox —oz)| +|(1 = a)(oy - 0z)]
=alox —oz|+ (1 —a)loy — o]

= CLZQ(X, Z) + (1 - a)lz(}/, Z)

Note that the bivariate distribution of (X,Y) is not the same as the
bivariate law (X, Y’), which can be arbitrary, even though the marginals are
the same. Therefore, the distribution of the convex combination )A(:a =aX +
(1 —a)Y is not the same as the distribution of X, = aX + (1 — a)Y because
of the different dependence. As a consequence, ls(X,, Z) # ls(X,, Z) which
is the reason the convexity property (6.36) does not hold for the minimal
functional. For example, if we assume that the bivariate law (X,Y) has a
zero-mean bivariate normal distribution with some covariance matrix, then
Xo € N(0,04x4(1—a)y)- In this case,

32(Xa, Z) = |0-aX+(1fa)Y - UZ|7

which may not be a convex function of a.

7 Conclusion

In this paper, we discuss the connections between the theory of probability
metrics and the field of financial economics, particularly portfolio theory. We
considered the theories of stochastic dominance, risk and dispersion mea-
sures, and benchmark-tracking problems and we found that the theory of
probability metrics has appealing applications. Probability metrics can be
used to quantify the dominance relations, they generalize the treatment of
dispersion measures, and they offer a fundamental approach to generalizing
the benchmark-tracking problem.

Even though in the paper we consider static problems, the generality of
the suggested approach allows for extensions in a dynamic setting by studying
probability metrics not in the space of random variables but in the space of
random processes.
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