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Chapter 1

Introduction

Asset liability management (ALM) attempts to find the optimal investment strat-

egy under uncertainty in both the asset and liability streams. In the past, the two

sides of the balance sheet have usually been separated, but simultaneous consid-

eration of assets and liabilities can be very advantageous when they have common

risk factors. If assets are allocated such that they are highly correlated with the

liabilities, it is possible to reduce the risk of the entire portfolio.

Traditionally, banks and insurance companies used accrual accounting for es-

sentially all their assets and liabilities. They would take on liabilities, such as

deposits, life insurance policies or annuities. They would invest the proceeds from

these liabilities in assets such as loans, bonds or real estate. All assets and liabil-

ities were held at book value. Doing so disguised possible risks arising from how

the assets and liabilities were structured.

Two of the earlier ALM frameworks for constructing portfolios of fixed-income

securities are dedication and immunization. Basic dedication assumes that the

future liability payments are deterministic and finds an allocation such that bond

income is sufficient to cover the liability payments in each time period. Achieving

this type of cashflow matching in every period is likely to be costly, so traditional
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immunization models match cashflows on average providing a cheaper, but usually

riskier, portfolio. The immunized portfolio is constructed by matching the present

values and interest rate sensitivities of the assets and liabilities, and it results in

an allocation that hedges against a small parallel shift in the term structure of

interest rates.

Consider the following simple example (see from riskglossary.com): A bank

borrows USD 100 Mio at 3.00% for a year and lends the same money at 3.20%

to a highly-rated borrower for 5 years. For simplicity, we assume that all interest

rates are annually compounded and all interest accumulates to the maturity of the

respective obligations. The net transaction appears profitable, since the bank is

earning a 20 basis point spread. However, the transaction also entails considerable

risk:

At the end of a year, the bank will have to find new financing for the loan,

which will have 4 more years before it matures. If interest rates have risen, the

bank may have to pay a higher rate of interest on the new financing than the fixed

3.20 it is earning on its loan. Suppose, for example that at the end of a year, an

applicable 4-year interest rate is 6.00%. The bank is in serious trouble. It is going

to be earning 3.20% on its loan and paying 6.00% on its financing.

Accrual accounting does not recognize the problem. The book value of the

loan (the bank’s asset) is:

100Mio · 1.032 = 103.2Mio

The book value of the financing (the bank’s liability) is:



100Mio · 1.030 = 103.0Mio

Based upon accrual accounting, the bank earned USD 200,000 in the first year.

However, market value accounting recognizes the bank’s predicament. The

respective market values of the bank’s asset and liability are:

100Mio · 1.03251.0604 = 92.72Mio

Hence, from a market-value accounting standpoint, the bank has lost USD

10.28 Mio. So which result offers a better portrayal of the bank’ situation, the

accrual accounting profit or the market-value accounting loss? The bank is in

trouble, and the market-value loss reflects this. Ultimately, accrual accounting

will recognize a similar loss. The bank will have to secure financing for the loan

at the new higher rate, so it will accrue the as-yet unrecognized loss over the 4

remaining years of the position.

The problem in this example was caused by a mismatch between assets

and liabilities. Prior to the 1970’s, such mismatches tended not to be a sig-

nificant problem. Interest rates in developed countries experienced only modest

fluctuations, so losses due to asset-liability mismatches were small or trivial. Many

firms intentionally mismatched their balance sheets. Because yield curves were

generally upward sloping, banks could earn a spread by borrowing short and lend-

ing long. But things started to change in the 1970s, which ushered in a period

of volatile interest rates that continued into the early 1980s. US regulation which

had capped the interest rates that banks could pay depositors, was abandoned



to stem a migration overseas of the market for USD deposits. Managers of many

firms, who were accustomed to thinking in terms of accrual accounting, were slow

to recognize the emerging risk. Some firms suffered staggering losses. Because

the firms used accrual accounting, the result was not so much bankruptcies as

crippled balance sheets. Firms gradually accrued the losses over the subsequent 5

or 10 years.

One of the victims of the changing conditions is the US mutual life insurance

company the Equitable. During the early 1980s, the USD yield curve was inverted,

with short-term interest rates spiking into the high teens. The Equitable sold a

number of long-term guaranteed interest contracts (GICs) guaranteeing rates of

around 16% for periods up to 10 years. During this period, GICs were routinely

for principal of USD 100 Mio or more. Equitable invested the assets short-term

to earn the high interest rates guaranteed on the contracts. Short-term interest

rates soon came down. When the Equitable had to reinvest, it couldn’t get nearly

the interest rates it was paying on the GICs. The firm was crippled. Eventually,

it had to demutualize and was acquired by the Axa Group.

We conclude that the the earlier framework of accrual accounting is inadequate

for ALM because it misses the stochastic nature of interest rates and liabilities

and the dynamic nature of investing. The two main tools that help to capture the

dynamic and stochastic characteristics are stochastic control and stochastic

programming. Stochastic control methods model uncertainty in a continuous-

time setting through Itô processes, but a drawback is that only a few driving

variables, or states, can be handled. Applications of stochastic control in ALM is

for example the surplus optimization for pension funds and life insurance.

This lecture is organized as follows:

• Chapter two reviews major issues on risk and optimization. Properties of the



Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) risk measure

are covered.

• Chapter three provides information on single- and multistage optimization

problems, stochastic programs and scednario generation.

• Chapter four discusses the choice of an adequate distribution for modeling

of the risk factors with focus on the stable distributions that is able to model

features like heavy-tails, skewness and excess kurtosis in the underlying risk

factors. We further investigate how multivariate data can be modeled ade-

quately.

• Chapter five provides an example of an empirical application of ALM tech-

niques to a pension fund. Additional issues like portfolio backtesting, com-

parison of the results based on the underlying risk factors are treated as

well.



Chapter 2

Risk and Optimization

The goal of risk-return optimization is to optimize a tradeoff between the risk

and return. This chapter reviews a few risk measures and discusses how they

can be implemented in simple single-stage portfolio optimization problems. The

techniques for optimizing CVaR presented in this chapter will later be used in a

multistage problem.

2.1 Risk Measures

The standard measure of risk for a portfolio of equities suggested by Markowitz

is the variance of the return. A portfolio consists of weights ω = (ω1, ..., ωn)
′,

such that ωi ≥ 0 and
∑n

i=1 ωi = 1, in n assets with corresponding risky returns

R = (r1, ..., rn)
′. The risk associated with the portfolio return rp = ω′R is given

by σ2
p = ω′Σω, where Σ is the covariance matrix of R. While the variance of

the investment return is the most traditional risk measure, a common criticism is

that the variance penalizes both large gains and large losses. A modification to an

6



asymmetric risk measure that accounts only for large losses is the semivariance:

E
(

[ω′E(R) − ω′R]+
)2
.

However, numerical optimization of semivariance is difficult. Another modification

is the downside formula which measures the degree that the returns are distributed

below some target return r∗:

E
(

[r∗ − ω′R]+
)2
.

A second criticism of variance is that financial returns are typically heavy-tailed,

and in that case, the variance does not even exists. A logical argument can then

be made for using the mean absolute deviation (MAD) of the portfolio:

mp = E |ω′R− ω′E(R)| ,

or alternatively, the scale parameter of a stable distribution can be used in place

of the variance. Stable distributions will be discussed in more detail in chapter 3.

Some other risk measures rely only on the tail of the distribution, in which

case the modeling of the probability of extreme events becomes more important.

The following, VaR and CVaR, are two such measures. Value at Risk (VaR) is

a frequently used measure of risk for financial institutions and regulators. For

a given confidence level β ∈ (0, 1), VaR is the minimum value of the loss, or

negative return, that is exceeded no more than 100(1-β)% of the time. Its ease of

understanding helps to make it a popular risk measure.

The following notations and definitions of VaR and CVaR resemble mostly

those in [33]. For a given decision x ∈ R
n, let the random variable L(x) ∈ R



represent a loss, or negative return, for each x, and let ΨL(x, ζ) be the distribution

function for L(x):

ΨL(x, ζ) = P (L(x) ≤ ζ) .

For a given decision x, the Value at Risk at confidence level β is given by

VaRβ(x) = inf {ζ|ΨL(x, ζ) ≥ β} .

Discussion of several other tail risk measures, including the Conditional Value

at Risk (CVaR), can be found in [1] and [2]. While it is not widely used in finance,

it has properties that make it a very logical alternative to VaR. These properties

are referred to as coherence and will be described shortly.

Define a random variable Tβ(x) on the β-tail of the loss L(x) through the

distribution function:

ΨTβ
(x, ζ) =







0 ζ < VaRβ(x)

ΨL(x,ζ)−β
1−β

ζ ≥ VaRβ(x)
(2.1)

For a given decision x, the Conditional Value at Risk at confidence level β is the

mean of the tail random variable Tβ(x) with distribution function (2.1):

CVaRβ(x) = E (Tβ(x)) .

As is implied by its name, CVaR is closely related to the conditional expectation

beyond VaR. In general, CVaR satisfies the inequalities

E (L(x)|L(x) ≥ VaRβ(x)) ≤ CVaRβ(x) ≤ E (L(x)|L(x) > VaRβ(x)) . (2.2)

If there is no discontinuity in the distribution function of L(x) at VaRβ(x), then



equality holds in equation (2.2). For this reason, CVaR is also sometimes called

the Expected Tail Loss (ETL). When there is a discontinuity, as illustrated in [33],

CVaRβ(x) splits the probability atom at VaRβ(x) in a certain way. CVaR is

defined in this manner because it has an equivalent representation that is easily

optimized in the case of a discrete distribution such as in a scenario tree. This

representation will be referred to as Uryasev’s formula and is reviewed shortly.

2.2 Coherence

To help define a sensible risk measure, [3] introduces properties that are required of

a coherent risk measure; however, VaR does not satisfy these properties in general.

As is well known, VaR is not sub-additive: Examples have been constructed where

the VaR of the sum of two portfolios is greater than the sum of individual VaRs.

Lack of subadditivity is very undesirable because diversification is not promoted.

However, for the special class of elliptical distribution, VaR is sub-additive and

coherent [5].

The following properties of coherence are stated adhering to the axiomatic

definition in [1]. If V is the space of real-valued random variables, a risk measure

is a functional ρ : V −→ R. If the random variables v, v′ ∈ V are thought of as

losses, then ρ is coherent if it is

i. sub-additive: ρ(v + v′) ≤ ρ(v) + ρ(v′),

ii. positive homogeneous: ρ(λv) = λρ(v), ∀λ ≥ 0,

iii. translation invariant: ρ(v + c) = ρ(v) + c, ∀c ∈ R, and

iv. monotonous: ρ(v) ≥ 0, ∀v ≥ 0.



Proof of the coherence of CVaR can be found in [2, 29, 33]. The coherence of the

set of random variables {L(x)} can be stated as a function of x when L(x) is

linear:

L(x) = x1Y1 + ...+ xnYn.

In this situation, Yi might be a random variable representing an individual asset

loss, and L(x) is a random variable representing the total portfolio loss. Coherence

of CVaRβ(x) in this framework means

i. CVaRβ(x) is sublinear in x,

ii. CVaRβ(x) = c when L(x) = c ∈ R, and

iii. CVaRβ(x) ≤ CVaRβ(x
′) when L(x) ≤ L(x′).

See [33] for the proof.

Note that sub-additivity and positive homogeneity guarantees that a coherent

risk measure is convex which is advantageous in portfolio optimization. A lack

of convexity of VaR contributes to numerical difficulties in optimization. VaR is

easy to work with when normality of distributions is assumed, but financial data

is typically heavy-tailed. We will also consider optimization under uncertainty

where discrete probability distributions arise from scenario trees. In addition to

coherence, CVaR has a representation that is practical in minimization problems

with scenarios generated from any distributional assumption.

2.3 Risk-Return Optimization

If the risky returns R are assumed to follow a multivariate normal distribution

N(µ,Σ), the portfolio return rp = ω′R is also normally distributed with mean

µp = ω′µ and variance σ2
p = ω′Σω. The classical mean-variance optimization



problem is to minimize the risk of the portfolio for a minimum level of expected

return:

min
ω

ω′Σω

s.t. ω′µ = µ0,
∑n

i=1 ωi = 1.

(2.3)

The solution to the above problem is easily solved with Lagrangian techniques

and can be found in [6]. As µ0 is varied, the set of portfolios trace out the mean-

variance efficient frontier. If no short-selling is allowed, the restriction ωi ≥ 0 is

also included.

A drawback of optimization problem (2.3) is that it requires a large number

of parameters to be estimated. If there are n risky assets, the covariance matrix

consists of n(n+ 1)/2 elements. For instance, if the universe of assets consists of

the S&P500, over 125,000 variances/covariances must be estimated. A solution,

as found in [37], is to model each asset with a multifactor equation:

ri = µi + βi1F1 + ...+ βikFk + ǫi, (2.4)

where Fj is the deviation of the random factor j from its mean and cov(Fj, Fl) = 0

for all j 6= l. Examples of typical factors include inflation, interest rates, and

GDP. The asset specific risks ǫi have zero expectation, are uncorrelated, and are

independent of the factors. The portfolio rp = ω′R can be written as

rp = µp +
k
∑

j=1

βpjFj + ǫp,

where

µp = ω′µ, βpj =
n
∑

i=1

ωiβij, ǫp =
n
∑

i=1

ωiǫi.



It follows the variance of the portfolio is

σ2
p =

k
∑

j=1

β2
pjσ

2
Fj

+
n
∑

i=1

ω2
i σ

2
ǫi
.

The first term in the right-hand side of this equation is the systematic or market

risk, and the second term is the unsystematic risk of the portfolio. If equal weight

is given to each asset, ωi = 1/n, the unsystematic risk is bounded by c/n for some

constant c, so this risk can be diversified away as n grows large. Using the factor

model in the minimum variance optimization problem gives:

min
ω

σ2
p =

∑k
j=1 β

2
pjσ

2
Fj

+
∑n

i=1 ω
2
i σ

2
ǫi

s.t. ω′µ = µ0,

βpj =
∑n

i=1 ωiβij
∑n

i=1 ωi = 1.

The factor sensitivities βij, factor variances, and specific risk variances can be

estimated through linear regression in equation (2.4). This results in a significant

reduction in the number of parameter estimates needed as compared to optimiza-

tion problem (2.3).

Both of the above are quadratic optimization problem. As an alternative

to mean-variance analysis, one can optimize the risk measures mentioned in the

previous section. Also in [37], the author illustrates that a linear optimization

problem can be achieved when the variance of the portfolio is replaced with its

mean-absolute deviation mp. Since R is multivariate normal, the relation holds

that mp =
√

2
π
σp, so minimizing the mean-absolute deviation will produce the

same optimal portfolio as minimizing the variance. In addition, the linear equiv-

alent program is easily modified to penalize upside and downside deviations from



the mean with different weights.

The class of elliptical distributions offers special properties in portfolio theory

that are useful in minimizing VaR or CVaR. The following gives a very brief

review; a more complete introduction to elliptical distributions and their portfolio

implications is found in [5]. For any elliptically distributed random vector R with

finite variance for all univariate marginals, variance is equivalent to any positive

homogeneous risk measure ρ. If rp = ω′R and r̃p = ω̃′R are two linear portfolios

with corresponding variances σ2
p and σ̃2

p:

ρ (rp − E(rp)) ≤ ρ (r̃p − E(r̃p)) ⇐⇒ σ2
p ≤ σ̃2

p.

In addition if ρ is translation invariant, the solution to the following risk-return

optimization problems coincide:

min
ω

σ2
p

s.t. rp = ω′R,

E(rp) = µ0,
∑n

i=1 ωi = 1,

min
ω

ρ(rp)

s.t. rp = ω′R,

E(rp) = µ0,
∑n

i=1 ωi = 1,

where µ0 is the desired return. Therefore, under this distributional assumption,

minimization of VaR, CVaR, or variance will produce the same optimal portfolios.

This follows because CVaR is always coherent, and VaR is coherent for this class

of distributions.

The stable assumption makes portfolio optimization more difficult since vari-

ance is infinite and cannot be used are a risk measure. One natural solution is

to use the scale parameter σαp of the portfolio return. The scale parameter is just

a generalization of the standard deviation of a normal distribution. Chapter 3

defines stable random vectors and the special case of a sub-Gaussian distribution,



which is also in the class of elliptical distributions. If Q is the dispersion matrix

of the sub-Gaussian distribution, it can be shown that the CVaR and VaR of the

portfolio return are both strictly increasing functions of the dispersion parameter

of the portfolio return ω′Qω. Therefore, for a sub-Gaussian random vector R,

minimization of VaR or CVaR can both be achieved by the portfolio optimization

problem:

min
ω

ω′Qω

s.t. ω′µ = µ0,
∑n

i=1 ωi = 1.

Details of stable portfolio theory are found in [30], and a comparison of allocations

under the normal and stable assumptions is found in [27].

2.4 CVaR Optimization

One would like to be able to perform risk-return analysis for a portfolio by mini-

mizing VaR or CVaR subject to a constraint on the return for any distributional

assumption. In general, VaR is difficult to optimize and is usually not used in this

setting. Typically, one can model the returns with any distribution and then gen-

erate a discrete distribution of scenarios, but in this case, VaR is non-smooth and

non-convex in the portfolio positions with multiple local extrema [36]. CVaR, on

the other hand, has a representation that is easy to optimize both as a constraint

and as an objective for a set of scenarios. Additionally, if CVaR is constrained to

be small, VaR must necessarily be small. Conversely, minimization of VaR may

produce very different solutions than minimization of CVaR: VaR minimization

may stretch the tail of the distribution beyond VaR resulting in a poor CVaR

value.



2.4.1 Uryasev’s Optimization Shortcut

As defined earlier, for the decision x ∈ R
n, L(x) is the random variable repre-

senting the loss, or negative return, with associated VaRβ(x) and CVaRβ(x). To

begin, define the function

Γβ(x, ζ) = ζ +
1

1 − β
E
(

[L(x) − ζ]+
)

, (2.5)

then CVaR is expressed as a minimization through the following optimization

shortcut: Γβ(x, ·) is finite and continuous with

CVaRβ(x) = min
ζ∈R

Γβ(x, ζ), (2.6)

and, in addition,

VaRβ(x) = lower endpoint of argminζΓβ(x, ζ).

Equation (2.6) will be referred to as Uryasev’s formula. As a corollary, it can be

shown that if L(x) is convex in x, then CVaRβ(x) is convex in x and Γβ(x, ζ) is

jointly convex in (x, ζ). In addition, if a constraint set X is convex, one obtains

a convex minimization problem in (x, ζ): Minimizing CVaRβ(x) with respect to

x ∈ X is equivalent to minimizing Γβ(x, ζ) with respect to (x, ζ) ∈ X × R, i.e.

min
x∈X

CVaRβ(x) = min
(x,ζ)∈X×R

Γβ(x, ζ) (2.7)

The proofs of the above results are found in [33].

Similar to mean-variance efficient frontiers, [18] illustrates risk-reward analysis

using CVaR as a risk measure. If R(x) is a concave reward function and X is



convex, then

min
x∈X

CVaRβ(x) subject to R(x) ≥ λ, (2.8)

min
x∈X

CVaRβ(x) − λR(x), and (2.9)

min
x∈X

−R(x) subject to CVaRβ(x) ≤ λ, (2.10)

produce the same efficient frontiers as λ is varied. As is already shown, the optimal

solution to (2.8) can be found by a joint convex optimization problem. Similarly,

problems (2.9) and (2.10) produce the same optimal solution as

min
(x,ζ)∈X×R

Γβ(x, ζ) − λR(x),

and

min
x∈X

−R(x) subject to Γβ(x, ζ) ≤ λ,

respectively.

An extension of these optimization procedures to risk shaping with CVaR is

found in [33]. For confidence level βi with corresponding loss tolerance λi, for

i = 1, ...I,

min
x∈X

−R(x) subject to CVaRβi
(x) ≤ λi, for i = 1, ..., I,

has the same optimal solution as

min
(x,ζ1,...,ζ2)∈X×R×...×R

−R(x) subject to Γβi
(x, ζi) ≤ λi, for i = 1, ..., I.

When L(x) has a discrete distribution arising from, for example, a scenario



tree or sampling, equation (2.5) becomes

Γ̃β(x, ζ) = ζ +
1

1 − β

S
∑

i=1

pi [Li(x) − ζ]+ , (2.11)

where L(x) takes the value Li(x) with probability pi for i = 1, ..., S. Additionally

if L(x) is linear, then Γ̃β is convex and piecewise linear. By introducing auxiliary

variables, a CVaR optimization problem can be solved by linear programming as

illustrated in the next section.



Chapter 3

Portfolio Optimization and

Stochastic Programming

In this chapter we will continue the problem of portfolio optimization and intro-

duce the stochastic programming as a solution technique.

3.1 1-stage Portfolio Optimization

We will first consider the problem of a 1-stage portfolio optimization. Hereby,

we will apply Uryasev’s formula to risk-return analysis with CVaR and obtains a

linear programming problem.

Define

X =

{

ω ∈ R
n

∣

∣

∣

∣

∣

n
∑

j=1

ωj = 1, ωj ≥ 0, j = 1, ..., n

}

, (3.1)

where x ∈ X represents the portfolio weights in n assets. The random return on

these assets at the end of a time period is represented by R = (r1, ..., rn)
′, and the

18



negative return of the portfolio is given by

L(x) = −x′R.

If the mean of R is given by the vector µ, the risk-return problem is

min
x∈X

CVaRβ(x) s.t. x′µ ≥ µ0,

where µ0 is the required portfolio return, and by varying µ0, the efficient frontier

is obtained. This optimization problem fits into the form of equation (2.8). If

the uncertainty in the return is given through the set of scenarios {R1, ..., RS}

where each Rs ∈ R
n occurs with probability ps, Uryasev’s optimization shortcut

produces the equivalent problem

min ζ + 1
1−β

∑S
s=1 p

s [−x′Rs − ζ]+

s.t. x′µ ≥ µ0,

x ∈ X, ζ ∈ R,

and by introducing auxiliary variables ys, s = 1, ..., S, a linear program results:

min ζ + 1
1−β

∑S
s=1 p

sys

s.t. x′µ ≥ µ0,

x′Rs + ζ + ys ≥ 0, s = 1, ..., S,

ys ≥ 0, s = 1, ..., S,

x ∈ X, ζ ∈ R.

This program is used to compare hedging strategies for international asset allo-

cation in [36]. In addition, the CVaR portfolio is compared with a portfolio min-

imizing the mean-absolute deviation. The empirical results indicate that CVaR



and MAD produce similar risk-return frontiers in a static setting. However, in

dynamic backtesting where the models are repeatedly applied over a time horizon,

CVaR produces higher returns and lower volatility than MAD.

3.2 Single-stage versus Multistage Optimization

Extending the single period risk-return problem to a multi-period setting is diffi-

cult and some modifications are necessary. In a multi-period setting, one usually

deals with a wealth process instead of returns so that problems will be convex and

sometimes linear. The general form of a stochastic program with recourse allows

any portfolio allocation to be made in each stage, and one typically optimizes a

function of the wealth process, not the return process, over the quantities of assets

held, not the portfolio weights. Instead of risk-return analysis, one can perform

risk-reward analysis where the risk, for instance, is a function of the wealth process

and the reward is the expected terminal wealth. This is the type of problem that

is constructed in the next chapter.

Decision rules such as fixed-mixed are useful because they reduce the decision

space, but they also limit the dynamic nature of the optimization problem. For

instance, one multi-period extension of mean-variance analysis is found in [20]:

max λE(wT ) − (1 − λ)var(wT ).

Here, wT is the terminal wealth, and the max is taken over all fixed-mixed decision

rules. In a fixed-mixed rule, the portfolio is reallocated in each time period to keep

a certain percentage of wealth in each asset. As λ is varied between zero and one,

a type of efficient frontier is obtained. While the number of decision variables are

greatly reduced, the problem becomes non-convex, and a global search algorithm



is necessary.

The coherence of a risk measure in a multi-period setting is also defined in

terms of a wealth process w = (w1, ..., wT ) where w1 is a known deterministic

wealth. It is shown in [14] that a weighted average of CVaR over the time horizon

is coherent: If CVaRβ(−wt) is the CVaR associated with the negative wealth −wt,

then a coherent risk measure is given by

ρ(w) = ρ(w1, ..., wT ) =
T
∑

t=2

µtCVaRβ(−wt), (3.2)

where the weights are nonnegative and sum to one. Here, coherence means that

ρ is

i. convex: ρ(λw + (1 − λ)w̃) ≤ λρ(w) + (1 − λ)ρ(w̃), ∀λ ∈ [0, 1],

ii. positive homogeneous: ρ(λw) = λρ(w), ∀λ ≥ 0,

iii. translation invariant: ρ(w1 + c, ..., wT + c) = ρ(w) − c, ∀c ∈ R, and

iv. monotonous: if wt ≤ w̃t a.s. for t = 1, ..., T, then ρ(w) ≥ ρ(w̃).

When implementing the risk measure in (3.2), one can apply Uryasev’s optimiza-

tion shortcut in a similar manner as the previous sections: Uryasev’s formula

can be applied to each CVaRβ(−wt) where the loss L is taken to be the negative

wealth −wt, and the wealth in each stage is a function of some decision variables.

Of course, there will also be constraints such as the balance of wealth between

stages. This is illustrated in detail in the next chapter for the surplus wealth in

an ALM problem.



3.3 Formulation of the Stochastic Program

Stochastic programming offers a framework that can incorporate many of the

characteristics of an ALM problem. We will first discuss a general setup for

stochastic programs with recourse. In the next chapter we will then apply this

framework to an ALM problem for a pension fund.

In a 2-stage recourse problem, a recourse decision is made after a realization

of uncertainty. The first stage has a vector of initial decisions x1 ∈ R
n1 made

at t = 1 when there is a known distribution of future uncertainty. The second

stage decisions x2 ∈ R
n2 adapt at t = 2 after the first stage uncertainty ξ1 is

realized. The second stage decisions usually also consider the distribution of

future uncertainty ξ2 realized after t = 2. For instance, consider an asset allocation

problem: The first stage decision is the initial portfolio allocation, the uncertainty

is the asset returns, and the recourse decision is the portfolio adjustments. This

2-stage recourse problem finds the optimal initial and rebalanced allocations for

the given distribution of future stock movements.

This setup is described mathematically by first considering how the optimal

recourse decision is determined. For a given first stage decision vector x1 and

a given realization of the first stage uncertainty ξ1, the best recourse decision is

found through the following second stage problem:

minx2
q2(x1, x2, ξ1) + Eξ2 (Q2(x1, x2, ξ1, ξ2)| ξ1)

s.t. B2(ξ1)x1 + A2(ξ1)x2 = b2(ξ1),

l2(ξ1) ≤ x2 ≤ u2(ξ1)

(3.3)

where

• q2(x1, x2, ξ1) is a cost of decision x2 for the given realization of the first stage

uncertainty ξ1 and the given first stage decision x1,



• Q2(x1, x2, ξ1, ξ2) is the cost of decision x2 for given realizations of uncertain-

ties ξ1 and ξ2 and the given first stage decision x1,

• B2(ξ1) is the technology matrix that converts a first stage decision into

resources in the second stage, and

• A2(ξ1) is the recourse matrix.

It is possible to remove the cost function Q2 by including the second term of the

objective in the cost function q2. The problem is said to have fixed recourse when

A2 is independent of ξ1. The subscripts indicate at which t a value is known

except in the case of ξt . For instance, the realizations of B2, A2, and b2 are all

known at t = 2, which is the beginning of the second stage, but ξ2 is not realized

until after t = 2.

The full 2-stage recourse problem incorporates the second stage problem as

follows: With the optimal value of the second stage problem (3.3) denoted by

Q1(x1, ξ1), the 2-stage problem minimizes the sum of a first stage cost q1(x1) and

the expected value of the second stage cost EQ1(x1, ξ1):

minx1
q1(x1) + EQ1(x1, ξ1)

s.t. A1x1 = b1,

l1 ≤ x1 ≤ u1.

(3.4)

The first set of constraints in the above problem are referred to as the first stage

constraints. A good introduction to the various properties of 2-stage recourse

problems, such as feasibility, is found in [4].

An obvious criticism of the 2-stage model is that it only allows one recourse

decision to be made, not a sequence of decisions over the time horizon. A multi-

stage recourse program can provide a more realistic model, but it is more complex



and can often be very difficult to solve numerically. As in the 2-stage problem,

the initial vector of decisions x1 is made before the first realization of uncertainty

ξ1, and a second stage decision x2 is then made based on x1 and ξ1. In the T -stage

problem, this process continues for the uncertainties ξt, t = 1, ..., T − 1, and the

decisions vectors xt, t = 1, ..., T . There is usually one additional realization of

uncertainty ξT following the final decision xT .

The T -stage recourse program can be defined recursively as an extension of the

2-stage program. Let the uncertainty up to and including stage t, for t = 1, ..., T ,

be denoted by ξt = {ξj, j = 1, ..., t}, where each ξj is the uncertainty realized in

stage j. Similarly, let the decisions up to and including stage t be denoted by

xt = {xj, j = 1, ..., t}, where each xj is the decision made for stage j. The first

stage problem is essentially the same as problem (3.4):

minx1
q1(x1) + Eξ1Q1(x

1, ξ1)

s.t. A1x1 = b1,

l1 ≤ x1 ≤ u1,

(3.5)

with Qt, for t = 1, ..., T − 1, given by the minimization problems

Qt(x
t, ξt) = minxt+1

qt+1(x
t+1, ξt) + Eξt+1

(Qt+1(x
t+1, ξt+1)| ξt)

s.t. Bt+1(ξ
t)xt + At+1(ξ

t)xt+1 = bt+1(ξ
t),

lt+1(ξ
t) ≤ xt+1 ≤ ut+1(ξ

t),

(3.6)

and QT (xT , ξT ) is a known function, not the solution to another minimization

problem. It possible to set QT = 0 by including the second term of the objective

in qT . The above problem (3.5-3.6) is a form of the multistage recourse problem

that is relevant to the ALM problem that will be presented soon. Other forms,

such as that found in [13], allow the first constraint of (3.6) to depend on all



decisions up to time t:

t
∑

τ=1

Bt+1,τ (ξ
t)xτ + At+1(ξ

t)xt+1 = bt+1(ξ
t), (3.7)

but this type of constraint is not necessary.

3.4 Scenario Generation

To numerically solve the recourse problem (3.5-3.6), the distribution of (ξ1, ..., ξT )

is approximated by a set of scenarios usually organized in the form of a scenario

tree. Figure (3.1) contains an example of a small scenario tree similar to the

one that will be used in the 2-stage ALM problem discussed later. A first stage

optimal allocation is found in the node at t = 1, and optimal recourse allocations

are found in every node at t = 2. In the 2-stage problem, there is no additional

allocation decision made at the nodes at t = 3. The tree shown in the figure is

called balanced because each node at t = 2 is connected to two nodes at t = 3.

To describe the scenario tree, assume the nodes of the scenario tree are num-

bered starting with the value of one at t = 1, and let It be the number of nodes

up to and including those at t. Define the sets of indices It = {It−1 +1, ..., It}, for

t = 2, ..., T + 1, with I1 = 1. A scenario s, which is a path through the scenario

tree, is then represented by the set of indices (i2, ..., iT+1) where it ∈ It. Two

useful functions defined on the node indices are the predecessor, pred(·), and the

descendant, dec(·): pred(it) returns the node in It−1 connected to it, and dec(it)

returns a subset of nodes in It+1 connected to it. At t, the probability of being

at node it ∈ It is denoted by p(it) so that
∑

it∈It
p(it) = 1. Sometimes it is

more useful to use the transition probabilities p(it, it+1), for it+1 ∈ dec(it) where
∑

it+1∈dec(it)
p(it, it+1) = 1.



Figure 3.1: A Scenario Tree.

A topic of active research examines how to generate a good set of scenarios to

represent the underlying distribution and produce good optimal decisions. The

simplest approach is to just generate a very large number of scenarios by sampling

from a time-series model. This is reasonable for a 1-stage problem, but recourse

problems quickly become too difficult or time-consuming to solve as the number of

scenarios is increased. Even with parallel implementations of solution algorithms,

multistage problems must typically limit the number of scenarios. In this case, it

becomes necessary to somehow generate a smaller set of “good” scenarios.

One technique in scenario selection is sequential importance sampling. The

general idea behind importance sampling is to obtain scenarios that are impor-

tant (in some sense) in the stochastic program. Sequential importance sampling

obtains these scenarios in an iterative fashion. First, scenarios are generated for

some given tree structure. The stochastic program is then solved and values for

the importance sampling criterion are obtain at each node. These nodal values de-



termine where the structure of the scenario tree should be changed and/or where

to resample a subtree. A more complete description of this method is in [12]. As

an example, the importance sampling criterion used in [10] is the expected value

of perfect information (EVPI). If the EVPI of a node is below some threshold, a

new subtree emanating from that node is generated by resampling. If the EVPI

is consistently below the threshold, the tree is collapsed beyond that node. If the

EVPI is above the threshold for a node with no descendants, the tree is expanded

beyond that node.

Discretization is an alternative to sampling from a distribution. One rela-

tively simple technique for discretization is moment matching. For instance, to

discretize the normal distribution it is possible to match the first two moments

with three symmetric points. A moment matching model for a two-dimensional

random vector is presented in [13] where the first and second random variables

may represent the first and second stage uncertainty, respectively. To obtain the

scenario values and probabilities, the first three marginal moments of both ran-

dom variables are matched with the corresponding moments of the approximate

distributions. In addition, the covariance between the true random variables is

matched with that of the approximations. If the number of desired scenarios is

large enough, and the moments are consistent, this procedure will provide a so-

lution. However, if the moments are inconsistent, the author suggests a weighted

least squares minimization problem.

As an alternative to moment matching, the discretization technique of [28]

relies on the minimization of transportation metrics to approximate a continuous

distribution with a discrete distribution. In this method, a desired scenario tree

structure has already been determined. The goal is to minimize the difference be-

tween the optimal value of the stochastic program with the true distribution and



the optimal value of the stochastic program with the approximate distribution.

This difference is termed the approximate error, and the author shows this error

can be bounded through the Fortet-Mourier distance between the true and ap-

proximate probability distributions. The algorithm for the optimal discretization

minimizes this bound. Through a simple 1-stage example, it is illustrated that

this method performs better (in the sense of minimizing the approximation error)

than moment matching.

Scenario reduction procedures can be used when a large number of scenarios

are already given. An approach involving moment matching is found in [7]. A

second approach involving probability metrics is found in [11] and [17]: Scenarios

are recursively deleted with redistribution of the probability among the remaining

scenarios by considering the Monge-Kantorovich functional.

There are many different methods to generate sample paths of the uncertain

data, and not all of them initially consider a tree structure. Sample paths may

come from an expert’s expectation, historical observations, or any time-series

model. The problem is then to convert a set of sample paths into a scenario tree.

The method of clustering is described in [13]: One can group similar first stage

values of the sample paths into clusters and then continue sequentially through

each stage, or one can use a multi-level scheme in which the clusters consider

the similarity of the entire sample path. A second method based on probability

metrics which converts sample paths into a tree structure by combining scenario

reduction with scenario bundling is found in [16].

3.5 Deterministic Equivalent Forms

The discrete and finite distribution of a scenario tree allows the stochastic re-

course problem to be written as a deterministic program. Once a scenario tree



is constructed, each node it of the scenario tree determines values for At(ξ
t−1),

Bt(ξ
t−1), bt(ξ

t−1), lt(ξ
t−1), ut(ξ

t−1), and qt(·, ξt−1) which are denoted by Ait , Bit ,

bit , lit , uit , and qit(·). The recourse problem (3.5-3.6) can then be written as

minx1
q1(x1) +

∑

i2∈I2
p(i2)Qi2(x

1)

s.t. A1x1 = b1,

l1 ≤ x1 ≤ u1,

(3.8)

with Qit , for it ∈ It, t = 2, ..., T , given by the minimization problems

Qit(x
t−1) = minxt

qit(x
t) +

∑

it+1∈dec(it)
p(it, it+1)Qit+1

(xt)

s.t. Bitxt−1 + Aitxt = bit ,

lit ≤ xt ≤ uit ,

(3.9)

and QiT+1
can be taken to be equal to zero.

The above (3.8-3.9) is the form of the recourse program that will be relevant

when the solution method for the ALM problem is discussed later; however, there

are other ways to proceed. Two other deterministic forms are now mentioned so

that one can solve the ALM problem by possibly other solution algorithms. As

will be shown shortly, the ALM problem will have a piecewise linear objective

with linear constraints. By introducing auxiliary variables, the piecewise linear

problem can be converted into a fully linear problem (with potentially a huge

number of decision variables). In this case, the qit(·) will take the linear form:

qit(·) = 〈qit , ·〉, (3.10)

where qit is now a vector of appropriate dimension.

The deterministic equivalent for the linear program in arborescent form care-



fully considers the structure of the scenario tree:

min 〈q1, x1〉 +
∑

i2∈I2
p(i2)〈qi2 , xi2〉 + · · · +∑iT∈IT

p(iT )〈qiT , xiT 〉

subject to

A1x1 = b1,

Bi2x1+ Ai2xi2 = bi2 , ∀i2 ∈ I2,

Bi3xpred(i3) + Ai3xi3 = bi3 , ∀i3 ∈ I3,

...

BiTxpred(iT ) + AiTxiT = biT , ∀iT ∈ IT ,

lit ≤ xit ≤ uit , ∀it ∈ It, t = 1, ..., T.

(3.11)

This arborescent form implicity includes non-anticipatory constraints that the

decision taken at t does not depend on the uncertainty that is realized in the

future. Note that the decision vectors are xit , it ∈ It, t = 1, ..., T , so there is one

decision for each node of the scenario tree except for those at T + 1.

The split-variable formulation is an equivalent form that lends itself to decom-

position and parallel implementation. If there are a total of S sample paths in

the scenario tree, S independent subproblems are created by allowing all decisions

to be scenario dependent. For the multistage case, the individual subproblem for

scenario s with nodes (i2, ..., iT+1) is

min 〈q1, xs1〉 + 〈qi2 , xs2〉 + ...+ 〈qiT , xsT 〉



s.t. A1x
s
1 = b1,

Bi2x
s
1+ Ai2x

s
2 = bi2 ,

Bi3x
s
2 + Ai3x

s
3 = bi3 ,

...

BiTx
s
T−1 + AiTx

s
T = biT ,

(3.12)

plus any upper and lower bounds on xst . When combining all subproblems into

one problem, non-anticipatory constraints must be explicitly considered in this

formulation: For any two scenarios s and s′ with a common path up to and

including t, xsj = xs
′

j , for j = 1, ..., t, must be enforced. Essentially this amounts

to a 0 − 1 matrix of coefficients. If ps is the probability of scenario s, the overall

split-variable representation for the multistage program is

min
S
∑

s=1

ps (〈q1, xs1〉 + 〈qi2 , xs2〉 + ...+ 〈qiT , xsT 〉) ,

subject to a set of constraints (3.12) for each s, the non-anticipatory constraints,

and any upper and lower bound constraints on xst . As [26] states, this representa-

tion is advantageous for algorithms that temporarily ignore the non-anticipatory

constraints.

Many multistage applications in finance can be posed as stochastic generalized

networks. This means that each scenario subproblem of the split-variable formu-

lation has a generalized network structure. Parallel implementation of highly

efficient network algorithms can provide substantial computational advantages;

however, some characteristics of a desired application, such as policy constraints,

may destroy the network structure. Additionally, the arborescent form does not

preserve any network structure present. Algorithms and computational studies of

stochastic generalized networks is found in the work of Mulvey and Vladimirou



[22–25]. See also [8], especially for parallel implementation.

Additional resources including solutions techniques for 2-stage and multistage

linear stochastic programs with recourse are in [13], [4], and [8].

3.6 The T-stage ALM problem

A specific ALM problem is now put into a form of a stochastic program with the

goal of finding the allocations over a time horizon in a set of assets that optimizes

a tradeoff between the risk and reward. The risk measure is a weighted average

of the CVaR of the negative surplus wealth at each stage, and the reward is the

expect final surplus wealth. Let the asset prices and liability price be denoted by

st and lt, respectively. There are n assets available at each time giving st ∈ R
n,

and there is just one liability stream giving lt ∈ R. For the T -stage problem,

(st, lt) are defined for t = 1, ..., T + 1. The current prices known today are (s1, l1),

so these are not random variables; however, (st, lt) is a bivariate random variable

with realizations in R
n+1 known at time t for t = 2, ..., T+1. The CVaR of interest

in stage t is just the CVaR of the distribution of the surplus wealth at t+ 1. For

instance, the stage 1 CVaR is determined by the distribution of surplus wealth

at t = 2, which depends on the allocation decision at t = 1. For this reason, the

CVaR of interest in stage t is denoted as CVaRβ(−swt+1) where swt is the surplus

wealth at time t. The problem that will be solved can now be written as:

min λ

(

T
∑

t=1

µtCVaRβ(−swt+1)

)

− (1 − λ)E(swT+1) (3.13)

s.t. an initial wealth constraint, (3.14)

balance of wealth constraints between time periods, and (3.15)

linear transaction costs. (3.16)



Other constraints may include bounds on positions invested in each asset, bounds

on the total transaction costs in each time period, and bounds permitting short-

selling; however, these are not included in the lecture.

The above problem does not directly fit into the form (3.5-3.6), but the de-

terministic equivalent can be put into form (3.8-3.9) with the help of Uryasev’s

formula for CVaR. To begin, assume a scenario tree has already been constructed

for (st, lt):

(st, lt) = (sit , lit) with probability p(it), ∀it ∈ It, t = 1, ..., T + 1. (3.17)

The deterministic equivalent of the optimization problem will determine optimal

asset allocations at each node of the scenario tree from t = 1 to t = T . These

allocations are decision variables in the stochastic program and are denoted by ait

for it ∈ It, t = 1, ..T . The distribution of swt+1 depends not only on (sit+1
, lit+1

),

∀it+1 ∈ It+1, but also on the allocation decisions made at the nodes at time t.

Note that this corresponds to the surplus wealth at time t+1 before the portfolio

reallocation occurs. The realization of the surplus wealth in node it+1 is therefore

a function of the allocation made in the node that immediately precedes it+1.

With this allocation denoted by apred(it+1), the distribution of the surplus wealth

for t+ 1 = 2, ..., T + 1, is

swt+1 = 〈sit+1
, apred(it+1)〉 − lit+1

with probability p(it+1), ∀it+1 ∈ It+1.

For the given scenario tree, Uryasev’s formula can now be applied to each CVaR:

CVaRβ(−swt+1) = ζt +
1

1 − β

∑

it+1∈It+1

p(it+1)
[

lit+1
− 〈sit+1

, apred(it+1)〉 − ζt
]+
,

(3.18)



where there is one auxiliary variable ζt introduced for each stage. To simplify

things, let

hit+1
(ζt, apred(it+1)) =

[

lit+1
− 〈sit+1

, apred(it+1)〉 − ζt
]+
, and (3.19)

giT+1
(apred(iT+1)) = 〈siT+1

, apred(iT+1)〉 − liT+1
. (3.20)

The entire objective function is then

OBJ = λ
T
∑

t=1

µtζt +
T
∑

t=1





λµt
1 − β

∑

it+1∈It+1

p(it+1)hit+1
(ζt, apred(it+1))





−(1 − λ)
∑

iT+1∈IT+1

p(iT+1)giT+1
(apred(iT+1)). (3.21)



Chapter 4

Modeling of the Risk Factors

An important task in ALM is the identification and adequate modeling of the un-

derlying risk factors. The dynamic of financial risk factors is well known to often

exhibit some of the following phenomena: heavy tails, skewness and high-kurtotic

residuals. The recognition and description of the latter phenomena goes back to

the seminal papers of Mandelbrot (1963) and Fama (1965). In this chapter we

will introduce the α-stable distribution as an extension of the normal distribu-

tion. Due to its summation stability and the fact that it generalizes the Gaussian

distribution, the class of α-stable distributions seems to be an ideal candidate to

describe the return distribution of the considered risk factors. For further de-

scription of the stable distribution and applications of the stable distribution in

financial theory see Samorodnitsky et al. (1994) or Rachev and Mittnik (1999).

35



4.1 Stable Distributions

4.1.1 Definition of Stable Random Variables

This section reviews some of the main features of the stable distribution as the

natural extension of the Gaussian distribution. The notion of stable distribution

was introduced in the 1920’s by P. Lévy. A stable distribution can be defined in

four equivalent ways, given in the following definitions: A random variable X

follows a stable distribution, if for any positive numbers A and B there exists a

positive number C and a real number D such that

AX1 +BX2 = CX +D (4.1)

where X1 and X2 are independent copies of X and ”=” denotes equality in distri-

bution.

Therefore, a distribution f is stable if it is invariant under convolution, i.e., if

there exist real constants C > 0 and D such that

f(AX1+d1)+(BX2+d2)(s) :=

∫ +∞

−∞

f(A(s− l) + d1)f(Bl + d2) = f(Cs+D) (4.2)

for all real constants A,B > 0, d1, d2.

α is called the index of stability or characteristic exponent and for any stable

random variable X, there is a number α ∈ (0, 2] such that the number C in 4.1.1

satisfies the following equation:

Cα = Aα +Bα (4.3)

A random variable X with index α is called α–variable. Obviously the Gaussian



distribution has an index of stability of 2.

The next definition is equivalent to 4.1.1 and considers the sum of n inde-

pendent copies of a stable random variable. A random variable X has a stable

distribution if for any n ≥ 2, there is a positive real number Cn and a real number

Dn such that

X1 +X2 + ...+Xn
d
= CnX +Dn (4.4)

where X1, X2, ..., Xn are independent copies of X. Again, the number Cn and the

stability index of the distribution are closely linked and we get Cn = n1/α where

the α ∈ (0, 2] is the same as in equation 4.3.

The third definition of a stable distribution is a generalisation of the central

limit theorem. Stable distributions are in fact the only distributions that can be

obtained as limits of normalized sums of iid random variables. A random variable

X is said to be stable if it has a domain of attraction, i.e., if there is a sequence

of random variables Y1, Y2, ... and sequences of positive numbers {dn} and real

numbers {cn}, such that

Y1 + Y2 + · · · + Yn
dn

⇒d X. (4.5)

The notation ⇒d denotes convergence in distribution. Definition 4.1.1 is obvi-

ously equivalent to definition 4.1.1, as one can take the Yis to be independent and

distributed like X. As mentioned before, in the case of α = 2, the statement is

the ordinary central limit theorem. When dn = n1/α, the Yis are said to belong

to the normal domain of attraction of X.

Finally, the last equivalent way to define a stable random variable provides

information about its characteristic function. A random variable X has a stable



distribution if there are parameters 0 < α ≤ 2, σ ≥ 0,−1 ≤ β ≤ 1, and µ real

such that its characteristic function has the following form:

E(eiXt) =



















exp(−σα|t|α[1 − iβsign(t) tan πα
2

] + iµt), if α 6= 1,

exp(−σ|t|[1 + iβ 2
π
sign(t) ln |t|] + iµt), if α = 1,

(4.6)

Definition 4.1.1 implies definition 4.1.1 what can be shown the following way:

For α 6= 1 and X1, X2, · · · , Xn independent copies of the stable random vari-

able X. Thus, we can write

Eeit(X1+X2+···+Xn) = exp
(

−nσα|t|α
(

1 − iβ(arg t) tan
πα

2

)

+ inµt
)

.

On the other hand, obviously

Eeit(cnX+dn) = eitdnEei(tcn)X =

= eitdn exp
(

−σα|cnt|α
(

1 − iβ(arg cnt) tan
πα

2

)

+ iµcnt
)

.

By choosing cn = n1/α and dn = µ(n− n1/α) we get the equation

Eeit(cnX+dn) = Eeit(X1+X2+···+Xn)

Since the characteristic function is uniquely defined for a random variable X we

end up with the result:

X1 +X2 + · · · +Xn
d
= cnX + dn.



4.1.2 Parameters and Special Cases of the Stable Distrib-

ution

A stable distribution is defined by four parameters. The dependence of a stable

random variable X from its parameters we will indicate by writing:

X ∼ Sα(β, σ, µ)

where α is the the so-called index of stability (0 < α ≤ 2). The lower the value of α

the more leptocurtic is the distribution. This can be considered as a very attractive

property for modeling financial asset returns. In empirical studies, the value of

α for asset returns is often chosen between 1 and 2. For α > 1, the location

parameter µ is the mean of the distribution. Figure 4.1 shows the probability

density function for symmetric alpha-stable random variables for different values

of α.
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Figure 4.1: Probability density functions for standard symmetric α-stable random
variables, α = 2, α = 1 (dotted) and α = 0.5 (dashed).



The second parameter β is the skewness parameter (−1 ≤ β ≤ 1). A stable

distribution with β = µ = 0 is called a symmetric α-stable distribution (SαS). If

β < 0, the distribution is skewed to the left, if β > 0, the distribution is skewed to

the right. We conclude that the stable distribution can also capture asymmetric

asset returns.

σ is the scale parameter (σ ≥ 0) and µ is the drift (µ ∈ R).
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Figure 4.2: Probability density functions for stable random variables with α = 1.2,
β varying, β = 0, β = −0.5 (dashed) and β = −1 (dotted).

Figure 4.2 shows the probability density function for some skewed alpha-stable

random variables with α = 1.2.

Generally the probability density function of a stable distribution cannot be

specified in explicit form. However, there are three special cases where this is

possible:

i. The Gaussian distribution

If the index of stability α = 2, then the stable distribution reduces to the



Normal distribution, and it is S2(σ, 0, µ) = N(µ, 2σ2). We shall point out

that the σ in definition 4.1.1 is not equal to the standard deviation. When

α = 2, the characteristic function becomes EeitX = e−σ
2t2+iµt. This is

the characteristic function of a Gaussian random variable with mean µ and

variance 2σ2.

ii. The Cauchy distribution

S1(σ, 0, µ), whose density f1(x) is

f1(x) =
σ

π((x− µ)2 + σ2)
(4.7)

If X ∼ S1(σ, 0, 0), then for x > 0,

P (X ≤ x) = 0.5 +
1

π
arctan

(x

σ

)

. (4.8)

iii. The Lévy distribution

S1/2(σ, 1, µ), whose density

( σ

2π

)1/2 1

(x− µ)3/2
exp

{

− σ

2(x− µ)

}

(4.9)

is concentrated on (µ,∞)

4.1.3 Properties of Stable Random Variables

In this section we will summarize some useful properties useful of stable distrib-

utions in modeling financial data or simulation.

The first property mentioned is the so-called summation stability. Let X1, X2

be independent random variables with Xi ∼ (σi, βi, µi), i = 1, 2. Then X1 +X2 ∼



Sα(σ, β, µ), with

σ = (σα1 + σα2 )1/α, β =
β1σ

α
1 + β2σ

α
2

σα1 + σα2
, µ = µ1 + µ2. (4.10)

for the proof we refer to Samorodnitsky et al. (1994). Thus, the sum of two

alpha-stable distributed random variables with the same index α is also alpha-

stable with the same index of stability α.

The second proposition concerns the parameter σ. The Gaussian distribution

can be scaled by multiplication with a constant. This property extends to 0 <

α ≤ 2.

Let X ∼ Sα(σ, β, µ) and let a ∈ R\{0}. Then

aX ∼ Sα(|a|σ, arg(a)β, aµ) if α 6= 1

aX ∼ Sα(|a|σ, arg(a)β, aµ− 2

π
a(ln |a|σβ) if α = 1

The parameter σ is therefore often called the scale parameter. The proof of

4.1.3 can easily be done by using the characteristic function of stable distributions

lnEeit(aX) = −σα|ta|ασα
(

1 − iβ arg(ta) tan
πα

2

)

+ iµ(ta)

= −(σ|a|)α|t|ασα
(

1 − iβ arg(a) arg(t) tan
πα

2

)

+ i)(µa)t

.

The third proposition concerns the shift parameter µ. It was already discussed

that in the case of α = 2 the parameter µ is a shift parameter for the Gaussian

distribution. The same can be inferred about µ for any admissible α. Let



X ∼ Sα(σ, β, µ) and let a be real constant. Then X + a ∼ Sα(σ, β, µ + a).

This follows directly by interpreting a as a Sα(0, 0, a) stable random variable and

applying the summation stability proposition. For 1 < α ≤ 2, the shift parameter

µ equals the mean.

Finally, we can also interpret the last parameter β. It can be identified as a

skewness parameter. X ∼ Sα(σ, β, µ) is symmetric if and only if β = 0 and µ = 0.

It is symmetric about µ if and only if β = 0. We can proof this by the fact that

a random variable is symmetric if and only if its characteristic function is real.

By definition 4.1.1 this is the case if and only if β = 0 and µ = 0. The second

statement follows from property 4.1.3. In order to indicate that X is symmetric,

i.e. β = 0 and µ = 0, we write

X ∼ SαS

4.1.4 Truncated α-Stable Distributions

Despite these advantages the stable distribution so far is only rarely used in prac-

tical implementations. A major reason for the limited use of stable distributions

in applied work is that there are in general no closed-form expressions for its

probability density function. Numerical approximations are nontrivial and com-

putationally demanding. Another shortcoming in application issues is that all

moments of order ≥ α are infinite. Therefore, for some applications e.g. GARCH

models with conditions on the innovations like E(ǫt) = 0 and V (ǫt) = 1, t ∈ N

at first the stable distribution is not applicable. In the sequel, following Menn

and Rachev (2004) we will give a brief introduction to a new class of probability

distributions that combines the modeling flexibility of stable distributions with

the existence of arbitrary moments.

A possibility to guarantee the existence of moments of order ≥ α is to truncate



the stable distribution at certain limits and add two normally distributed tails to

the distribution. Dependent on where the truncation is conducted the distribution

can still be clearly more heavy-tailed than a normal distribution but may provide

finite variance. This idea leads to the definition of a so-called smoothly truncated

stable distribution.

Let gθ denote the density of some α-stable distribution with parameter-vector

Θ = (α, β, σ, µ) and hi, (i = 1, 2) denote the densities of two normal distributions

with parameters (νi, τi), (i = 1, 2). Furthermore, let a, b ∈ R be two real numbers

with a ≤ µ ≤ b. The density of a smoothly truncated stable distribution (STS-

distribution) is defined by:

f(x) =



















h1(x) for x < a

gθ(x) for a ≤ x ≤ b

h2(x) for x > b

In order to guarantee a well-defined continuous probability density, the following

relations are imposed:

(i) Continuity:

h1(a)
!
= gθ(a) and h2(b)

!
= gθ(b)

(ii) P (R) = 1 and therefore

p1 :=

a
∫

−∞

h1(x) dx
!
=

a
∫

−∞

gθ(x) dx

p2 :=

∞
∫

b

h2(x) dx
!
=

∞
∫

b

gθ(x) dx



The class of smoothly truncated stable (STS) distributions in the following

will be denoted by Strunc, elements of Strunc by . Since probability distributions

used for modeling white noise processes like the innovations of a time series model,

are usually assumed to be standardized probability distributions with zero mean

and unit variance. It remains the problem of calculation of the parameters (νi, τi),

(i = 1, 2) for the two normal distributions. The conditions lead to the following

equations for the parameters (νi, τi), (i = 1, 2):

τ1 =
ϕ (Φ−1(p1))

gθ(a)
and ν1 = a− τ1Φ

−1(p1) (4.11)

τ2 =
ϕ (Φ−1(p2))

gθ(b)
and ν2 = b+ τ2Φ

−1(p2) (4.12)

where ϕ and Φ denote the density and distribution function of the standard normal

distribution.

Following Menn and Rachev (2004) a useful property of α-stable distributions

is the scale and translation invariance, which is transmitted to the class of STS-

distributions:

Y := cX + d ∼ S
[ã,b̃]
α̃ (σ̃, β̃, µ̃) ∈ Strunc (4.13)

with

ã = ca+ d, b̃ = cb+ d, α̃ = α, σ̃ = |c|σ, β̃ = sign(c)β, µ̃ = cµ+ d

The main advantage is however that the mean EX and the second moment

EX2 of a STS-distributed random variable X exists:



EX = ap1 − τ1
(

Φ−1(p1)p1 + ϕ(Φ−1(p1))
)

+

+

b
∫

a

xgθ(x) dx+

+bp2 + τ2
(

Φ−1(p2)p2 + ϕ(Φ−1(p2))
)

(4.14)

EX2 = (τ 2
1 + ν2

1)p1 − τ1(a+ ν1)ϕ(Φ−1(p1)) +

+

b
∫

a

x2gθ(x) dx+

+p2(ν
2
2 + τ 2

2 ) + τ2(ν2 + b) · ϕ(Φ−1(p2)) (4.15)

where, as above, ϕ denotes the density and Φ the distribution function of the

standard normal distribution. p1 and p2 denote the cut-off-probabilities given in

equation (4.1.4) and Gθ is the distribution function of the α-stable distribution

with parameter-vector θ = (α, β, σ, µ).

It should be pointed out that since there exists no closed form expression for

the density gθ of a stable distribution, the mean and the variance of an STS-

distribution can only be calculated with the help of numerical integration.

4.2 Stable Modeling of Risk Factors

4.2.1 Modeling Financial Returns with Stable Distribu-

tions

In this section we will give some examples on the superior fit of stable distribu-

tions to financial returns compared to the Gaussian distribution that is used in



Distribution Stable Gaussian
Parameters alpha beta sigma mu µ σ

Unemployment Rate 1.6691 -1.0000 0.0124 0.0316 0.0337 0.0207
Working Output 1.4474 1.0000 0.0723 0.0234 -0.0074 0.1454
Gross Domestic Product 1.6325 -1.0000 0.0830 -0.0493 -0.0495 0.1986
Consumer Price Index 1.2061 0.0880 0.3130 0.0385 0.0194 0.8058
Annual Saving 1.2849 1.0000 0.0123 0.0563 0.0433 0.0283
Personal Income 2.0000 0.1427 0.0147 0.0744 0.0744 0.0210

Table 4.1: Parameters of α-stable and Gaussian fit to log-returns of several US
macroeconomic time series 1960-2000.

most standard models of financial theory. Various applications of stable models

in finance can be found in Rachev and Mittnik (1999). The advantages of the

alpha-stable distribution for modeling financial data are manifold. Due to the

summation stability the sum of stable distributed random variables with identical

parameter α are again alpha-stable distributed with α.

Another advantage is the number of parameters: with four parameters the

distribution provides more flexibility and is capable to explain issues of financial

data like skewness, excess kurtosis or heavy tails.

Figure 4.3 and 4.4 illustrate that in most cases stable distributions provide a

clearly better fit for financial variables since they can capture the kurtosis and

the heavy-tailed nature of financial data. We considered the fit of the stable

distribution to the yearly log-return time series of the macroeconomic variables

working output per hour and GDP. Table 4.2.1 provides the goodness-of-fit mea-

sure Kolmogorov distance (KS) that measures the distance between the empirical

cumulative distribution function Fn(x) and the fitted CDF F (x)

KS = max
x∈R

|Fn(x) − F (x)|. (4.16)
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Figure 4.3: Normal and Stable fit to log return of Working Output per hour.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Title

Empirical Density
Stable Fit
Gaussian (Normal) Fit

Figure 4.4: Normal and Stable fit to log return of GDP.

A short-coming of the Kolmogorov distance is that it is most sensitive around

the median value and less sensitive in the tails of the distribution, where F (x) is



Figure 4.5: Fit of Gaussian and Stable distribution to 1 year Euribor rate

near 0 or 1. Therefore, we also considered the Anderson-Darling statistic (AD)

AD = max
x∈R

|Fn(x) − F (x)|
√

F (x)(1 − F (x))
(4.17)

that puts more weight to the tails of the distribution. Table 4.2.1 shows the

results for the considered goodness-of-fit criteria. For most variables we find a

clearly better fit of the stable distribution compared to the normal.

4.3 Univariate and Multivariate Distributions

For ALM problems, often scenarios are generated by calibrating and simulating a

time-series model to multivariate data.

There are two major approaches modeling multivariate data:



Figure 4.6: Fit of Gaussian and Stable distribution to residuals of monthly infla-
tion

Distribution Stable Gaussian
Parameters KS AD KS AD

Unemployment Rate 0.0843 0.5065 0.1333 0.4077

Working Output 0.0965 0.2869 0.1791 0.3389
Gross Domestic Product 0.0804 0.5448 0.1804 6.1008
Consumer Price Index 0.0723 0.2646 0.1833 0.5044
Annual Saving 0.0777 0.1738 0.1635 0.3521
Personal Income 0.1073 0.1864 0.0783 0.1920

Table 4.2: Goodness-of-Fit criteria Kolmogorov distance (KS) and Anderson-
Darling statistic (AD) for Stable and Normal Distribution.



• Fit a multivariate distribution.

• Fit each individual time-series with a univariate distribution and use a cop-

ula to describe the dependence structure.

The second approach is more flexible in the sense that it allows any type of

distribution to be fit to the individual series. For instance, one can first calibrate

complex univariate models like GARCH etc. and then capture the dependence

with a time-varying copula.

4.4 Fitting a Multivariate Distribution

In terms of the multivariate approach one might calibrate a vector autoregressive

(VAR) model to the data. The VAR model has had much success in modeling

financial and economic data. The general VAR(p) model for financial return data

R̃τ is

R̃τ = Π1R̃τ−1 + ...+ ΠpR̃τ−p + Eτ , (4.18)

where the innovations process Eτ = (e1
τ , ..., e

6
τ )

′ is assumed to be white noise with

covariance matrix Σ. It is both easy to calibrate and easy to simulate scenarios

from VAR models. An introduction to modeling and estimation of VAR models

can be found in [38].

To simulate the VAR model, one needs to make a distributional assumption

for the innovations. After estimation of the VAR(1) model, the residuals are

computed by

Êτ = R̃τ − Π̂1R̃τ−1, (4.19)

and the standardized residuals Σ̂−1/2Êτ are plotted in figure (5.2). The usual

assumption is that the innovations are Gaussian, in which case the standardized



residuals should be i.i.d. multivariate Normal(0,In). However, based on the results

on financial return data of the previous sections, it might also be promising to

use a more flexible or heavy-tailed distribution like the α-stable or the truncated

stable distribution.

A n-dimensional random vector Z has a multivariate stable distribution if for

any a > 0 and b > 0 there exists c > 0 and d ∈ R
n such that

aZ1 + bZ2
d
= cZ + d,

where Z1 and Z2 are independent copies of Z and aα+bα = cα. The characteristic

function of R is given by

ΦZ(θ) =











exp
{

−
∫

Sn
|θ′s|

(

1 − isign(θ′s) tan πα
2

)

ΓZ(ds) + iθ′µ
}

, if α 6= 1,

exp
{

−
∫

Sn
|θ′s|

(

1 + i 2
π
sign(θ′s) ln |θ′s|

)

ΓZ(ds) + iθ′µ
}

, if α = 1,

where θ and µ are n-dimensional vectors. The spectral measure ΓZ is a finite

measure on the sphere in R
n that replaces the roles of β and σ in stable random

variables. Again, α and µ are the index of stability and location parameter,

respectively. A symmetric stable random vector with µ = 0 is called symmetric

alpha-stable (SαS), and in this case, the stable equivalent of covariance is the

covariation:
[

z̃1, z̃2
]

α
=

∫

S2

s1s
〈α−1〉
2 Γ(z̃1,z̃2)(ds),

where (z̃1, z̃2) is a SαS vector with spectral measure Γ(z̃1,z̃2) and y〈k〉 = |y|ksign(x).

Additionally, the covariation norm is given by

‖z̃i‖α =
([

z̃i, z̃i
]

α

)1/α
.



See [30] for details on estimating the index of stability, spectral measure, and scale

parameter for a general stable random vector.

4.5 Dependence Modeling and Copulas

In the elliptical world the variance-covariance approach to optimizing portfolios

makes sense and VAR is a coherent measure of risk here. For this reason, the class

of elliptical distributions represent an ideal environment for standard (market) risk

managing approaches. However, for general multivariate distributions, correlation

often gives no indication about the degree or structure of dependence here. A list

of deficiencies and problems in the general case shall illustrate this point (see

Embrechts et al, 1999):

i. Correlation is simply a scalar measure of dependency; it cannot tell us every-

thing we would like to know about the dependence structure of risks.

ii. Possible values of correlation depend on the marginal distribution of the

risks. All values between -1 and 1 are not necessarily attainable.

iii. Perfectly positively dependent risks do not necessarily have a correlation of

1; perfectly negatively dependent risks do not necessarily have a correlation

of -1.

iv. A correlation of zero does not indicate independence of risks.

v. Correlation is not invariant under transformations of the risks. For example,

log(X) and log(Y ) generally do not have the same correlation as X and Y .

vi. Correlation is only defined when the variances of the risks are finite. It is

not an appropriate dependence measure for very heavy-tailed risks where

variances appear infinite.



For an illustration of point 2 and 4, consider the following example (see Embrechts

et al, 1999):

Consider two rv’s. X and Y that are lognormally distributed with µX = µY = 0,

σX = 1 and σY = 2. One can show that by an arbitrary specification of the joint

distribution with the given marginals, it is not possible to attain any correlation

in [−1, 1]. In fact, there exist boundaries for a maximal and a minimal attainable

correlation [ρmin, ρmax] which in the given case is [−0.090, 0.666].

Allowing σY to increase, this interval becomes arbitrarily small as one can see

in figure 4.7. Here, it is interesting to note that the two boundaries represent the

case where the two rv’s are perfectly positive dependent (the max. correlation

line) or perfectly negative dependent (the min. correlation line) respectively.

Thus although the attainable interval for ρ as σY > 1 converges to zero from

both sides, the dependence between X and Y is by no means weak. This indicates

that it is wrong to interpret small correlation as weak dependence.

A single statistical parameter like the linear correlation coefficient will not

be able to capture the entire dependence structure between two rv’s in the gen-

eral case. At this point a general concept of describing the dependence structure

within multivariate distributions is needed. Since marginal distributions are very

illustrative, easy to handle and often used as basic building blocks for the de-

sign of a multivariate distribution, the idea of separating the description of the

joint multivariate distribution into the marginal behaviour and the dependence

structure is very attractive. One representation of the dependence structure that

satisfies this concept is a copula. A copula is a function that combines the mar-

ginal distributions to form the joint multivariate distribution. A copula is the

distribution function of a random vector in R
n with standard uniform marginals.

One can alternatively define a copula as a function and impose certain restrictions.



Figure 4.7: Maximum and minimum attainable correlation for X ∼
Lognormal(0, 1) and Y ∼ Lognormal(0, sigma).



A copula is any real valued function C : [0, 1]n → [0, 1], i.e. a mapping of the unit

hypercube into the unit interval, which has the following three properties:

i. C(u1, . . . , un) is increasing in each component of ui.

ii. C(1, . . . , 1, ui, 1, . . . , 1) = ui for all i ∈ {1, . . . , n}, ui ∈ [0, 1].

iii. For all (a1, . . . , an), (b1, . . . , bn) ∈ [0, 1]n with ai ≤ bi:

2
∑

i1=1

· · ·
2
∑

in=1

(−1)i1+···+inC(u1i1 , . . . , unin) ≥ 0

where uj1 = aj and uj2 = bj for all j ∈ {1, . . . , n}.

Let X = (X1, . . . , Xn)
′ be a random vector of real-valued rv’s whose dependence

structure is completely described by the joint distribution function

F (x1, . . . , xn) = P (X1 < x1, . . . , Xn < xn). (4.20)

Each rv Xi has a marginal distribution of Fi that is assumed to be continuous for

simplicity. Recall that the transformation of a continuous rvX with its own distri-

bution function F results in a rv F (X) which is standardly uniformly distributed.

Thus transforming equation (4.20) component-wise yields

F (x1, . . . , xn) = P (X1 < x1, . . . , Xn < xn)

= P [F1(X1) < F1(x1), . . . , Fn(Xn) < Fn(xn)]

= C(F1(x1), . . . , Fn(xn)), (4.21)

where the function C can be identified as a joint distribution function with stan-

dard uniform marginals — the copula of the random vector X. In equation (4.21),



it can be clearly seen, how the copula combines the magrinals to the joint distri-

bution.

Sklar’s theorem provides a theoretic foundation for the copula concept:1 [Sklar’s

theorem] Let F be a joint distribution function with continuous margins F1, . . . , Fn.

Then there exists a unique copula C : [0, 1]n → [0, 1] such that for all x1, . . . , xn

in R = [−∞,∞] (4.21) holds. Conversely, if C is a copula and F1, . . . , Fn are

distribution functions, then the function F given by (4.21) is a joint distribution

function with margins F1, . . . , Fn. For the case that the marginals Fi are not

all continuous, it can be shown2 that the joint distribution function can also be

expressed like in equation (4.21), although C is no longer unique in this case.

Examples of copulas

i. If the rv’s Xi are independent, then the copula is just the product over the

Fi

Cind(x1, . . . , xn) = x1 · · · · · xn.

ii. The Gaussian copula is

CGa
ρ (x, y) =

∫ Φ−1(x)

−∞

∫ Φ−1(y)

−∞

1

2π
√

(1 − ρ2)
exp

−(s2 − 2ρst+ t2)

2(1 − ρ2)
dsdt,

where ρ ∈ (−1, 1) and Φ−1(α) = inf{x |Φ(x) ≥ α} is the univariate inverse

standard normal distribution function. Applying CGa
ρ to two univariate

standard normally distributed rv’s results in a standard bivariate normal

distribution with correlation coefficient ρ.

1For further discussion see [35].
2See [35].



Note that, since the copula and the marginals can be arbitrarily combined,

this (and any other) copula can be applied to any set of univariate rv’s.

The outcome will then surely not be multivariate normal, but the resulting

multivariate distribution has inherited the dependence structure from the

multivariate normal distribution.

iii. As a last example, the Gumbel or logistic copula

CGu
β (x, y) = exp

[

−
{

(− log x)
1

β + (− log y)
1

β

}β
]

,

where β ∈ (0, 1] indicates the dependence between X and Y . β = 1 gives

independence and β → 0+ leads to perfect dependence.

According to theorem 4.5, a multivariate distribution is fully determined by its

marginal distributions and a copula. Therefore, the copula contains all informa-

tion about the dependence structure between the associated random variables. In

the case that all marginal distributions are continuous, the copula is unique and

therefore often referred to as the dependence structure for the given combination

of multivariate and marginal distribution. If the copula is not unique because at

least one of the marginal distributions is not continous, it can still be called a

possible representation of the dependence structure.

A very useful feature of a copula is the fact that it is invariant under increasing

and continuous transformation of the marginals. If (X1, . . . , Xn)
t has copula C

and T1, . . . , Tn are increasing continuous functions, then (T1(X1), . . . , Tn(Xn))
t

also has copula C. The proof can be found for example in [15], page 6.

One application of lemma 4.5 would be that the transition from the represen-

tation of a random variable to its logarithmic representation does not change the

copula. Note that the linear correlation coefficient does not have this property,



Figure 4.8: 1000 draws from two distributions that were constructed using
Gamma(3,1) marginals and two different copulas, both having a linear correla-
tion of ρ = 0.7.

since it is only invariant under linear transformation.

From the concept of a copula, it is immediately clear that the easiest way to

construct a multivariate distribution using a copula is to assume some marginal

distributions and apply the copula. Below there are some examples for illustration

purposes.

A practical problem, however, will be set up the other way round: The multi-

variate distribution has to be estimated by fitting the copula to data. A discussion

of this topic is beyond the scope of this lecture.

(3) Let X and Y be two rv’s that are both identical gamma (3,1) distributed.

Now we apply two different copulas and compare the characteristics by simu-

lating 1000 bivariate draws from both models. First, we use a Gaussian copula

3The example and the graph were taken from [15], page 2 and 22f.



with parameter ρGa = 0.7. The second distribution is then derived by applying a

Gumbel copula whose parameter β is adjusted in a way that the linear correlation

coefficient for the resulting bivariate distribution is also ρGu = 0.7.

Figure 4.8 shows the scatter plot of the 1000 draws for both distributions.

The 99% quantile q0.99 for the marginal Gamma distribution has been added as

an indicator line for extreme values.

Note that despite the fact that both distributions have the same linear corre-

lation coefficient, the dependence between X and Y is obviously quite different in

both models. Using the Gumbel copula, extreme events have a tendency to occur

together, as one can observe by comparing the number of draws where x and y

exceed q0.99 simultaneously. Those are 12 for the Gumbel and 3 for the Gaussian

case.

Additionally, the probability of Y exceeding q0.99 given that X has exceeded

q0.99 can be roughly estimated from the figure:

P̂Ga(X > q0.99|Y > q0.99) =
3

9
= 0.3̄

P̂Gu(X > q0.99|Y > q0.99) =
12

16
= 0.75

This is another indicator for the increased probability for the joint occurrence of

extreme events.

In the previous section we considered a bivariate distribution to show that

marginal distributions and correlation are insufficient information to fully specify

the joint distribution. This example was constructed in the following way, using

a copula:

Let X and Y be two rv’s with standard normal distributions. Obviously the

outcome for the bivariate distribution when applying an arbitrary copula is not

bivariate normal in general. This is only the case when choosing the Gaussian



copula C = CGa
ρ .

Thus, the following copula has been constructed:

f(x) = 1{(γ,1−γ)}(x) +
2γ − 1

2γ
1{(γ,1−γ)c}(x)

g(y) = −1{(γ,1−γ)}(y) −
2γ − 1

2γ
1{(γ,1−γ)c}(y)

with γ ∈ [1
4
, 1

2
]. For γ < 1

2
, the joint density disappears on the square [γ, 1 − γ]2

such that the joint distribution is surely not bivariate normal. However, the linear

correlation coefficient between X and Y exists. From symmetry considerations

(C(u, v) = c(1 − u, v), 0 ≤ u, v ≤ 1) it can be deducted that ρX,Y = 0, irrespective

of γ. Therefore, uncountably many bivariate distributions with standard normal

marginals and zero correlation exist that are not bivariate normal.



Chapter 5

ALM Implementation

In the following chapter an empirical example of ALM is provided. Hereby, the

T-stage ALM problem of section 3.6 will be applied to data that is representative

of a defined-benefit pension fund. A liability index lτ provided by Ryan Labs is

used as a proxy for the liabilities. This is a generic index that does not correspond

to the liabilities of a specific corporate defined-benefit plan, but this index helps

to illustrate the current predicament of pension funds in [34]. The same reference

also provides the typical asset classes invested in by pension funds: cash, bonds,

equity, real estate, international stocks, international bonds, mortgage, GIC’s and

annuities, and private equity. Table (5.1) contains the benchmarks used for the

asset classes including bonds, equities and international equities.

Given the historical data for the liability index lτ and asset indexes siτ , i =

1, ..., 5 a multivariate scenario tree can be constructed. Recall that this is achieved
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Asset Class Benchmark
s1 Cash Ryan Labs Cash Index
s2 Bonds Lehman U.S. Aggregate Bond Index
s3 Equities S&P500
s4 International Equities Morgan Stanley EAFE Index
s5 Mortgages Lehman Mortgage Index

Table 5.1: Benchmarks for the pension fund asset classes.

by fitting a multivariate time-series model to the return vector:

Rτ =


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
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. (5.1)

Once a time-series model is found, it is simple to generate sample paths for the

returns and then convert the returns back to index values. Note that in our

example τ is interpreted as time, and in the previous chapter, t is interpreted as

the stage in a stochastic program. It is possible that they will coincide; however,

there will usually be many smaller time periods between stages. In our application,

a time-series model is fit to monthly data, but a stage covers a 6-month period.

Figure (5.1) contains the plots of the monthly returns for the components

of Rτ . There are 237 data points corresponding to the returns for the months

of April 1985 to December 2004. An obvious characteristic of the data is the

volatility clustering, especially noticeable in the equity index. This indicates that

a time-series model with time-varying volatilities is appropriate.
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Figure 5.1: Monthly returns Rτ for April 1985 to December 2004.



5.1 Finding an adequate model

As a first step in fitting a model to the data, the major trends of the individual

series are removed by an exponentially weighted moving average (EWMA) process

for the mean. The means of the univariate return series are assumed to follow:

mi
τ = λmm

i
τ−1 + (1 − λm)riτ−1, for i = 1, ..., 6, (5.2)

where λm is a fixed parameter. By writing mτ = (m1
τ , ...,m

6
τ )

′, the new return

series of interest is

R̃τ = Rτ −mτ , (5.3)

and as the next step, a vector autoregressive (VAR) model is calibrated to R̃τ .

For the data at hand, the AIC indicates that the VAR of order 1 is optimal.

More generally, one may fit a multivariate autoregressive moving average

(ARMA) model, however, multivariate financial data typically indicates only an

autoregressive component, so it is reasonable to restrict the model to VAR. Ex-

tensions of the VAR model that additionally includes economic regime changes

and long term equilibria in an ALM context may be used as well.

To find the optimal value of λm, a course grid was created, and for each element

in the grid, the AICs of low order VAR models were compared. VAR(1) always

resulted in the lowest AIC for any value of λm in the grid. A fine grid for λm

was then constructed, and the AICs of the corresponding VAR(1) models were

compared. This procedure gave an optimal value of λm = 0.952.

After estimation of the VAR(1) model, the residuals are computed by

Êτ = R̃τ − Π̂1R̃τ−1, (5.4)



and the standardized residuals Σ̂−1/2Êτ are plotted in figure (5.2). The usual

assumption is that the innovations are Gaussian, in which case the standardized

residuals should be i.i.d. Normal(0,I6). This is clearly not the case because there

is still a significant amount of volatility clustering and extreme events. The stan-

dardized residuals are aggregated into one series, and the corresponding qq-plot

versus the standard normal is found in figure (5.3).

To get an idea of the variability and dependence structure of the innovations

for the VAR(1) model, the estimated volatilities σ̂i from the the univariate series

êi = {êiτ , τ = 1, ..., 237}, where each êiτ is a component of Êτ , are

σ̂1 σ̂2 σ̂3 σ̂4 σ̂5 σ̂6

0.0404 0.0015 0.0124 0.0450 0.0494 0.0105

and the estimated correlation of Eτ is

CorrE =


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





.

The first noticeable point is that the volatilities corresponding to the equity returns

are the largest, the volatility corresponding to the bond returns is smaller, and

the volatility corresponding to the cash returns is very small. Also, the volatility

corresponding to the liability returns is almost as large as that of the equities,

meaning that the liabilities of pension funds are actually quite risky. The second

noticeable point is that the liability returns and bond returns are highly correlated

as one would expect. This means that when the optimization program is solved
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Figure 5.2: Standardized residuals Σ̂−1/2Êτ of the VAR(1) model for Rτ .
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Figure 5.3: QQ-plot of the standard normal versus the standardized residuals
Σ̂−1/2Êτ .

ê1 ê2 ê3 ê4 ê5 ê6

α̂i 1.8569 1.7411 1.9900 1.8727 1.9702 1.8096
σ̂iα 0.0263 0.0008 0.0087 0.0285 0.0343 0.0067

Table 5.2: Univariate ML estimates of the tail index and scale parameters for each
residual series êi.

for the minimum risk portfolio, one could expect a large allocation in the bonds

to offset the risk in the liabilities.

A symmetric stable distribution is fit to each of the univariate residual series

of the VAR(1) model by maximum likelihood estimation. The estimates of the

tail index α̂i and scale parameter σ̂iα from each univariate series êi is given table

(5.2). The estimation was restricted to symmetric distributions because of the

short length of the data series. Alternatively, it is reasonable to assume that

α = 1.8 for financial data and carry out the estimation for the scale parameter

alone. The empirical density of the liability return innovations is compared to
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Figure 5.4: Density functions for the residuals of the liability return series.

ê1 ê2 ê3 ê4 ê5 ê6

Normal 0.0505 0.0685 0.0578 0.0673 0.0422 0.0509
Stable 0.0332 0.0291 0.0572 0.0677 0.0418 0.0569

Table 5.3: Comparison of KD under the normal and stable assumptions.

both the estimated normal density and the estimated stable density in figures

(5.4) and (5.5). As is seen, the stable density better matches the peak of the

empirical density and has a slower decay at the tails than that of the normal

density.

Two goodness-of-fit measures are employed to compare the normal fit and

the stable fit of the univariate series: the Kolmogorov distance (KD) and the

Anderson-Darling (AD) statistic. The KD and AD for the normal and stable

estimated distributions for each of the series can be found in tables (5.3) and

(5.4). The normal fit slightly outperforms the stable fit twice under the KD

measure, but the stable fit is clearly superior under the AD measure.

A sub-Gaussian distribution can be fitted to the residuals Eτ of the ALM
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Figure 5.5: Right tail of the density functions for the residuals of the liability
return series.

ê1 ê2 ê3 ê4 ê5 ê6

Normal 0.6546 45.9484 0.1674 12.4620 0.1965 0.3848
Stable 0.1116 0.0947 0.1523 0.1366 0.0856 0.1151

Table 5.4: Comparison of AD under the normal and stable assumptions.



data. First, α is estimated and the univariate estimates from table (5.2), yielding

α̂ = 1.8705. Assuming the residuals have zero mean, a moment estimator for Q in

equations is applied to Z̃τ = Êτ with p = α̂/3 and q = 1. The resulting moment

estimates of the scale parameters q̂jj are:

q̂11 q̂22 q̂33 q̂44 q̂55 q̂66

0.0257 0.0008 0.0080 0.0282 0.0319 0.0066

They can be compared with the ML estimates in table (5.2). The moment es-

timate for Q given by the above equations is not symmetric, but a symmetric

estimate is given by Q̂ =
(

(q̂2
ij + q̂2

ji)/2
)

. The standardized residuals Q̂−1/2Êτ

are also computed and are plotted in figure (5.6). In this case, the data points

should all be temporally and serially independent realizations of a S1.8705(1, 0, 0)

random variable. This is clearly not the case because there is a significant amount

of volatility clustering. The qq-plot of the stable random variable versus the ag-

gregated standardized residuals is found in figure (5.7). This plot appears closer

to linear than the qq-plot with the standard normal in (5.3), which indicates the

sub-Gaussian provides a better fit than the multivariate normal; however, neither

of these capture the time-varying nature of the innovations.

5.1.1 Exponentially Weighted Moving Average

Models

To account for the volatility clustering, different types of models are implemented:

The first assumes the innovations are Gaussian with a time-varying covariance

matrix, and the second assumes the innovations are sub-Gaussian with a time-

varying dispersion matrix.

Given a multivariate data set {Eτ , τ = 1, ..., τm} with zero mean, the sample
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Figure 5.6: Standardized residuals Q̂−1/2Êτ of the VAR(1) model for Rτ .
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Figure 5.7: QQ-plot of the symmetric stable with α = 1.8705 versus the stan-
dardized residuals Q̂−1/2Êτ .

estimate of the covariance is just

Σ̂ =
1

τm − 1

τm
∑

τ=1

EτE
′
τ . (5.5)

Note that there is equal weight applied to each observation of the data set. To

allow a time-varying volatility estimate, the covariance estimate at time τ is al-

lowed to depend on the data before time τ , and the weights are assumed to decay

exponentially from the most recent observation:

Σ̂τ |τ−1 = (1 − λe)
(

Eτ−1E
′
τ−1 + λeEτ−2E

′
τ−2 + λ2

eEτ−3E
′
τ−3 + . . .

)

,

where 0 < λe < 1 and the weights are chosen so that they sum to one for an



infinite series. The estimate can also be written in the recursive form

Σ̂τ |τ−1 = (1 − λe)Eτ−1E
′
τ−1 + λeΣ̂τ−1|τ−2, (5.6)

which is known as the exponentially weighted moving average (EWMA) covariance

model with decay factor λe. In practice, an initial covariance Σ̂0|−1 is needed to

estimate λe, compute standardized residuals, and simulate sample paths. The

approach used is to estimate Σ0|−1 from the sample covariance (5.5) of the initial

10% of the data set.

RiskMetrics [21] offers an estimation technique for λe based on the root mean

squared prediction error (RMSE) of (eiτ )
2:

RMSEi
2(λe) =

√

√

√

√

1

τm

τm
∑

τ=1

(

(eiτ )
2 − σ̂2

τ |τ−1,ii(λe)
)2

, (5.7)

where σ̂2
τ |τ−1,ii(λe) is a diagonal component of Σ̂τ |τ−1 in equation (5.6). Since the

data series is assumed to have zero mean, Eτ−1 (eiτ )
2

= σ2
τ |τ−1,ii, so the prediction

error of (eiτ )
2 is the difference of terms inside the square root in equation (5.7).

A single optimal estimate λ∗e for the decay factor is computed from the RMSE of

each univariate series through the formulas:

λ∗e =
n
∑

i=1

φiλ
∗
i , (5.8)

where

λ∗i = argmin
λ

RMSEi
2(λ), θi =

RMSEi
2(λ

∗
i )

∑n
k=1RMSEk

2 (λ∗k)
, φi =

θ−1
i

∑n
k=1 θ

−1
k

.

(5.9)

Using this technique, RiskMetrics recommends typical parameter values of λe =



.94 for daily data and λe = .97 for monthly data.

Stable EWMA

These same ideas are used in the sub-Gaussian case in [19] by allowing a time-

varying dispersion matrix. Similar to as above, exponential weights are applied

to the moment estimators, yielding the equations:

q̂pτ |τ−1,jj = (1 − λe)
∣

∣ejτ−1

∣

∣

p
A(p) + λeq̂

p
τ−1|τ−2,jj (5.10)

Bτ |τ−1,ij = (1 − λe)e
i
τ−1

(

ejτ−1

)〈q−1〉
A(q) + λeBτ−1|τ−2,ij (5.11)

q̂2
τ |τ−1,ij = Bτ |τ−1,ij q̂

2−q
τ |τ−1,jj, i 6= j, (5.12)

and the symmetric estimator for the time-varying dispersion matrix is given by

Q̂τ |τ−1 =
(

q̂2
τ |τ−1,ij + q̂2

τ |τ−1,ji

)

/2. This model is referred to as the stable expo-

nentially weighted moving average model (SEWMA). The authors also extend the

estimation technique for the decay factor by considering the prediction error of

|eiτ |
p
. They note that Eτ−1 (|eiτ |p) = qpτ |τ−1,ii/A(p) and suggest to minimize the

following RMSE error for each univariate series:

RMSEi
p(λe) =

√

√

√

√

1

τm

τm
∑

τ=1

(

A(p) |eiτ |p − q̂pτ |τ−1,ii(λe)
)2

. (5.13)

The single optimal decay factor λ∗e is then found by replacing RMSEi
2 with

RMSEi
p is equations (5.8-5.9). Using the VAR(1) residuals of the ALM data, this

technique is applied in both the normal and sub-Gaussian cases with p = α/3. A

grid for λ was constructed with increments of 0.001, and RMSEi
p(λ) was mini-

mized over this grid. In both cases, a value of λe = 0.95 for equations (5.10-5.12)

is found to be appropriate. The exact values of λ∗e are found in table (5.5).

There are difficulties in implementing the SEWMA model for the ALM resid-



α p λ∗e
Normal 2 0.6667 0.9496
Stable 1.8705 0.6235 0.9494

Table 5.5: Comparison of the optimal decay factor λ∗e under the normal and stable
assumptions using the selection criterion based on RMSEi

p.

uals: While the estimate Q̂τ |τ−1 is defined to be symmetric, there is no guarantee

that it is positive definite. In the case of the ALM residuals, the eigenvalues

are often negative and often very near zero. The negative eigenvalues are easily

dealt with by using an incomplete Cholesky decomposition when computing the

standardized residuals and generating sample paths. The eigenvalues very near

zero, on the other hand, will cause the standardized residuals to explode beyond

any reasonable value. The likely cause of this inadequate estimate of the disper-

sion matrix is the short length of the data series. For this reason, the scenarios

generated according to the SEWMA model were not inputted into the ALM op-

timization problem.

Stable Subordination EWMA

To overcome the difficulties of the SEWMA model, a more ad hoc approach is

taken by modeling the time-varying sub-Gaussian distribution in terms of a gov-

erning Gaussian distribution and the scale parameters of the individual univariate

series. First, one needs the following result: if

g ∼ N(0, σ2
g), y ∼ Sα (σy, 0, 0) , s ∼ Sα/2

(

2σ2
y

σ2
g

(

cos
(πα

4

))2/α

, 1, 0

)

,

and s and g are independent, then

y
d
=

√
sg.



See [32] and the reference therein. If the governing Gaussian distribution Gτ for

the multivariate data has a time-varying covariance matrix Στ |τ−1 =
(

σ2
τ |τ−1,ij

)

and each univariate series is modeled with an αi-stable random variable with time-

varying scale parameter qτ |τ−1,i, the previous results suggest a way to model Eτ

with a time-varying sub-Gaussian-like distribution:

Eτ
d
=











√

s1
τg

1
τ

...

√
snτ g

n
τ











, (5.14)

Gτ =











g1
τ

...

gnτ











∼ N
(

0,Στ |τ−1

)

, (5.15)

siτ ∼ Sαi/2

(

2q2
τ |τ−1,i

σ2
τ |τ−1,ii

(

cos
(παi

4

))2/αi

, 1, 0

)

. (5.16)

When generating a sample for Eτ , the samples of siτ , i = 1, ..., n, are taken from the

same random seed so that the above equations will be close to the sub-Gaussian

representation where the same subordinator multiplies each component of the

normal random vector. In the above equations, the covariance of the governing

Gaussian distribution captures the dependence between the series, and each sub-

ordinator siτ is chosen to give the proper tail index and scale parameter for each of

the univariate series. Recall that for the sub-Gaussian distribution, all marginals

have the same tail index, so the above equations are actually an extension that

allow different tail indexes, αi, for the marginals. The scale parameters and covari-

ance matrix are estimated from EWMA equations already seen. The time-varying



estimate for the scale parameter is given by:

σ̂pi

τ |τ−1,i = (1 − λe)
∣

∣ejτ−1

∣

∣

pi
A(pi) + λeσ̂

pi

τ−1|τ−2,i, (5.17)

which similar to equation (5.10), and it is reasonable to take pi = αi/3 for financial

series. To obtain the estimate for the covariance of the governing Gaussian, the

data set of Eτ is first truncated at 5% and 95% to remove the effects of extreme

events. The estimate is then obtained from the truncated series E∗
τ by:

Σ̂τ |τ−1 = (1 − λe)E
∗
τ−1

(

E∗
τ−1

)′
+ λeΣ̂τ−1|τ−2. (5.18)

The optimal value of λe is best calibrated through backtesting, or alternatively,

the RiskMetric technique for RMSEi
p can be carried over. The latter approach

is used for the ALM data, which gives λe = 0.95 again. This model will be

referred to as the stable subordination exponentially weighted moving average

model (SSEWMA).

5.1.2 VaR Backtesting

The forecasting performances of the EWMA and SSEWMA models are examined

by comparing the predicted VaRs with the observed returns as in [31]. From the

definition of VaR, the null hypothesis to test is:

P (rτ < −VaRβ(τ)) = 1 − β, (5.19)

for a return series {rτ}. This hypothesis is tested for each ALM return series

ri = {riτ , τ = 1, ..., 237}, i = 1, ..., 6, and for various values of β.

In this backtesting analysis, both the VAR(1)-EWMA and VAR(1)-SSEWMA



models are fit to a moving window of 100 data points. Since it is difficult to

estimate the tail index of the stable distribution with such a short time-series,

it is assumed that αi = 1.8 for each of the univariate series in the SSEWMA

model. Let VaRβ(τ), for τ = 101, ..., 237, be the estimate of VaRβ(τ) from a

model calibrated to {rτ̃ , τ̃ = τ − 100, ..., τ − 1}. If equation (5.19) holds, then

χτ = 1
(

rτ < −VaRβ(τ)
)

=







1 with probability 1 − β,

0 with probability β,
(5.20)

where 1(·) is the indicator function, and the total number of VaR exceedings has

a binomial distribution:

X =
237
∑

τ=101

χτ ∼ Bin(137, 1 − β). (5.21)

The testing rule is to reject the null hypothesis at level of significance 100δ% if

X
∑

k=1





137

k



 (1 − β)kβ137−k ≤ δ/2, (5.22)

or,
X
∑

k=1





137

k



 (1 − β)kβ137−k ≥ 1 − δ/2. (5.23)

The number of exceedings and the corresponding p-values for each ALM return

series are contained in tables (5.6-5.7). The conclusions are:

• At level of significance 99%, neither the EWMA or the SSEWMA model is

rejected for any value of β.

• At level of significance 95%, the EWMA model is rejected three times for

β = 0.99 and once for β = 0.95 while the SSEWMA model is never rejected.



Exceedings and p-values
β r1 r2 r3 r4 r5 r6

0.99 4 (0.0252) 3 (0.0990) 4 (0.0252) 4 (0.0252) 3 (0.0990) 3 (0.0990)
0.95 12 (0.0405) 11 (0.0850) 9 (0.2984) 8 (0.4955) 10 (0.1657) 6 (0.9379)
0.90 16 (0.4168) 13 (0.9851) 14 (0.7920) 16 (0.4168) 14 (0.7920) 12 (0.7586)
0.80 26 (0.8639) 28 (0.7987) 26 (0.8639) 32 (0.2773) 28 (0.7987) 26 (0.8639)

Table 5.6: Number of VaRβ exceedings in 137 data points with corresponding
p-values under the normal assumption.

Exceedings and p-values
β r1 r2 r3 r4 r5 r6

0.99 1 (0.7968) 2 (0.3171) 2 (0.3171) 3 (0.0990) 2 (0.3171) 3 (0.0990)
0.95 11 (0.0850) 11 (0.0850) 9 (0.2984) 9 (0.2984) 10 (0.1657) 8 (0.4955)
0.90 16 (0.4168) 14 (0.7920) 17 (0.2808) 18 (0.1800) 18 (0.1800) 16 (0.4168)
0.80 28 (0.7987) 31 (0.3783) 27 (0.9659) 32 (0.2773) 29 (0.6417) 27 (0.9659)

Table 5.7: Number of VaRβ exceedings in 137 data points with corresponding
p-values under the stable assumption (α = 1.8).

This indicates that the normal distribution is overly optimistic in predicting

the occurrence of the largest losses, and the stable distribution results in a

more reliable forecast.

• For β = 0.90 and 0.80, the EWMA model produces reasonably large p-

values, which just indicates that the normal distribution could be suitable

for forecasting more toward the middle of the distribution.

Overall, the SSEWMA model provides a better fit to the tails and is preferable

based on the examination of the p-values.

5.2 Solving the Optimization Problem

The ALM optimization problem is now solved using scenarios generated from the

time-series models of the previous section. First, efficient frontiers are developed

from the 2-stage problem with scenarios based on the EWMA and SSEWMA



models, and postoptimality analysis is briefly discussed. Then, backtesting is

carried out to compare the performance of the 1-stage problem versus the 2-

stage recourse problem and the normal assumption versus the stable assumption.

The results from varying the distributional assumption are mixed, but the 2-

stage recourse problem outperforms the 1-stage problem. Before presenting these

results, the parameters of the optimization problem are first specified.

For pension funds, decisions are made approximately on an annual basis, so a

stage in the stochastic program should correspond to 12 months. A twelve month

stage left too few data points in the backtesting, so the decision was made to

shorten the stage to cover a six month period. In addition to giving more points

for comparison in the backtesting, the time-series models should generate more

reliable scenarios over the shorter time period.

For the 2-stage problem, a balanced scenario tree is generated with 104 first

stage scenarios and 107 second stage scenarios, giving 103 second stage nodes con-

nected to each first stage node. This huge number of scenarios gives fairly reliable

optimal allocations, and memory limitations did not allow much larger scenario

trees to be considered. The first stage scenarios were created by simulating 104

sample paths of the time-series model out to six months, and the second stage

scenarios were created by simulating another 103 sample paths out an additional

six months for each of first stage scenarios. Scenario reduction and bundling using

the methods of probability metrics was also attempted in order to created a better

set of first stage scenarios, but these methods could not handle sample paths of

this number with the given hardware.

It is necessary to convert the generated sample paths of the returns back

to the index values of the benchmarks. This is not a problem when using the

normal distribution, but it does cause some small difficulties when using the stable



distribution. Since the returns have infinite variance under the stable assumption

and are temporally dependent, the sample paths of the corresponding index values

will explode. For this reason, the stable return scenarios are truncated at levels

corresponding to p-values of 0.001 and 0.999 of the estimated distribution. This

eliminates the explosion of the index values while still fitting the tail of the return

distribution better than the normal assumption.

For the efficient frontiers and at the start date of the backtesting, it is as-

sumed that the pension fund is fully funded: the total asset wealth and the lia-

bility obligation are both taken to be $1,000, and because of the structure of the

deterministic equivalent form of the optimization problem, any pension fund that

is fully funded will have the same optimal allocations (as a percent of the asset

wealth). For instance, a fund with an initial $1,000,000 in both asset wealth and

liability obligation has the same optimal allocations as one with $1,000 in both.

Including transaction costs, the optimal allocations depend also on the initial

allocation, not just the generated scenarios and initial wealth. In this case, it is

assumed that the fund initially holds 40% of its wealth in bonds and 60% of its

wealth in equities. A reasonable assumption for the trading costs, as a percent of

wealth traded, is obtained from data on mutual funds in [9]. In our example, the

median trading cost (TC) is 0.70% of fund assets per year:

TC ≈ 0.0070 · Fund Assets.

The turnover, defined as the ratio of annual fund sales to the fund assets, is

determined to have a median of 0.70:

Fund Sales ≈ 0.70 · Fund Assets.



Assuming that the fund buys approximately as much as it sells, then

Traded Wealth ≈ 2 · Fund Sales.

Combining equations yields

TC ≈ 0.0070

2 · 0.70
Traded Wealth,

or trading costs are approximately 0.5% of the traded wealth. Additionally as-

suming that the transaction costs are the same for each of the five ALM asset

classes, the values of TCBi = TCSi = 0.005, for i = 1, ..., 5, are used in the

optimization problem.

5.3 Efficient Frontiers

The numerical results of the efficient frontiers for the 2-stage recourse problem

are now given. Recall that the risk measure for the 2-stage problem is:

ρ2 = µ1CVaRβ(−sw2) + µ2CVaRβ(−sw3), (5.24)

where swt+1 is the surplus wealth at the end of stage t (and sw1 = 0 since the

pension fund is initially fully funded). A confidence level of β = 0.95 is used in this

section to emphasize the differences between the normal and stable assumptions.

For the remainder, it is taken that µ1 = µ2 = .5, and studies in assigning different

weights to the CVaR at different stages is saved for a later time. Since the reward

is the expected surplus wealth at the end of the second stage, E(sw3), the efficient

frontier is obtained by varying λ in the minimization objective: λρ2−(1−λ)E(sw3).

Figure (5.8) contains three different efficient frontiers:
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Figure 5.8: Efficient frontiers under the normal assumption and stable assumption
for β = 0.95.

• Optimization without transaction costs and scenarios generated from the

normal assumption (EWMA model).

• Optimization with transaction costs and the same set of scenarios generated

from the normal assumption.

• Optimization without transaction costs and scenarios generated from the

stable assumption (SSEWMA model) using the tail index estimates from

table (5.2).

The optimal allocations, as percents of the initial wealth, can be found in the

tables (6.1-6.3) in the appendix of the lecture notes.



In all three cases and for any value of λ, the optimal first stage allocations

are some combination of the bond and international equity indexes. The portfolio

that maximizes the expected final surplus wealth (λ = 0) invests entirely in the

international equity index, and the minimum risk portfolio (λ = 1) invests entirely

in the bond index. A couple immediate comments can be made about the figure.

Since the stable distribution has a higher probability of extreme events, the frontier

of the stable distribution lies below that of the normal distribution. The inclusion

of transaction costs also moves the efficient frontier downward, and the distance

it moves for various values of λ depends on the initial allocation.

A few risk-reward points obtained by replacing the surplus wealth with the

wealth in the optimization problem, under the normal assumption, are also in-

cluded in figure (5.8). The optimal allocations, found in table (6.4), are very

different in this case: The minimum risk portfolio has a very large proportion

of wealth invested in the cash index. When the corresponding ρ2 and E(sw3)

are calculated, the points for the risk-averse portfolios lie far below the efficient

frontier. This illustrates the advantage of considering the liabilities and assets

together in the same optimization problem. Maximizing the expected final wealth

and maximizing the expected final surplus wealth result in the same values of ρ2

and E(sw3) because of the linearity of the problem.

5.4 Postoptimality Analysis and Backtesting

5.4.1 Postoptimality Analysis

The basic postoptimality analysis examines how the optimal value of a stochastic

program changes as the initial probability distribution P1 becomes contaminated

with another probability distribution P2. Usually problems of the following form



are considered:

φ(P1) = min
x1∈X

F (x1, P1) (5.25)

where P1 is a discrete probability distribution of scenarios, X does not depend on

P1, x1 are the scenario independent first stage decision variables, and F is convex

in x1 and linear in P1. The original probability distribution is assumed to become

contaminated through

Pψ = (1 − ψ)P1 + ψP2, with 0 < ψ < 1. (5.26)

This means that the scenarios of both distributions are aggregated into one set of

scenarios where the probabilities of the scenarios in P1 are weighted by 1−ψ and

the probabilities of the scenarios in P2 are weighed by ψ. If the optimal solution

is denoted by

x1(P1) = arg min
x1∈X

F (x1, P1), (5.27)

a set of bounds for the optimal value of the stochastic program under the conta-

minated distribution, φ(Pψ), are given by

(1 − ψ)φ(P1) + ψφ(P2) ≤ φ(Pψ)

≤ min {(1 − ψ)φ(P1) + ψF (x1(P1), P2), (1 − ψ)F (x(P2), P1) + ψφ(P2)} ,
(5.28)

where F (x1(P1), P2) is the value of the objective under distribution P2 when the

first stage decision is x1(P1) (there is still an implicit minimization over the second

stage variables). F (x1(P2), P1) is found in a similar manner.

It is not difficult to verify that the ALM problem can be written in the above

form. This contamination method can be easily applied to the situation where P1

corresponds to the set of scenarios generated from the normal assumption and P2



corresponds to the set of scenarios generated from the stable assumption. In the

case of the minimum risk portfolio (λ = 1), the optimal objective value coincides

with the minimum risk value. Let

ρn2 = φ(P1), and ρs2 = φ(P2), (5.29)

correspond to the 2-stage risk under the normal and stable distributions, respec-

tively. Also, denote the risk under distribution Pψ by ρψ2 . As seen in tables (6.1-

6.2), the optimal allocations under both the normal assumption and the stable as-

sumption invest all the wealth in the bond index. It follows that F (x(P2), P1) = ρn2

and F (x(P1), P2) = ρs2, and the bounds in equation (5.28) produce

ρψ2 = (1 − ψ)ρn2 + ψρs2,

= (1 − ψ) · 246.13 + ψ · 291.21.

The minimum risk in the 2-stage program is then easily calculated when scenarios

under the normal assumption and stable assumption are combined. The gen-

eral contamination technique can also be applied for any value of λ, but direct

information about the risk can no longer by calculated.

5.4.2 Portfolio Backtesting

Finally, some backtesting results will be presented. The first round includes trans-

action costs, and the initial conditions for each run of the optimization problem

come from the previous period considered. This provides a realistic comparison

for the 1-stage problem versus the 2-stage problem, but it is difficult to calculate

the realized risk using the risk measure that was optimized. In the second round,

the transaction costs are removed and the initial conditions are reset every run of



the optimization problem. This allows the realized risk to be directly calculated

in terms of the optimized risk measure and provides a better comparison for the

distributional assumptions; however, this setup favors the 1-stage problem over

the 2-stage problem because the second stage becomes irrelevant.

Dynamic Backtesting: 1-stage versus 2-stage

This section performs the dynamic backtesting of the minimum risk 1-stage

and 2-stage portfolios with transaction costs. The 2-stage problem finds the op-

timal allocations that minimize ρ2, and the 1-stage problem finds that optimal

allocation that minimizes

ρ1 = CVaRβ(−sw2). (5.30)

For a given distributional assumption, the same sets of scenarios are used when

solving the 1-stage and 2-stage problems: The 1-stage problem is just restricted

to considering the 104 first stage scenarios.

The time-series models are fit to a moving window of 100 data points under

both the normal and stable assumptions using the EWMA and SSEWMA models,

respectively. Running the optimization problems with scenarios generated from

the time-series models fit to the first 100 monthly data points give optimal allo-

cations for the six month period beginning in July, 1993. It is again assumed that

the pension fund is initially fully funded with 40% of wealth in the bond index

and 60% of wealth in the equity index. The window is then shifted forward by

6 data points, and the optimization problems output optimal allocations for Jan-

uary, 1994. The asset wealths resulting from the previous allocations, and those

allocations themselves, are used as the initial conditions for the new optimization

problems. This setup means that the 2-stage problem is run on a rolling horizon:

Since new scenarios are generated every 6 months, only the first stage allocations

are actually implemented.



Since it is difficult to obtain a good estimate for the tail index of a stable

distribution with only 100 data points, it is assumed that α = 1.8 in the SSEWMA

model. The backtesting, therefore, gives a comparison of the normal assumption

with the stable assumption for this particular value of the tail index.

The window is shifted 21 times resulting in a final surplus wealth for July,

2004. Since this results in only 22 values of the surplus wealth for comparison,

the confidence level of CVaR was reduced to β = 0.80 in ρ1 and ρ2. To measure

the relative performances, it is necessary to calculate the risk of the realized

surplus wealths. However, it is not reasonable to directly calculate the CVaR of

these values because the surplus wealth that is used as the initial condition in

the optimization problems varies over the time horizon and is different for the

different assumptions. It is also not possible to calculate the CVaR of the return

of the surplus wealth because the surplus wealth is not strictly positive. By the

translation invariance property of a coherent risk measure, it is more reasonable

to look at the change in surplus wealth:

CVaRβ(−sw2) = sw1 + CVaRβ(−∆sw),

since sw1 is a fixed initial condition. Therefore, minimizing the CVaR in the

next time period has the effect of minimizing the CVaR of the change, but one

cannot still make a direct comparison because the asset wealth also varies for the

different assumptions over the horizon. The measure of realized risk, ρ̃, used in

the comparison is the CVaR at 80% confidence level of the change in negative

surplus wealth per dollar of asset wealth from the previous period. One can

expect that minimizing ρ1 and ρ2 produces small values of ρ̃, but ρ̃ does not

give a perfect comparison of risk because the resulting optimal allocations depend

on the ratios of assets to liabilities, not just the asset wealths. Values of ρ̃ and



ρ̃ final sw
1-stage Normal 0.0466 1177.29
1-stage Stable 0.0509 1077.64
2-stage Normal 0.0456 1209.22
2-stage Stable 0.0491 1217.92
Fixed-Mixed 0/40/60/0/0 0.0924 241.04
Fixed-Mixed 0/100/0/0/0 0.0776 -371.39

Table 5.8: Dynamic backtesting results.

the final surplus wealth are found in table (5.8). For comparison, this table also

includes values for the fixed-mixed rule of 40% bonds and 60% equity, and the

rule of 100% in bonds. Under both the normal and stable assumptions, the 2-

stage recourse problem outperforms the 1-stage problem by both reducing ρ̃ and

increasing the final surplus wealth. While the 2-stage problem under the stable

assumption results in the highest final surplus wealth, the normal assumption gave

lower values of ρ̃. The fixed-mixed rules were no comparison with the stochastic

programs.

Figures (5.9-5.11) show the evolution of the asset wealths and liability value

over the time horizon. One can see that minimizing CVaR does not look like a

typical index tracking problem because the upside is not penalized. The asset

wealths and the liability values are in table (6.5), and the optimal allocations can

be found in the appendix. These tables also include the percent of asset wealth

loss to transaction costs.

An additional comparison of the performance of the stable and normal dis-

tributions can be obtained by VaR backtesing similar to section 5.1.2. Future

material on this issue will be provided in the lecture.
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Optimal First Stage Allocations
λ E(−sw3) ρ2 CVaR1 CVaR2 Cash Bonds Equities Int. Eq. Mortgages
0 72.18 399.46 319.44 479.48 0 0 0 100 0

0.10 71.68 389.07 319.44 458.70 0 0 0 100 0
0.20 70.82 384.04 319.44 448.63 0 0 0 100 0
0.25 64.49 364.44 299.09 429.80 0 10.6483 0 89.3517 0
0.30 42.92 306.50 232.28 380.71 0 48.3706 0 51.6294 0
0.35 32.63 284.80 207.23 362.36 0 64.9963 0 35.0037 0
0.40 25.61 273.09 194.71 351.47 0 75.1793 0 24.8207 0
0.45 19.75 265.12 186.68 343.57 0 82.9291 0 17.0709 0
0.50 15.08 259.96 182.16 337.76 0 88.1928 0 11.8072 0
0.60 6.72 253.12 177.31 328.92 0 95.7591 0 4.2409 0
0.75 -2.74 248.36 175.47 321.24 0 100 0 0 0
1.00 -20.23 246.13 175.47 316.79 0 100 0 0 0

Table 6.1: Efficient frontier under the normal assumption with β = 0.95.



Optimal First Stage Allocations
λ E(−sw3) ρ2 CVaR1 CVaR2 Cash Bonds Equities Int. Eq. Mortgages
0 70.47 409.60 321.91 497.29 0 0 0 100 0

0.10 70.08 401.18 321.91 480.45 0 0 0 100 0
0.20 69.36 396.97 321.91 472.03 0 0 0 100 0
0.25 68.92 395.45 321.91 468.99 0 0 0 100 0
0.30 57.09 365.74 288.65 442.84 0 20.8749 0 79.1251 0
0.35 43.60 337.37 256.10 418.64 0 44.3374 0 55.6626 0
0.40 34.79 322.43 239.12 405.73 0 58.8847 0 41.1153 0
0.45 27.67 312.73 228.49 396.97 0 69.8927 0 30.1073 0
0.50 21.83 306.25 221.75 390.75 0 78.1959 0 21.8041 0
0.60 13.85 299.59 216.06 383.12 0 87.1561 0 12.8439 0
0.75 2.97 294.23 212.78 375.68 0 95.7426 0 4.2574 0
1.00 -19.85 291.21 212.08 370.34 0 100 0 0 0

Table 6.2: Efficient frontier under the stable assumption with β = 0.95.



Optimal First Stage Allocations Trans.
λ E(−sw3) ρ2 CVaR1 CVaR2 Cash Bonds Equities Int. Eq. Mortgages Costs
0 59.28 415.61 328.26 502.96 0 0 0 99.0050 0 0.9950

0.10 58.80 405.57 328.26 482.89 0 0 0 99.0050 0 0.9950
0.20 57.83 399.83 328.26 471.41 0 0 0 99.0050 0 0.9950
0.25 37.16 327.52 251.65 403.39 0 40.0000 0 59.4030 0 0.5970
0.30 34.81 321.78 247.18 396.37 0 42.6534 0 56.7496 0 0.5970
0.35 21.80 294.29 217.23 371.35 0 61.8604 0 37.5426 0 0.5970
0.40 13.93 281.12 203.63 358.61 0 72.4813 0 26.9217 0 0.5970
0.45 7.14 271.91 194.45 349.36 0 81.0294 0 18.3736 0 0.5970
0.50 2.07 266.31 189.48 343.14 0 86.5774 0 12.8256 0 0.5970
0.60 -6.25 259.47 184.36 334.58 0 94.1698 0 5.2331 0 0.5971
0.75 -15.27 254.86 181.98 327.75 0 99.4030 0 0 0 0.5970
1.00 -31.96 253.21 181.98 324.45 0 99.4030 0 0 0 0.5970

Table 6.3: Efficient frontier under the normal assumption with transaction costs and β = 0.95.

Optimal First Stage Allocations
λ E(−sw3) ρ2 CVaR1 CVaR2 Cash Bonds Equities Int. Eq. Mortgages
0 72.18 399.46 319.44 479.48 0 0 0 100 0

0.25 56.24 349.48 271.26 427.70 0 25.7090 0 74.2910 0
0.50 8.00 293.29 214.21 372.38 0 0 0 20.8588 79.1412
0.75 -40.48 333.07 247.64 418.49 74.2995 0 0 3.9844 21.7161
1.00 -53.29 353.66 253.02 454.30 84.9059 1.0005 0 2.4420 11.6516

Table 6.4: Wealth optimization under the normal assumption with no transaction costs and β = 0.95.



Asset Wealth
Date Liability 1-stage 2-stage Fixed-mixed

Value Normal Stable Normal Stable 0/40/60/0/0 0/100/0/0/0

7/93 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00
1/94 1067.19 1036.08 1033.60 1034.93 1032.71 1067.69 1034.72
7/94 936.20 1006.58 1003.17 1005.07 1002.12 1031.23 1000.94
1/95 932.01 1015.83 1009.89 1014.77 1009.76 1061.09 1010.78
7/95 1085.82 1119.68 1106.91 1118.45 1108.27 1233.43 1102.13
1/96 1267.52 1230.57 1213.50 1235.10 1219.35 1376.50 1182.06
7/96 1137.78 1245.16 1227.06 1250.82 1234.14 1382.09 1163.18
1/97 1208.93 1545.82 1486.14 1552.85 1532.14 1609.50 1220.62
7/97 1354.74 1894.36 1818.87 1902.97 1877.59 1862.24 1288.37
1/98 1503.39 1961.80 1883.63 1970.72 1944.43 1937.84 1351.51
7/98 1566.35 2259.70 2169.65 2269.97 2239.69 2136.26 1389.74
1/99 1726.53 2599.19 2495.61 2611.01 2576.17 2371.80 1460.65
7/99 1536.38 2531.37 2448.79 2555.91 2543.31 2411.78 1424.34
1/00 1528.22 2568.31 2490.92 2610.18 2603.17 2498.60 1433.68
7/00 1715.38 2694.08 2612.77 2729.57 2724.48 2599.06 1509.31
1/01 1864.70 2884.14 2803.19 2910.55 2916.84 2621.32 1631.85
7/01 1915.56 3003.98 2920.14 3030.85 3038.17 2495.37 1700.87
1/02 1960.23 3100.08 3013.55 3127.81 3135.36 2436.33 1755.28
7/02 2068.61 3230.29 3140.12 3259.18 3267.05 2202.77 1829.00
1/03 2291.06 3393.44 3298.72 3423.79 3432.06 2176.37 1921.38
7/03 2180.78 3405.28 3310.23 3435.73 3444.03 2398.13 1928.08
1/04 2400.67 3558.11 3458.80 3589.93 3598.60 2659.32 2014.61
7/04 2392.77 3570.05 3470.40 3601.98 3610.68 2633.80 2021.38

Table 6.5: Dynamic backtesting: Realized liability value and asset wealths for the
optimal allocations with β = 0.80.



Date Cash Bonds Equities Intern. Mortgages Transaction
Equities Costs

(initial) 0 40 60 0 0
7/93 0 89.9043 4.9691 4.5791 0 0.5476
1/94 0 89.7865 0.1678 9.9954 0 0.0503
7/94 0 85.6719 9.9092 4.3211 0 0.0979
1/95 0 89.7313 10.2284 0 0 0.0403
7/95 0 58.9767 40.7269 0 0 0.2964
1/96 0 0 99.4273 0 0 0.5727
7/96 0 0 100 0 0 0
1/97 0 0 100 0 0 0
7/97 0 0 100 0 0 0
1/98 0 0 100 0 0 0
7/98 0 0 100 0 0 0
1/99 0 88.4698 10.6410 0 0 0.8891
7/99 0 82.3947 17.5437 0 0 0.0616
1/00 0 81.7418 18.2582 0 0 0
7/00 0 91.9907 7.9093 0 0 0.1000
1/01 0 99.9294 0 0 0 0.0706
7/01 0 100 0 0 0 0
1/02 0 100 0 0 0 0
7/02 0 100 0 0 0 0
1/03 0 100 0 0 0 0
7/03 0 100 0 0 0 0
1/04 0 100 0 0 0 0

Table 6.6: Dynamic backtesting: Allocations (as a percent of asset wealth) for the
1-stage optimization problem under the normal assumption with β = 0.80.



Date Cash Bonds Equities Intern. Mortgages Transaction
Equities Costs

(initial) 0 40 60 0 0
7/93 0 91.4944 3.7318 4.2140 0 0.5599
1/94 0 90.9029 0 9.0523 0 0.0448
7/94 0 86.5537 9.8023 3.5455 0 0.0985
1/95 0 89.8535 10.1135 0 0 0.0330
7/95 0 50.4015 49.2155 0 0 0.3830
1/96 0 0 99.5129 0 0 0.4871
7/96 0 0 100 0 0 0
1/97 0 0 100 0 0 0
7/97 0 0 100 0 0 0
1/98 0 0 100 0 0 0
7/98 0 0 100 0 0 0
1/99 0 82.2585 16.9148 0 0 0.8267
7/99 0 67.1027 32.7497 0 0 0.1477
1/00 0 66.1382 33.8618 0 0 0
7/00 0 89.5188 10.2507 0 0 0.2305
1/01 0 99.9081 0 0 0 0.0919
7/01 0 100 0 0 0 0
1/02 0 100 0 0 0 0
7/02 0 100 0 0 0 0
1/03 0 100 0 0 0 0
7/03 0 100 0 0 0 0
1/04 0 100 0 0 0 0

Table 6.7: Dynamic backtesting: First stage allocations (as a percent of asset
wealth) for the 2-stage optimization problem under the normal assumption with
β = 0.80.



1-stage 2-stage
Date Normal Stable Normal Stable

CVaR CVaR CVaR1 CVaR2 CVaR1 CVaR2
7/93 139.97 118.33 139.99 248.58 118.35 211.53
1/94 165.24 165.42 166.51 286.72 166.45 285.05
7/94 13.25 24.93 14.91 77.33 26.09 95.20
1/95 -21.85 -2.31 -20.81 25.29 -2.22 52.64
7/95 90.97 112.84 92.62 202.52 111.41 229.59
1/96 165.43 199.19 159.34 217.74 192.03 262.59
7/96 17.94 53.73 11.81 89.41 46.62 139.86
1/97 -294.58 -201.09 -302.18 -335.87 -253.20 -259.12
7/97 -530.24 -415.32 -539.84 -622.72 -481.01 -531.86
1/98 -343.84 -223.30 -353.58 -327.22 -290.62 -217.16
7/98 -603.38 -471.40 -614.36 -624.62 -545.81 -522.57
1/99 -682.94 -569.73 -693.82 -572.10 -652.59 -544.71
7/99 -914.55 -825.38 -937.53 -938.14 -921.85 -929.62
1/00 -971.35 -876.49 -1009.61 -1015.10 -987.07 -971.63
7/00 -839.05 -731.40 -871.71 -770.64 -847.11 -725.54
1/01 -911.81 -782.59 -939.38 -834.34 -904.92 -756.63
7/01 -986.08 -850.41 -1014.32 -934.61 -975.67 -848.00
1/02 -1053.78 -948.54 -1082.97 -1014.99 -1077.36 -991.05
7/02 -1032.56 -886.39 -1063.62 -965.99 -1023.88 -879.87
1/03 -899.44 -761.41 -931.94 -768.19 -904.66 -706.25
7/03 -1013.32 -881.03 -1046.02 -906.55 -1024.45 -858.39
1/04 -933.25 -832.85 -967.31 -802.10 -982.10 -820.57

Table 6.8: Dynamic backtesting: Optimal values of CVaR0.80 for scenarios gener-
ated under the normal and stable assumptions.
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