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RISK MANAGEMENT AND DYNAMIC PORTFOLIO

SELECTION WITH STABLE PARETIAN DISTRIBUTIONS

Abstract: This paper assesses stable Paretian models in portfolio the-

ory and risk management. We describe investor’s optimal choices under

the assumption of non-Gaussian distributed equity returns in the domain

of attraction of a stable law. In particular, we examine dynamic portfolio

strategies with and without transaction costs in order to compare the fore-

casting power of discrete-time optimal allocations obtained under different

stable Paretian distributional assumptions. Finally, we consider a condi-

tional extension of the stable Paretian approach to compute the value at

risk and the conditional value at risk of heavy-tailed return series.
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1. Introduction

In this paper we propose some stable Paretian models for optimal port-

folio selection and quantify the risk of a given portfolio. After examining

the multi-period optimal portfolio problems under different distributional

assumptions, we propose an ex-ante and an ex-post empirical comparison

between the stable Paretian approach and a moment-based one. We then

discuss how to use the stable Paretian model to compute the value at risk

(VaR) and the conditional value at risk (CVaR) of a given portfolio.

It is well-known that asset returns are not uniquely determined by their

mean and variance. Numerous empirical studies, beginning with the works

of Mandelbrot (1963a, 1963b, 1967) and Fama (1963, 1965a, 1965b), have

refuted the commonly accepted view that financial returns are normally

distributed.1 In this paper, we examine the implications of different distri-

butional hypotheses for dynamic portfolio strategies of investors. In partic-

ular, we compare the performance of dynamic strategies based on a stable

Paretian model and on a moment-based model.

The literature on multi-period portfolio selection has focused on max-

imizing expected utility functions of terminal wealth and/or multi-period

consumption. In contrast to the focus of classical multi-period approaches,

we generalize the mean-variance analysis suggested by Li and Ng (2000),

giving a three-parameter formulation of optimal dynamic portfolio selec-

tion. These alternative multi-period approaches are consistent with the

1 See Rachev and Mittnik (2000) and the reference therein.
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admissible optimal portfolio choices of risk-averse investors. In particu-

lar, we develop analytical optimal portfolio policies for the multi-period

mean-dispersion-skewness formulation. In order to compare a moment-based

three-parameter portfolio model and the stable Paretian dynamic model, we

analyze several investment allocation problems.

The primary contribution of the empirical comparison is the analysis of

the impact of the distributional assumptions on multi-period asset alloca-

tion decisions. Thus, we propose two alternative performance comparisons

between multi-period portfolio policies obtained under different distribu-

tional assumptions. For this purpose, we analyze some allocation problems

for non-satiable risk-averse investors with different risk-aversion coefficients.

We determine the ex-ante and ex-post multi-period efficient frontiers given

by the minimization of the dispersion measures. Each investor, characterized

by his/her utility function, will prefer the model which maximizes his/her

expected utility on the efficient frontier. The portfolio policies obtained with

this methodology represent the optimal choices for the different approaches

for an investor. Therefore, we examine the differences in optimal strate-

gies for an investor under the stable and the moment-based distributional

hypothesis.

In addition, we propose an ex-ante and an ex-post comparison between

the parametric-portfolio selection models proposed assuming that no short

sales and transaction costs are allowed. Thus we assess these models consid-

ering that every week each investor recalibrates his/her portfolio in order to
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maximize his/her expected utility on a three-parametric efficient frontier.

Finally, we present a conditional asymmetric stable-fund separation model

to compute the VaR and the CVaR of a given portfolio.

2. Three parameters portfolio selection models without short sale

constraints

In this section, we analyze a discrete-time extension of the Li and Ng (2000)

problem. In particular,we consider the optimal allocation among n+1 assets:

n of those assets are risky assets with stable distributed risky returns ztj =

[z1,tj , ..., zn,tj ]
0on the time period [tj , tj+1) and the (n+1)th asset is risk-free

with returns z0,t for t = t0, t1, ..., tT−1.

Let Wtj be the wealth of the investor at the beginning of the period

[tj , tj+1), and let xi,tj i = 1, ..., n; tj = t0, t1, ..., tT−1 (with t0 = 0 and

ti < ti+1) be the amount invested in the i-th risky asset at the beginning of

the period [tj , tj+1). x0,tj ; tj = 0, t1, ..., tT−1 is the amount invested in the

risk-free asset at the beginning of the period [tj , tj+1).

Li and Ng (2000) have proposed an analytical solution to the dynamic

mean-variance portfolio selection problem when the vectors of risky re-

turns zt are statistically independent. In their analysis they assume that

the amounts invested in the assets at the beginning of each period [tj , tj+1)

tj = t1, ..., tT−1 could be random variables. In contrast to the Li-Ng pro-

posal, we assume that the multi-period portfolio policies in the risky assets

xtj = [x1,tj , ..., xn,tj ]
0 for any j, are deterministic variables of the prob-

lem and the wealth invested in the risk-free return at time tj is given by
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Wtj − x0tje where e = [1, ..., 1]0 (and, clearly, it is a random variable). In

the following analysis, we assume that the wealth process is uniquely de-

termined by three parameters as in the model proposed by Ortobelli et al

(2004): mean, dispersion, and skewness. In particular, we assume:

a) the initial wealth W0 =
Pn

i=0 xi,0 is known and the vectors of returns

zt = [z1,t, ..., zn,t]
0 are i.i.d. 2 of any time t = t0, t1, ..., tT−1;

b) the returns zt follow the model

zi,t = µi,t + bi,tYt + εi,t (1)

where Yt ∼ Sα2(σY , βY , 0) is an α2-stable Paretian distributed asym-

metric equity return (βY 6= 0, α2 > 1) independent of α1-stable sub-

Gaussian distributed vectors of residuals εt = [ε1,t, ..., εn,t]
0; (α1 > 1),

which are statistically independent of any t = t0, t1, ..., tT−1. Observe

2 We implicitly assume that the length of the periods of analysis, tj+1 − tj , is

constant varying j, for this reason we assume that the vectors of returns zt are

also identically distributed. When we consider daily or weekly returns, we can

adopt either continuously compounded returns zi,t = ln
Si,t+1
Si,t

or the returns

zi,t =
Sit+1−Sit

Sit
(where Si,t is the price of the i-th asset at time t). As a matter of

fact, daily or weekly continuously compounded returns approximate well enough

the returns Sit+1−Sit
Sit

and we generally do not observe material differences in

the portfolio strategies obtained with the two alternative definitions (see, among

others, Biglova et al. (2004)). In addition, the empirical evidence shows that daily

or weekly returns are very often in the domain of attraction of stable laws (see

Rachev and Mittnik (2000) and the reference therein).
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that the assumption that the vector of residual εt is elliptically distrib-

uted as an α1-stable sub-Gaussian implies that the vector of returns

zt = µt + btYt + εt describes a three-fund separation model (see Ross

(1978) and Simaan (1993)).

Under these assumptions, the vector of returns zt admits the following

characteristic function Φzt(u) = E(exp(iu0z)):

exp
³
− (u0Qu)α1/2 − |u0btσY |α2

³
1− i (u0btσY )

hα2i βY tan
πα2
2

´
+ iu0µt

´
where xhαi = sgn(x) |x|α , bt = [b1,t, ..., bn,t]0, µt = E(zt), Q is the defi-

nite positive dispersion matrix associated at the vector of residuals εt =

[ε1,t, ..., εn,t]
0 at time t, and σY , βY are respectively the scale and the skew-

ness parameter of the centered equity return Y (independent of εt). Con-

sidering that the wealth at each time is given by

Wtk+1 =
Pn

i=0 xi,tk(1 + zi,tk) =

= (1 + z0,tk)Wtk + x0tkptk k = 0, 1, 2, ..., T − 1
where pti = [p1,ti , ..., pn,ti ]

0 is the vector of excess of returns pk,ti = zk,ti−

−z0,ti , then we can write the final wealth as follows:

WtT =W0

QT−1
k=0 (1 + z0,tk)+

+
PT−2

i=0 x0tipti
QT−1

k=i+1(1 + z0,tk) + x0tT−1ptT−1

(2)

for any fixed initial wealth W0. Since the multi-period portfolio policies in

the risky assets xtj are deterministic variables, then the mean of the final

wealth WtT is given by

E(WtT ) =W0

QT−1
k=0 (1 + z0,tk)+

+
PT−2

i=0 x0tiE(pti)
QT−1

k=i+1(1 + z0,tk) + x0tT−1E(ptT−1).
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Moreover, considering that the final wealth is determined by the relationship

given by (2) and the vectors of returns follow the stable law given by (1),

then the final wealth WtT maintains the same distributional structure of

the returns:

WtT =W0

QT−1
k=0 (1 + z0,tk) +

PT−2
i=0 x0tiE(pti)

QT−1
k=i+1(1 + z0,tk)+

+x0tT−1E(ptT−1) + Y
³PT−2

i=0 x0tibti
QT−1

k=i+1(1 + z0,tk) + x0tT−1btT−1
´
+

+
PT−2

i=0 x0tiεti
QT−1

k=i+1(1 + z0,tk) + x0tT−1εtT−1 = E(WtT ) +AxY + Ψx

where Ax =
PT−2

i=0 x0tibti
QT−1

k=i+1(1 + z0,tk) + x0tT−1btT−1 is a deterministic

variable, while Ψx =
PT−2

i=0 x0tiεti
QT−1

k=i+1(1+ z0,tk) + x0tT−1εtT−1 is the sum

of α1-stable independent random variables. Therefore, the final wealth WtT

is a linear combination of two independent stable laws Y (α2-stable distrib-

uted) and Ψx that is α1-stable sub-Gaussian distributed with null mean and

dispersion σ(x0tiεti)
defined by

σα1
(x0tiεti)

=
T−2X
i=0

¡
x0tiQxti

¢α1/2Ã T−1Y
k=i+1

(1 + z0,tk)

!α1

+
³
x0tT−1QxtT−1

´α1/2
.

Recall that all risk-averse investors (i.e., investors with concave utility

functions) prefer the return X to the return Z if and only if X dominates

Z in the sense of Rothschild-Stiglitz (see Rothschild and Stiglitz (1970)) or

equivalently if and only if E(X)=E(Z) andZ v

−∞
Pr (X ≤ s) ds ≤

Z v

−∞
Pr (Z ≤ s) ds

for every real v. LetWx andWy be two admissible final wealths determined

respectively by the portfolio policies xtj and ytj . Suppose that under the

assumptions of model (1),Wx andWy have the same mean E(Wx) = E(Wy)
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and the same parameter Ax = Ay. Then we have the following equality in

distribution (conditioned at Y = u) for any real u any

X/Y=u =
Wx −E(Wx)−Axu

σ(x0tiεti)

d
=

Ψx
σ(x0tiεti)

d
=

Ψy
σ(y0tiεti)

d
= Sα1 (1, 0, 0) .

Let’s suppose that σ(x0tiεti)
> σ(y0tiεti)

. Then, Wy dominates Wx in the

sense of Rothschild-Stiglitz because for every real v :

R v
−∞ (Pr (Wy ≤ s)− Pr (Wx ≤ s)) ds =

=
R v
−∞

R
R

Ã
Pr

Ã
X ≤ s−E(Wy)−Ayu

σ(y0ti εti)

¯̄̄̄
¯Y = u

!
−

−Pr
Ã
X ≤ s−E(Wy)−Axu

σ(x0tiεti)

¯̄̄̄
¯Y = u

!!
fY (u)du ds =

=
R
R

R v
−∞

Ã
Pr

Ã
X ≤ s−E(Wy)−Ayu

σ(y0ti εti)

¯̄̄̄
¯Y = u

!
−

−Pr
Ã
X ≤ s−E(Wy)−Axu

σ
(x0tiεti)

¯̄̄̄
¯Y = u

!!
dsfY (u)du ≤ 0

where fY is the density of Y. Therefore, the non-dominated portfolio poli-

cies are obtained by minimizing the residual dispersion σ(x0tiεti)
for some

fixed mean E(Wx) and parameter Bx. Thus, when unlimited short sales are

allowed, any risk-averse investor will choose one of the multi-portfolio policy

solutions of the following optimization problem for some m, v, and W0:

min
{xtj}j=0,1,...,T−1

1
2σ

α1

(x0tiεti)

s. t. E(WtT ) = m;PT−2
i=0 x0tibti

QT−1
k=i+1(1 + z0,tk) + x0tT−1btT−1 = v

. (3)

Imposing the first-order conditions on the Lagrangian

L(xtj , λ1, λ2) =
1

2
σα1
(x0tiεti)

− λ1(E(WtT )−m)− λ2(Ax − v)
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all the multi-portfolio policy solutions of problem (3) are given by:

xtj =
³
2
α1

´ 1
(α1−1) ((λ1E(ptj )+λ2btj )

0
Q−1(λ1E(ptj )+λ2btj ))

2−α1
(α1−1)2

Bj+1
×

×Q−1 ¡λ1E(ptj ) + λ2btj
¢

∀j = 0, 1, ..., T − 2

xtT−1 =
³¡
λ1E(ptT−1) + λ2btT−1

¢0
Q−1

¡
λ1E(ptT−1) + λ2btT−1

¢´ 2−α1
(α1−1)2 ×

×
³
2
α1

´ 1
(α1−1)

Q−1
¡
λ1E(ptT−1) + λ2btT−1

¢
,

(4)

where Bi =
QT−1

k=i (1 + z0,tk) and λ1, λ2 are uniquely determined by the

following relations

PT−2
i=0 x0tibtiBi+1 + x0tT−1btT−1 = vPT−2

i=0 x0tiE(pti)Bi+1 + x0tT−1E(ptT−1) =m−W0B0

.

Moreover, we can represent the dispersion of final wealth residual Ψx as

a function of the Lagrangian coefficients λ1, λ2, i.e.,

σα1
(x0tiεti)

=
T−1X
j=0

Ãµ
2

α1

¶2 ¡
λ1E(ptj ) + λ2btj

¢0
Q−1

¡
λ1E(ptj ) + λ2btj

¢! α1
2(α1−1)

.

Besides, the wealth invested in the risk-free asset at the beginning of the

period [tk, tk+1) is the deterministic wealth W0 − x00e in t0, while, for any

k ≥ 1, it is given by the random variable Wtk − x0tke, where Wt1 = (1 +

z0,0)W0 + x00p0 and for any j ≥ 2

Wtj =W0

j−1Y
k=0

(1 + z0,tk) +

j−2X
i=0

x0tipti

j−1Y
k=i+1

(1 + z0,tk) + x0tj−1ptj−1

In particular, when the vector εt = [ε1,t, ..., εn,t]
0 is Gaussian distributed

(i.e., α1 = 2), we obtain the following analytical solution to the optimization



10

problem (3)

xtj =
(m−W0B0)A−vD
Bj+1(AC−D2) Q−1E(ptj ) +

vC−(m−W0B0)D
Bj+1(AC−D2) Q−1btj

∀j = 0, 1, ..., T − 2

xtT−1 =
(m−W0B0)A−vD

AC−D2 Q−1E(ptT−1) +
vC−(m−W0B0)D

AC−D2 Q−1btT−1 ,

(5)

where

A =
PT−1

i=0 b0tiQ
−1bti ,

Bi =
QT−1

k=i (1 + z0,tk),

C =
PT−1

i=0 E(pti)
0Q−1E(pti)

and D =
PT−1

i=0 E(pti)
0Q−1bti .

We obtain the portfolio policies given by (5) even when the vector of

residuals εt is elliptical distributed with finite variance and the index Y

is an asymmetric random variable with finite third moment. Under this

assumption, the variance of final wealth residual Ψx is a function of m and

v. That is:

σ2(x0tiεti)
=

A (m−W0B0)
2 + v2C − 2v (m−W0B0)D

AC −D2
.

We call this approach that assumes residuals with finite variance the

moment-based approach, in order to distinguish it from the stable Paretian

one with α1 < 2. In both cases (stable non-Gaussian and moment-based

approaches), the three-fund separation property holds because the multi-

portfolio policies in the risky assets xtj are spanned by vectors Q
−1E(ptj ),

Q−1btj for any time tj .Moreover, simple empirical applications of these for-

mulas show that the implicit term structure z0,t for t = t0, t1, ..., tT−1 could

determine major differences in the portfolio weights of the same strategy
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and different periods. As a matter of fact, when the interest rates implicit

in the term structure are growing (decreasing), investors are more (less)

attracted to invest in the risk-free asset in future periods.

As discussed by Simaan (1993) and Ortobelli et al (2005), when we con-

sider a three-fund separation model, the solution of any allocation problem

depends on the choice of the asymmetric random variable Y. Clearly, one

should expect that the optimal allocation will differ when one assumes that

asset returns are in the domain of attraction of a stable law or that they

depend on a three-moment model. In order to examine the impact of these

different distributional assumptions, in the next section we compare the

performance of the two models.

3. A comparison among parametric dynamic strategies

In this section, we evaluate and compare the performances between the

fund separation portfolio models previously presented. In particular, we

propose an ex-ante and an ex-post comparison between the stable non-

Gaussian and the moment-based approaches. In this comparison, we assume

dynamic portfolio choice strategies either when short sales are allowed or

when transaction cost constraints and no short sales are allowed.

For both comparisons, we assume that investors recalibrate their port-

folio weekly. Thus, we analyze optimal dynamic strategies during a period

of 25 weeks among a risk-free asset proxied by the 30-day Eurodollar CD

(and offering a rate of one-month Libor), and 25 developed country stock

market indices. The stock indices are those that are or have been part of
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the MSCI World Index in the last 20 years.3 The historical returns for all

of the stock indices covered the period January 1993 to May 2004. We split

the historical return data series into two parts. The first part (January 1993

- December 2003) is used to estimate the model parameters; the second

part (December 2003-May 2004) is used to verify ex-post the impact of the

forecasted allocation choices.

We consider as the benchmark index Y the centered MSCI World In-

dex and we assume initial capital W0 equal to 1. Hence, we use weekly

returns (where each week consists of five trading days) taken from 25 risky

returns included in the MSCI World Index. Therefore, using the nota-

tion of the previous section, we assume as risk-free weekly returns z0,ti

t0 = 12/08/2003, ..., t24 = 5/24/2004 the observed one-month Libor (see

Table 1).

3.1 Comparison between three-fund separation models without portfolio

constraints

In our comparison, we assume that unlimited short sales are allowed, and

we approximate optimal solutions to different expected utility functions. In

particular, we assume that each investor maximizes one from among the

following five expected utility functions:

3 They are: Australia, Austria, Belgium, Canada, Denmark, Finland, France,

Germany, Greece, Hong Kong, Ireland, Italy, Japan, Malaysia, Netherlands, New

Zealand, Norway, Portugal, Singapore, South African Gold Mines, Spain, Sweden,

Switzerland, on the United Kingdom, and the United States.
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1) max
{xtj}j=0,1,...,T−1

E (log(WT ))

2) max
{xtj}j=0,1,...,T−1

−E (exp(−γWT )) with γ = 1, 5, 7, 17;

3) max
{xtj}j=0,1,...,T−1

E
³
Wc
T

c

´
with c = −1.5,−2.5;

4) max
{xtj}j=0,1,...,T−1

E(WT )− cE
³
|WT −E(WT )|1.3

´
with c = 1, 2.5;

5) max
{xtj}j=0,1,...,T−1

E(WT )− cE
³
|WT −E(WT )|2

´
with c = 1, 2.5.

Observe that when the returns are in the domain of attraction of a

stable law, with 1 < α1, α2 < 2, the above expected utility functions could

be infinite. However, assuming that the returns are truncated far enough,

those formulas are formally justified by pre-limit theorems (see Klebanov et

al. (2000) and Klebanov et al. (2001)), which provide the theoretical basis for

modeling heavy-tailed bounded random variables with stable distributions.

On the other hand, the investor can always approximate his/her expected

utility, since he/she works with a finite amount of data. We assume the

vectors of returns ztj = [z1,tj , ..., z25,tj ]
0 are statistically independent and

follow the model given by (1).

In the model we need to estimate several parameters: the index of

stability α1, the mean µ, the dispersion matrix Q, and the vector bt =

[b1,t, ..., b25,t]
0. In order to simplify our empirical comparison, we assume

the index of stability α1, the vector mean µ = E(zt), and the vector bt

are constant over the time t. We estimate α1 to be equal to the mean

of 10,000 indexes of stability computed with the maximum likelihood es-

timator (MLE) of random portfolios of the residuals eε = ez − bbY, i.e.,
α1 =

1
10000

P10000
k=1 α(k) =1.8007 where α(k) is the index of stability of a
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random portfolio (x(k))0eε. The estimator of µ is given by the vector bµ of the
sample average. Then, we consider as factor Y the centralized MSCI World

Index return. Regressing the centered returns ezi = zi − bµi (i = 1, ..., 25) on
Y, we write the following estimators4 for b = [b1, ..., b25]

0 and Q:

bbi = PN
k=1 Y

(k)ez(k)iPN
k=1

¡
Y (k)

¢2 ; i = 1,...,25, (6)

and bQ = [bqi,j ]
where

bqj,j = ÃA(p) 1
N

NX
k=1

¯̄̄ eεj(k) ¯̄̄p!
2
p

,

bqi,j = 1

2

ÃA(p) 1
N

NX
k=1

¯̄̄ eεi(k) + eεj(k) ¯̄̄p!
2
p

− bqj,j − bqi,i


p ∈ (0, α1), A(p) = Γ(1− p
2 )
√
π

2pΓ(1− p
α)Γ(

p+1
2 )

, and eε(k) = ez(k) −bbY (k) is the sample

residual vectors. The entries of the dispersion matrix derive from the mo-

ment method suggested by Property 1.2.17 in Samorodnitsky and Taqqu

(1994) (see also Ortobelli et al (2004)). In addition, arguing along the same

lines as Rachev (1991), Götzenberger et al (2001), and Tokat et al (2003),

we can explain and prove the asymptotic properties of this estimator. We

assume that parameter p is equal to the mean of optimal bpi that minimizes
the average of the distance between the moment-dispersion estimator of

residuals ezi,t− bi,tYt and its maximum likelihood stable estimate (see Table
1).

4 See Kim, Rachev, Samorodnitsky and Stoyanov (2005) for a discussion of the

best estimators of vector b when a heavy-tailed series is assumed.
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Theoretically, the optimal p must be near zero for stable distributions

(see Rachev (1991)). However, if we approximate eεi with a stable distribu-
tion, the optimal p ∈ (0, α) depends on the historical series of observationsneε(k)i

oN
k=1
. According to the analysis proposed by Lamantia et al. (2006),

we consider the optimal bpj that minimizes the average of distance between
bqj,j(p) = ³A(p) 1N PN

k=1

¯̄̄ eεj(k) ¯̄̄p´1/p (which we call moment-dispersion esti-
mator) and the MLE vj,j of dispersion. That is,

bpj = argÃmin
p

1

T

TX
t=1

¯̄bqjj,t/t−1(p)− vj,j
¯̄!

, j = 1, ..., 25.

In Table 1 we report the MLE stable parameters of the historical return

series, the estimated vector bb, and the optimal bpj of weekly return series
between January 1993 to December 2003. Here, we adopt the common pa-

rameter bp = 1
25

P25
j=1 bpj ' 0.60812.

In order to compare the different models, we use (in a multi-period

context) the same algorithm proposed by Giacometti and Ortobelli (2004)

and Ortobelli et al (2005). Thus, first we consider the optimal strategies for

different levels of the mean and skewness. Second, we select the portfolio

strategies on the efficient frontiers that maximize some parametric expected

utility functions for different risk-aversion coefficients. Then, we compare

the performance of the stable Paretian and of moment-based approaches

for each optimal allocation proposed.

Therefore, considering N i.i.d. observations z(i) (i = 1, . . . , N ) of the

vector zt = [z1,t, z2,t, ..., z25,t]
0, the main steps in our comparison are the

following:
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Step 1 Consider the optimal portfolio strategies

xj(λ1, λ2) =
³
2
α1

´ 1
(α1−1) ((λ1E(ptj )+λ2btj )

0
Q−1(λ1E(ptj )+λ2btj ))

2−α1
(α1−1)2

Bj+1
×

×Q−1 ¡λ1E(ptj ) + λ2btj
¢ ∀j = 0, 1, ..., 23

x24(λ1, λ2) =
¡
(λ1E(pt24) + λ2bt24)

0Q−1 (λ1E(pt24) + λ2bt24)
¢ 2−α1
(α1−1)2 ×

×
³
2
α1

´ 1
(α1−1)

Q−1 (λ1E(pt24) + λ2bt24) ,

that generate the efficient frontier.

Step 2 Choose a utility function u with a given coefficient of aversion to

risk.

Step 3 Compute for every multi-period efficient frontier

max
λ1,λ2

1
N

PN
i=1 u

³
W

(i)
25

´
.

where W (i)
25 =

Q24
k=0(1 + z0,k) +

P23
j=0 x

0
j(λ1, λ2)p

(i)
j

Q24
k=j+1(1 + z0,k) +

x024(λ1, λ2)p
(i)
24 is the i-th observation of the final wealth and p

(i)
t =

[p
(i)
1,t, ..., p

(i)
n,t]

0 is the i-th observation of the vector of excess returns p(i)k,t =

z
(i)
k,t− z0,t relative to the t-th period. In particular, we implicitly assume

the approximation:

1

N

NX
i=1

u
³
W

(i)
25

´
≈ E

³
u
³
W

(i)
25

´´
.

and that {xj(λ1, λ2)}j=0,1,...,24 are the optimal portfolio strategies given

by (4).

Step 4 Repeat steps 2 and 3 for every utility function and for every risk-

aversion coefficient.

Using these steps, we obtain the results reported in Table 2 with the

approximated maximum expected utility and the ex-post final wealth. In
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order to emphasize the differences in the optimal portfolio composition, we

employ the following notation:

a) xstabletj tj = t0, t1, ..., t24 the optimal portfolio policies that realize the

maximum expected utility assuming the stable Paretian model;

b) xmoment
tj tj = t0, t1, ..., t24 the optimal portfolio policies that realize

the maximum expected utility assuming the moment-based approach.

Then we consider the half average of the absolute difference between the

portfolio compositions at each time tj , i.e.:

1

50

24X
j=0

25X
k=1

¯̄̄
xstablek,tj − xmoment

k,tj

¯̄̄
. (7)

This measure points out how much the portfolio composition for each re-

calibration changes in terms of the mean.

Table 2 summarizes the comparison between the fund-separation ap-

proaches discussed above. In particular, it shows that the ex-ante opti-

mal solutions that maximize the expected utility functions are always on

the mean-dispersion-skewness frontier of the stable Paretian model and in-

vestors increase their performance when they use the stable Paretian model.

Only in two cases do we observe that the ex-post final wealth of the moment-

based model is higher than the stable Paretian one. Moreover, we observe

substantial differences in the optimal portfolio composition. Considering

that the two models, moment-based and stable Paretian, are based on a

different risk perception of the residuals, this empirical comparison suggests

that the residuals have a strong impact on the portfolio selection decisions

made by investors.



18

3.2 Comparison between three-fund separation models with portfolio con-

straints

Now we will compare dynamic strategies with constant and proportional

transaction costs of 0.2%5 when short sales are not permitted. In particular,

we compare:

a) the ex-post final wealth sample paths of investors who maximize one of

the five utility functions listed in Section 3.1;

b) the ex-ante maximum expected utility obtained at each time tj for the

following three optimization problems:

1) max −E (exp(−X));

2) max E(X)−E
³
|X −E(X)|1.3

´
;

3) maxE(X)− 2.5E
³
|X −E(X)|2

´
.

We assume that the returns follow the three-fund separation model given

by (1) and that each investor recalibrates his/her portfolio weekly starting

from 12/08/2003 till 5/24/2004. In order to describe the different portfolio

strategies considering transaction costs and short sale constraints,we have

to determine the optimal choices of the investors at each time tj . Thus,

at each time tj , we have to solve two different optimization problems: the

first to fit the efficient frontier with transaction cost constraints and the

second to determine the optimal expected utility on the efficient frontier.

In particular, considering N observations z(i) (i = 1, . . . , N ) of the vector

5 The transaction costs generally change for different countries. Here we fix some

indicative transaction costs often used by institutional investors in Italy.
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zt = [z1,t, z2,t, ..., z25,t]
0, the main steps of our comparison are summarized

in the following algorithm:

Step 1 We choose a utility function u with a given coefficient of aversion to

risk.

Step 2 At time t0=12/08/2003, we fit the three-parameter efficient frontiers

corresponding to the different distributional hypothesis: moment-based

and stable Paretian approaches. Therefore, we fit 5,000 optimal portfolio

weights xt0 varying the weekly mean mW ≥ z0,0 =0.0002924 and the

index of skewness b∗ in the following quadratic programming problem:

min
xt0

x0t0Qxt0 subject to

x0t0µ+ (1− x0t0e)z0,0 = mWt0

x0t0bt = b∗, 0 ≤ x0t0e ≤ 1

and xi,t0 ≥ 0, i = 1, ..., n

, (8)

where e = [1, ..., 1]0 and Wt0 = x0zt + (1− x0t0e)z0,0.

We assume that over time t the vector mean µ = E(zt) and the

dispersion matrix Q of the residuals are constant. Then, for each efficient

frontier, we have to determine the portfolio weights xt0 that maximize

the expected utility given by the solution to the following optimization

problem

max
xt0

1
N

Pt0
i=t0−N u

¡
x0t0z

(i) + (1− x0t0e)z0,0
¢

subject to

xt0 are optimal portfolio of the efficient frontier.
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Thus given

x∗t0 = arg( max
xt0belongs to the efficient frontier

(E(u(x0t0zt + (1− x0t0e)z0,0))))

the ex-post final wealth at time 5/31/2004 is obtained by W1 =W0(1+¡
x∗t0
¢0
z(t1)+(1−e0x∗t0)z0,1−0.002) where 0.002 is the fixed proportional

transaction costs for unity of wealth invested.

In order to determine the optimal portfolio strategies in the other

periods, we have to take into account that the investor pays proportional

transaction costs of 0.2% on the absolute difference of the changes of

portfolio compositions. Thus, at time tk (after k weeks) we fit 5,000

optimal portfolio weights xtk varying the weekly mean m ≥ z0,tk and

the index of skewness b∗ in the following optimization problem:

min
xtk

x0tkQxtk subject to

m = E(X(xtk))

x0tkbt = b∗, 0 ≤ x0tke ≤ 1

and xi,tk ≥ 0, i = 1, ..., 25

,

whereX(xtk) = x0tkztk+(1−x0tke)z0,tk−t.c.(xtk) and t.c.(xtk) represents

the transaction costs at time tk of portfolio xtk which are given by

0.002

¯̄̄̄
¯(1− x0tke)−

(1− x0tk−1e)(1 + z0,tk)

(1− x0tk−1e)(1 + z0,tk) +
P25

i=1 xi,tk−1(1 + z
(tk)
i )

¯̄̄̄
¯+

+ 0.002
25X
i=1

¯̄̄̄
¯xi,tk − xi,tk−1(1 + z

(tk)
i )

(1− x0tk−1e)(1 + z0,tk) +
P25

i=1 xi,tk−1(1 + z
(tk)
i )

¯̄̄̄
¯ ,

where xi,tk−1(1 + z
(tk)
i ) is the percentage of wealth invested on the i-th

stock at time tk−1capitalized at time tk.
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Therefore, for each efficient frontier (the moment-based and stable Paretian

ones), we have to determine the optimal portfolio weights

x∗tk = arg( max
xtkbelongs to the efficient frontier

(E(u(X(xtk))))).

Step 3 We compute the ex-post final wealth that is given by

Wtk+1 =Wtk(1 +
¡
x∗tk
¢0
z(tk+5) + (1− e0x∗tk)z0,tk+1 − t.c.

¡
x∗tk
¢
)

where the transaction costs t.c.
¡
x∗tk
¢
are defined above.

Step 4 We repeat steps 2 and 3 for every utility function and for every

risk-aversion coefficient.

Observe that at each time tk the investor’s optimal choices are uniquely

characterized by the mean, the dispersion, and the skewness. In particular, if

we assume that α = α1 = α2, the vector of returns is jointly α-stable distrib-

uted and every centered portfolio ezp,tk = Pn
i=1 xi,tkezi,tk admits the stable

distribution Sα (σp,tk , βp,tk , 0) where σp,tk =
³¡
x0tkQxtk

¢α/2
+
¯̄
x0tkbσY

¯̄α´1/α
is the volatility and βp,tk =

|x0tk bσY |αsgn(x0tk b)βY
(x0tkQxtk)

α/2
+|x0tkbσY |α

is the portfolio skewness.

Thus, we can represent the investor’s optimal choices in terms of the mean

E(x0tkz + (1− x0tke)z0,tk − t.c.(xtk)), the dispersion σp,tk , and the portfolio

skewness βp,tk . Similarly, when we consider the moment-based model, the

optimal portfolio choices can be represented in terms of the mean, the stan-

dard deviation, and the Fisher skewness parameter:
E((zp,tk−E(zp,tk ))3)

E((zp,tk−E(zp,tk ))2)
3/2 .

Figure 1 shows the efficient frontiers of the two models valued at time t0.

As we should expect, in both cases the optimal choices are represented by
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a plane curved. First of all, we could observe that, at each time tj , the ex-

ante expected utility obtained with the stable Paretian approach is always

greater than that obtained with moment-based model, and this result holds

for any utility function (see Table 3).

Table 4 summarizes the final wealth obtained at time 5/31/2004 by the

different expected utility maximizer. Even in this comparison we consider

the distance given by (7) between the portfolio compositions at each time tj .

Then we observe significant differences in the optimal portfolio compositions

(more than 27%), although these differences are lower than those obtained

when unlimited short sales are allowed. However, the ex-post comparison

shows that the final wealths obtained with the stable Paretian model are

almost always greater than those obtained with the moment-based model.

Practically, as shown in Figure 2, we observe that in many of the cases

studied the stable Paretian portfolio strategy dominates the moment-based

one. The figure shows the ex-post final wealth sample path of an investor

with utility function u(x) = −x−1.5
1.5 . Thus, this performance analysis con-

firms and emphasizes the importance of properly evaluating the residual

distribution behavior in the fund-separation portfolio models.

4. VaR and CVaR models with conditional stable distributed

returns

In this section, we consider the conditional stable Paretian approach

proposed by Lamantia, et al. (2006) to value the risk of a given portfolio.

In particular, we assume the centered index return Yt ∼ Sα(σYt , βYt , 0),
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(t = 1, 2, ...) asymmetric α-stable distributed (βY 6= 0) and independent of

residual vectors

ezt − bYt = [σ11,t/t−1ε1,t, ..., σnn,t/t−1εn,t]0.

Furthermore, we assume that the conditional distribution of the centered

continuously compounded return vector ezt+1 = [ez1,t+1, ..., ezn,t+1]0 is jointly
α-stable with characteristic function

Φzt+1(u) = exp
³
−
³¡
u0Qt+1/tu

¢α/2
+ |u0bσY |α

´
×

×
Ã
1− i

|u0bσY |α sgn(u0b)βY¡
u0Qt+1/tu

¢α/2
+ |u0bσY |α

tan
³πα
2

´!!

In contrast to Lamantia, et al. (2006), we suggest an alternative evolution

of the residual dispersion matrix Qt+1/t that is justified by Property 2.7.16

in Samorodnitsky and Taqqu (1994). That is, the centered continuously

compounded returns ezi,t are generated as follows
ezi,t+1 = biYt+1 + σii,t+1/tεi,t+1 =

³
σαii,t+1/t + |biσY |α

´ 1
α

Xi,t+1

σpii,t+1/t = (1− λ) |ezi,t − biYt|pA(p) + λσpii,t/t−1

Bij,t+1/t(p) = (1− λ) (ezi,t − biYt) (ezj,t − bjYt)
hp−1iA(p) + λBij,t/t−1(p)

σ2ij,t+1/t = Bij,t+1/t(p)σ
2−p
jj,t+1/t

where A(p) =
Γ(1− p

2 )
√
π

2pΓ(1− p
α)Γ(

p+1
2 )

.

The conditional distribution of the residual vector is sub-Gaussian α-

stable and for any i and t, εi,t ∼ Sα(1, 0, 0) andXi,t ∼ Sα

µ
1, |biσY |αsgn(bi)βY

σα
ii,t/t−1+|biσY |α

, 0

¶
.

λ is a parameter (decay factor) that regulates the weighting on past co-

variation parameters. The vector b = [b1, b2, ..., bn]
0 is estimated using the
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estimator given by (6). The forecast time t+1 stable scale parameter of the

i-th residual is given by:

σii,t+1/t = (Et(|ezi,t+1 − biYt+1|p)A(p))1/p '

'
³
A(p)(1− λ)

PK
k=0 λ

K−k |ezi,t−K+k − biYt−K+k|p
´1/p

.

The time t+ 1 stable covariation parameter between the i-th and the j-th

residual is defined by σ2ij,t+1/t and

Bij,t+1/t(p) = A(p)Et

³
(ezi,t+1 − biYt+1) (ezj,t+1 − bjYt+1)

hp−1i´ ' A(p)×

×(1− λ)
PK

k=0

³
λK−k (ezi,t−K+k − biYt−K+k) (ezj,t−K+k − bjYt−K+k)

hp−1i´ .

Under these assumptions, the forecast (1− θ)% VaR of portfolio

ezp,t = w0ezt = nX
i=1

wiezi,t
in the period [t, t+1] is given by the corresponding (1−θ) percentile of the

α-stable distribution Sα
¡
σp,t+1/t, βp,t+1/t, 0

¢
, where

σp,t+1/t =
³¡
w0Qt+1/tw

¢α/2
+ |w0bσY |α

´1/α
is the forecast volatility and

βp,t+1/t =
|w0bσY |α sgn(w0b)βY¡

w0Qt+1/tw
¢α/2

+ |w0bσY |α

is the forecast skewness. Similarly the CVaR with confidence level θ% of

portfolio ezp,t, denoted by
CV aR(1−θ)%(ezp,t) = E

¡ezp,t/ezp,t ≤ V aR(1−θ)% (ezp,t)¢ ,
can be simply computed considering the algorithms proposed by Stoyanov

et al (2006). Although the stable VaR model has been recently tested and
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studied (see Lamantia et al (2006)), further analyses and empirical compar-

isons among different stable VaR and CVaR models are necessary.

5. Conclusions

In this paper, we examine a stable Paretian version of the three-fund

separation model and propose VaR and CVaR models with stable distrib-

uted returns. We first discuss portfolio choice models considering returns

with heavy-tailed distributions. In order to present heavy-tailed models that

consider the asymmetry of returns, we examine a discrete time three-fund

separation model where the portfolios are in the domain of attraction of

a stable law. Second, we propose and then test an ex-ante and an ex-post

comparison between dynamic stable portfolio strategies and those obtained

by a moment-based fund separation approach. Our empirical comparison

demonstrates that heavy tails of residuals can have a fundamental impact

on the asset allocation decisions by investors. As a matter of fact, the stable

Paretian model takes into account the heavy tails of residuals and we find

that the stable Paretian model dominates the moment-based model in terms

of expected utility and of the ex-post final wealths. Finally, we propose a

conditional extension of the stable Paretian fund separation model in order

to compute the VaR and CVaR of a given portfolio.
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  STABLE    PARAMETERS Vector b Optimal p date One-month 
 α  β  σ  µ     Libor 
World 1.8119 -0.4721 1.39E-02 1.06390E-03 // //   
Australia 1.9039 -0.5761 1.81E-02 1.27704E-03 0.69915336 0.901 12/8/2003 0.00024366
Austria 1.8827 -0.9134 1.84E-02 4.90564E-04 0.41269641 0.791 12/15/2003 0.0002395
Belgium 1.7166 -0.3579 1.75E-02 7.93329E-04 0.82281788 0.435 12/22/2003 0.00023768
Canada 1.7403 -0.4494 1.73E-02 1.33854E-03 0.95577381 0.495 12/29/2003 0.00023611
Denmark 1.878 -0.1875 1.81E-02 2.44492E-03 0.62197582 0.739 1/5/2004 0.00023325
Finland 1.8049 -0.5025 3.57E-02 3.56638E-03 1.58221202 0.671 1/12/2004 0.00022909
France 1.8527 -0.3812 1.93E-02 1.35466E-03 1.07931915 0.741 1/19/2004 0.00022909
Germany 1.7496 -0.3245 2.06E-02 9.99059E-04 1.21313555 0.543 1/26/2004 0.00022909
Greece 1.8183 0.1071 2.89E-02 2.12436E-03 0.77665342 0.592 2/2/2004 0.00022909
Honk Kong 1.8557 -0.2997 2.73E-02 9.12564E-04 1.02073281 0.629 2/9/2004 0.00022909
Ireland 1.854 -0.495 1.89E-02 1.85463E-03 0.73384617 0.672 2/16/2004 0.00022779
Italy 1.8662 -0.1196 2.36E-02 1.84903E-03 0.94883386 0.751 2/23/2004 0.00022701
Japan 1.8665 0.458 2.25E-02 3.54105E-04 0.8410432 0.733 3/1/2004 0.00022909
Malaysia 1.4345 -0.0433 2.30E-02 9.21145E-04 0.73252637 0.231 3/8/2004 0.00022753
Netherlands 1.7183 -0.464 1.73E-02 1.06414E-03 1.04661998 0.459 3/15/2004 0.00022701
New Zealand 1.8319 -0.4512 2.08E-02 1.03758E-03 0.56151513 0.636 3/22/2004 0.00022701
Norway 1.7976 -0.5846 1.98E-02 1.13420E-03 0.77828204 0.573 3/29/2004 0.00022701
Portugal 1.873 -0.1199 2.05E-02 1.78560E-03 0.62436739 0.621 4/5/2004 0.00022909
Singapore 1.6793 0.012 2.19E-02 8.56174E-04 0.84932897 0.329 4/12/2004 0.00022909
South African Gold 1.7097 -0.2279 2.38E-02 1.29268E-03 0.84936104 0.397 4/19/2004 0.00022909
Spain 1.8885 -0.5767 2.22E-02 2.03309E-03 1.00178349 0.662 4/26/2004 0.00022909
Sweden 1.8617 -0.6198 2.70E-02 2.20147E-03 1.37302633 0.715 5/3/2004 0.00022909
Switzerland 1.8375 -0.4555 1.74E-02 2.18278E-03 0.8566863 0.648 5/10/2004 0.00022909
UK 1.8643 -0.4924 1.57E-02 1.02209E-03 0.83454662 0.723 5/17/2004 0.00022909
USA 1.7859 -0.3313 1.53E-02 1.52378E-03 1.02808878 0.516 5/24/2004 0.00022909
 
Table 1 Weekly one-month Libor, MLE stable parameters, OLS estimates of skewness vector b, and optimal 
values pj assuming weekly return series between January 1993 and December 2003.



30

 
Stable Paretian model Moment-based model 

Expected Utility 
 
 

Expected 
Utility 

 

Final 
Wealth 

 

Expected 
Utility 

 

Final 
Wealth 

 

Difference between 
portfolio compositions 

24 25

, ,
0 1

1
50 j j

stable moment
i t i t

j i
x x

= =
−∑ ∑

 
E(log(X)) 0.06748929 0.921348 0.035949 0.89988926 1.223015 

-E(exp(-X)) -0.3434836 0.913607 -0.35453 0.89254154 1.267922 
-E(exp(-5X)) -0.0061188 0.98823 -0.006316 0.98406318 0.253439 
-E(exp(-7X)) -0.0008167 0.993622 -0.000843 0.99059865 0.181591 
-E(exp(-17X)) -3.459E-08 1.001446 -3.65E-08 0.99273461 0.114266 

( )1.51
1.5

E X−−  
-0.6474572 0.996126 -0.648086 0.96153605 0.340285 

( )2.51
2.5

E X−−  
-0.38462 0.992376 -0.38483 0.974308 0.238968 

E(X)-E(|X-E(X)|1.3) 1.00857878 1.001703 1.007344 1.00349768 0.07409 
E(X)-2.5E(|X-E(X)|1.3) 1.0070141 1.006794 1.006963 1.00678217 0.003309 

E(X)-E(|X-E(X)|2) 1.0346303 0.996126 1.022109 0.94873114 0.539501 
E(X)-2.5E(|X-E(X)|2) 1.01851465 0.982589 1.01301 0.98365812 0.220456 

Table 2 Comparison on three parametric efficient frontiers and analysis of the models’ 
performance. We maximize the expected utility on the ex-ante efficient frontiers considering 
weekly returns from January 1993 till December 2003 for 25 country equity market indices and 30-
day Eurodollar CD. Moreover, we also consider the ex-post final wealth of the investor’s choices. 
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Stable Paretian Model Moment-based model 

Times 
 
 

Expected 
Utility 

-E(exp(-X)) 
 

Expected 
Utility 
E(X)- 

-E(|X-E(X)|1.3) 

Expected 
Utility 

E(X)-2.5E(|X-
-E(X)|2) 

Expected 
Utility 

-E(exp(-X))
 

Expected 
Utility 
E(X)- 

-E(|X-E(X)|1.3)

Expected 
Utility 

E(X)-2.5E(|X- 
-E(X)|2) 

12/8/2003 -1.00061989 -0.001755038 -0.00137045 -1.000635911 -0.001755067 -0.00137278 
12/15/2003 -0.9987222 0.000140813 0.00052715 -0.99873854 0.000140782 0.000524703 
12/22/2003 -0.99869823 0.000139098 0.00053992 -0.998717431 0.000139056 0.000536138 
12/29/2003 -0.99867117 0.000137654 0.00055454 -0.998692649 0.000137603 0.000549765 

1/5/2004 -0.99863393 0.000134954 0.00057403 -0.998657369 0.000134894 0.000568404 
1/12/2004 -0.99859893 0.000130949 0.00059177 -0.998622842 0.000130886 0.000586184 
1/19/2004 -0.99859597 0.000130966 0.00059384 -0.998618888 0.000130907 0.000588835 
1/26/2004 -0.99857558 0.000131052 0.00060551 -0.99859984 0.000130986 0.000599828 
2/2/2004 -0.99859463 0.000130975 0.0005951 -0.998616812 0.000130919 0.000590506 
2/9/2004 -0.99860609 0.000130929 0.00058893 -0.998627144 0.000130879 0.000585062 

2/16/2004 -0.99857776 0.000129749 0.00060431 -0.998599504 0.000129696 0.000600327 
2/23/2004 -0.99857306 0.000128994 0.00060693 -0.998595557 0.000128938 0.00060262 
3/1/2004 -0.99859079 0.000130996 0.00059821 -0.998612592 0.000130945 0.000594301 
3/8/2004 -0.99858053 0.000129487 0.0006036 -0.9986017 0.000129437 0.000600095 

3/15/2004 -0.99863035 0.00012876 0.00057515 -0.99864758 0.000128729 0.000573684 
3/22/2004 -0.99865496 0.00012866 0.00056151 -0.998668045 0.000128647 0.0005614 
3/29/2004 -0.99866581 0.000128618 0.00055579 -0.998677519 0.000128612 0.000554432 
4/5/2004 -0.99861368 0.000130899 0.00058536 -0.998629271 0.000130875 0.000584969 

4/12/2004 -0.99859803 0.000130966 0.00059438 -0.998616857 0.000130929 0.000592356 
4/19/2004 -0.99862434 0.000130859 0.00057989 -0.998643882 0.000130819 0.000577312 
4/26/2004 -0.99863342 0.000130824 0.00057513 -0.998690393 0.00013063 0.000552539 
5/3/2004 -0.99865624 0.000130732 0.00056259 -0.998674346 0.000130699 0.000560597 

5/10/2004 -0.99868805 0.000130602 0.0005449 -0.998704626 0.000130577 0.000543639 
5/17/2004 -0.99875516 0.000130319 0.00050667 -0.998767256 0.000130311 0.00050644 
5/24/2004 -0.99874857 0.00013035 0.00051072 -0.998760348 0.000130343 0.000510267 

Table 3 Ex ante comparison on three parametric efficient frontiers. We maximize the expected utility 
on the ex-ante efficient frontiers considering weekly returns from January 1993 till December 2003 
for 25 country equity market indices and 30-day Eurodollar CD.  
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Expected Utility 
 
 

Stable Paretian 
Model 

 
Final Wealth 

Moment-based 
model 

 
Final Wealth 

Difference between 
portfolio composition 

24 25

, ,
0 1

1
50 j j

stable moment
i t i t

j i
x x

= =
−∑ ∑  

E(log(X)) 0.946068 0.923961 0.275455 
-E(exp(-X)) 0.9333206 0.911717 0.248854 

-E(exp(-5X)) 0.9952915 0.991088 0.110664 
-E(exp(-7X)) 0.997546 0.994512 0.079008 
-E(exp(-17X)) 1.0037667 0.995008 0.051296 

( )1.51
1.5

E X−−  
0.9936615 0.975512 0.116882 

( )2.51
2.5

E X−−  
1.0001669 0.967061 0.188742 

E(X)-E(|X-E(X)|1.3) 0.9998229 1.001619 0.031864 
E(X)-2.5E(|X-E(X)|1.3) 1.0047192 1.004798 0.013961 

E(X)-E(|X-E(X)|2) 0.9774207 0.960879 0.266129 
E(X)-2.5E(|X-E(X)|2) 0.9891482 0.983203 0.098486 

Table 4 Comparison of the ex-post final wealth (computed for the period 
12/15/2003-5/31/2004) on the efficient frontiers. We compute the ex-post final 
wealth considering weekly returns for 25 country equity market indices and 30-
day Eurodollar CD.  
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Ex-post Final Wealth
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Figure 2: Ex-post comparison of portfolio strategies of an investor with 
utility function 1.5
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