Composed and Factor Composed Multivariate
GARCH Models

Sebastian Kring

Department of Econometrics, Statistics and Mathematical Finance
School of Economics and Business Engineering

University of Karlsruhe

Postfach 6980, 76128 Karlsruhe, Germany

E-mail: sebastian.kring@statistik.uni-karlsruhe.de

Svetlozar T. Rachev

Chair-Professor, Chair of Econometrics, Statistics and Mathematical Finance
School of Economics and Business Engineering

University of Karlsruhe

Postfach 6980, 76128 Karlsruhe, Germany

and

Department of Statistics and Applied Probability

University of California, Santa Barbara

CA 93106-3110, USA

E-mail: rachev@statistik.uni-karlsruhe.de

Markus Hochstotter

Department of Econometrics, Statistics and Mathematical Finance
School of Economics and Business Engineering

University of Karlsruhe

Postfach 6980, 76128 Karlsruhe, Germany

Frank J. Fabozzi

Professor in the Practice of Finance
School of Management

Yale University

New Haven, CT USA



Abstract

In this paper we present a new type of multivariate GARCH model which
we call the composed MGARCH and factor composed MGARCH models. We
show sufficient conditions for the covariance stationarity of these processes and
proof of the invariance of the models under linear combinations, an important
property for factor modeling. Furthermore, we introduce an «-stable version of
these models and fit a four dimensional a-stable composed MGARCH process
to the returns on four German stocks included in the DAX index. We show in
an in-sample analysis as well as in an out-of-sample analysis that the model out-
performs the classical exponentially weighted moving average (EMWA) model
introduced by RiskMetrics.
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1 Introduction

In modern risk management and factor modeling it is important to understand and to
predict the temporal dependence structure of assets and risk factor returns in a multi-
variate time series framework. It is now widely accepted, and some researchers call
it even a stylized fact (see McNeil, Frey, and Embrechts (2005)), that the conditional
volatilities and the conditional correlation of multivariate financial time series vary
over time and occur in clusters.

These style facts are very well understood and modeled by univariate GARCH
models for one-dimensional time series. It is straightforward to generalize univariate
GARCH models to multivariate GARCH models. Although they are the natural candi-
date to capture these stylized facts about multivariate financial time series, multivariate
GARCH modeling has not been applied very often in the financial industry. The reason
is that the implementation of these models is extremely difficult even in low dimen-
sions, their major problem being that the number of parameters tends to explode with
the dimension of the model. Because of this, the maximum likelihood function be-
comes very flat and optimization of the likelihood is practicably impossible in higher
dimensions, as stressed by Alexander (2002). But from the an asset manager’s per-
spective, a multivariate modeling framework is desirable since it opens the door to
better decision tools in various areas, such as asset pricing, portfolio selection, factor
modeling, and risk management.

Multivariate GARCH models were introduced by Bollerslev, Engle, and Wooldridge
(1988). At the beginning of the 1990s new models were developed such as the con-
stant conditional correlation (CCC) GARCH model by Bollerslev (1990), the principal
component GARCH model by Ding (1994), the BEKK model of Baba, Engle, Kro-
ner and Kraft (1995), and others. At the beginning of the 2000s Christodoulakis and
Satchell (2002), Engle (2002), and Tse and Tsui (2002) developed the dynamic con-
ditional correlation (DCC)-GARCH model that can be considered to be an extension
of the CCC-GARCH model. Furthermore, Patton (2000) and Jondeau and Rockinger
(2001) introduced copula-GARCH maodels.

The most common applications of multivariate GARCH models are for the study
of the conditional covariance and correlation between several markets. Multivariate
GARCH models can help asset managers understand if the volatility of one market
(e.g., the Dow Jones 30), leads the volatilities of several other markets (such as Euro
Stoxx 50, DAX 30 or Nikkei).

In asset pricing theory, the asset excess returns are modeled as linear combina-
tions of factors (e.g., market return). In arbitrary approaches, the coefficients of the
factors are assumed to be constant and estimated by an ordinary least squares (OLS-
regression. Since these coefficients are the covariance between the asset excess return
and the factor returns divided by the variance of the factor returns, these coefficients
can be modeled as time varying by a multivariate GARCH model.

In asset management it is not recommended modeling directly all assets in a large
portfolio by a multivariate GARCH model since the parameters of the model explode
as noted above. Instead, an asset manager should use factor-model strategies in order
to reduce the overall dimension of the time series modeling problem. After that the
factors obtained can be modeled thoroughly by a multivariate GARCH or, even better,
VARMA-MGARCH model.



In this paper we introduce two new multivariate GARCH models, which we refer
to as the composed and factor composed MGARCH models. The idea behind these
models comes from a common technique in portfolio risk management: Risk managers
of large portfolios have to forecast risk functionals such as value-at-risk (VaR) or ex-
pected shortfall of the underlying portfolio. A common approach is to generate a uni-
variate return series from the current asset shares and the multivariate return series of
the assets in the portfolio. A univariate model such as a GARCH or ARMA-GARCH
model is fitted to this time series allowing the calculation of these risk functionals.
However, the univariate model is only valid for the current weights. Since the weights
change daily, we have to repeat this procedure every day. Furthermore, the univariate
model does not provide any information about the dependence structure of the assets,
which is important for the portfolio risk manager. The basic idea behind the composed
and factor composed MGARCH models is to use many linear combinations of the
multivariate asset return series in the portfolio in order to reconstruct the conditional
covariance matrix ;. The matrix X; can be reconstructed by solving an optimization
problem ensuring the positivity of >5.

We extend the composed and factor composed MGARCH model to an «-stable
version with multivariate a-stable sub-Gaussian innovations. According to Rachev
and Mittnik (2000), there are empirical as well as theoretical evidences that a-stable
laws are the fundamental "building blocks” (i.e., innovations) that drive asset return
series in many sectors of the financial market.

This paper is organized as follows. In Section 2 we provide a short review of
ARMA-GARCH maodels since they are the key device for the composed MGARCH
models. In Section 3 we present and discuss the advantages and disadvantages of the
most common multivariate GARCH models. In Section 4 we introduce the composed
and factor composed GARCH models, put them in the context of the former models,
and propose methods to fit composed and factor composed MGARCH models to data.
We introduce an «-stable version of the composed and factor composed MGARCH
model, that is based on the a-stable power GARCH processes introduced by Mit-
tnik, Paolella, and Rachev (2002) in Section 5. In Section 6, the a-stable composed
MGARCH model is applied to the returns on four German stocks included in the DAX
index. We compare the performance of the proposed model with the exponentially
weighted moving average (EWMA) model of RiskMetrics. Section 7 concludes the

paper.

2 Univariate GARCH Modedls

The univariate generalized autoregressive conditional heteroscedasticity (GARCH) mod-
els have been successfully applied in financial econometrics since their introduction by
Engle (1982) and Bollerslev (1986). They have been used with great success in volatil-
ity forecasting in several financial markets.

The voluminous literature related to GARCH models spans modeling exchange
rates, equity returns, convergent term structure volatility forecast, and stochastic volatil-
ity models for option pricing and hedging. For a survey of ARCH-type models, see
Bollerslev et al. (1992), Bera and Higgins (1993), Shephard (1996), Alexander (2001),
among others.



In this section we review the basic definitions and properties in the field of uni-
variate GARCH models. We do so because they are the fundamental device for multi-
variate GARCH modeling. We denote with y, = E(X|Fi—1), t € Z the conditional
mean of the time series (X;);cz, Where 7, = o({ X, : s < t}), t € Z, is the sigma
field generated by the past and present values of (X;)cz.

Definition 1. (Z;):cz isastrict white noise (SWN) processif itisa seriesof identically
distributed, finite-variance random variables.

An important property of financial return series is whether they are strictly sta-
tionary or covariance stationary (see, e.g., McNeil, Frey, and Embrechts (2005) for a
definition of this properties). Both of these definitions attempt to formalize the notion
that the behavior of a time series is similar in any epoch in which we might observe
it. Systematic changes in mean, variance, or the covariances between equally spaced
observations are inconsistent with stationarity. We require these notions for the next
definition.

Definition 2. Let (Z;)icz be SWN(0,1). The process (X;)iez IS a GARCH(p, q)
process if it is strictly stationary and if it satisfies, for all ¢ € Z and some strictly
positive-valued process (o;):cz, the equations

p q
2 2 2
Xy =012y, 0p =+ E o X7+ E 5jat—j
i=1 j=1

whereag >0, > 0,0 =1,...,p,and 3; > 0,5 =1,...,q.

We demand strictly stationarity of univariate GARCH processes, since most finan-
cial return series seem to have this property.

It is straightforward to generalize GARCH processes to so-called ARMA-GARCH
processes (X;).ez satisfying the equation

Xt = s + 042y,

where (X; — 1)z follows a GARCH(p, q) process and (i ):cz an ARMA process.
(For an introduction to ARMA processes, see Hamilton (1994).) In daily return se-
ries volatility effects captured by the GARCH part are much more important than the
mean effects modeled by the ARMA part of the model! Because of this fact and for
notational ease we do not consider ARMA processes in this paper.

In the next theorem we give sufficient and necessary conditions for covariance
stationarity of GARCH processes.

Theorem 1. A GARCH(p,q) process is a covariance-stationary white noise process
if and only if >0 | o + Z?:l B; < 1. The variance of the covariance-stationary

processis given by ag /(1 — >0, ai + >-9_, B;).
Proof. See McNeil, Frey, and Embrechts (2005). O

We will see in Section 4 that Theorem 1 is very useful to ensure covariance sta-
tionarity of composed and factor composed MGARCH processes.

LFor a more detailed discussion of this issue, see RiskMetrics (1996) and McNeil, Frey, and Embrechts
(2005).



3 Multivariate GARCH Models

In this section we give an historical overview? of the more important multivariate
GARCH models. As stressed in Section 1 we always have to consider a trade-off
between the complexity of the model (i.e., amount of parameters) and its applicabil-
ity for financial modeling. A sophisticated multivariate GARCH specification might
have the capability to capture all the phenomenons in the underlying multivariate time
series, but if there may not exist an estimation procedure to fit the model to data, the
model is not applicable. On the other hand, if the model has a too parsimonious para-
metrization, we can fit it easily to data but it might be worthless since it does not model
the data appropriately.

Additional important properties of multivariate GARCH models are if the defini-
tion of the model ensures the positive definiteness of the conditional covariance matrix,
the covariance stationarity of the process and the invariance of the model under linear
transformation. A positive definite conditional covariance matrix can be achieved in
most models, whereas the covariance stationarity is difficult to derive. For practical
purposes, the former property is more important because we require a positive defi-
nite covariance matrix for the Cholesky decomposition in the definition of MGARCH
processes.

At the end of this section we describe how to integrate MGARCH models into fac-
tor models. This is an important issue in risk management since it is still not possible
to model all risk factors of a large portfolio in one MGARCH model. Instead, we have
to identify the common underlying risk factors of the portfolio and thoroughly model
them by an MGARCH process.

But before beginning with an historical overview of the most common MGARCH
models, we present the basic definitions and properties of this model class.

3.1 Basic Definitions and Properties

Consider a d-dimensional multivariate time series (X;);cz defined on some probability
space (€2, F, P). We assume for the rest that (X;).cz is always a d-dimensional time
series. We denote with 7, = o4({X; : s < t}) the sigma field generated by the past
and present values of the time series (X;):cz. Based on the efficient market hypothesis
(see Fama (1991)) the sigma field F; can be interpreted as representing the publicly
available information at time ¢. Furthermore, we refer to

Ht = Et—l(Xt) = E(Xt’}-t—l)
as the conditional mean and to
Vart—l(Xt) = E((Xt — ) (X — ,Ut)/‘ft—l)

as the conditional covariance matrix. The conditional covariance matrix 1 is defined
by

P =P(%) = AZ) T ISA )

2Detailed surveys about multivariate GARCH models can be found in Bauwens, Laurent, and Rom-
bouts (2006) and McNeil, Frey, and Embrechts (2005).
%See Hamilton (1994) for a discussion of the Cholesky decomposition.



where the operator P(.) extracts the correlation matrix from the covariance matrix and
the operator A satisfies

A(E) = diag(y/aT1, - v/Faa)-

A d-dimensional time series (Z;):cz is called multivariate strict white noise, denoted
by SNW(y,X2), if it is a series of independent elliptically distributed random vectors
with mean . and covariance matrix 3.

Definition 3. A process (X;);cz has a multivariate martingale difference property
with respect to thefiltration (F;)cz if it satisfies

E|X;| < oo and E(Xy|Fi—1) =0,
for all t € Z.

The martingale difference property corresponds to the stylized fact about daily
financial return series that conditional expected returns are close to zero* We will see
below that a multivariate GARCH process fulfills this property.

Further important properties of multivariate time series can be captured by the
following definitions.

Definition 4. The multivariate time series (X;).cz is strictly stationary if

d
(Xz‘{p"'vXén) = ( 1,{1+k:v "'7X1,{n+k:)v
for all t,...,t,, k € Z and for all n € N.

Definition 5. The multivariate time series (X} )cz is covariance stationary if the first
two moments exist and satisfy

BE(Xy) = pt)=p, telZ
COV(Xt,XS) = COV(Xt+k,XS+]€) t,S,k S Z.
Definitions 4 and 5 formalize the notion that the behavior of a time series is similar
in any epoch in which we might observe it. Systematic changes in mean, variance or

covariances between equally spaces observation are inconsistent with stationarity.
We turn now our attention to the definition of a multivariate GARCH process.

Definition 6. Let (Z;):cz be SWN(0, Id). The process (X ):cz is said to be a multi-
variate GARCH process if it is strictly stationary and satisfies equations of the form

X, =%"%7, tez,

where ¥1/2 is the Cholesky factor of a positive-definite matrix ¥ which isH measur-
able with respect to 7 1.

“For a more detail treatment of this topic see McNeil, Frey, and Embrechts (2005).



The most important property about multivariate GARCH models is that the con-
ditional covariance ¥; is measurable with respect to /_;. This means that the co-
variance matrix of tomorrow’s asset returns is known today. Note that in contrast to
the definition of univariate GARCH processes, there is no functional specification of
> in Definition 6. The functional form will depend on the specific model we de-
fine. Because of missing specification we cannot derive the general conditions that are
necessary or sufficient for covariance stationarity of a multivariate GARCH process.

It is an immediate conclusion that any pure MGARCH process (X;):cz has the
martingale difference property, since we have

E(X,|F) = E(2)* 2, Fi1) = ©V*E(Z,) = 0.

Furthermore, X; is the conditional covariance matrix of any MGARCH process, since
we have

Var, 1(X) = B(X,X{|Fi1) = S B(Z2)(57) = 27 (207) = %0

In particular, in the context of MGARCH models we use ¥ interchangeably with
conditional covariance Var(X;|F;_1).

Proposition 1. Let (X;);cz be a multivariate GARCH process with conditional co-
variance matrix process (3;);cz. Then the univariate process (¢ X;);cz has a condi-
tional variance process (¢'X.a)cz that is conditioned on the filtration (% ).cz for all
a € R%

Proof.
Var;_1(a'X;) = Var(a' Xy|Fi—1) = o/ Var(Xy|Fi—1)a = a'Ya,
forall a € R4, O

As in the univariate case, one can extend the definition of an multivariate GARCH
process to a VARMA-GARCH process satisfying equations of the form
Xt = pe + Z%/zzt,
where (X; — )iz follows a MGARCH process and (1 ):cz @8 VARMA process (see
Hamilton (1994)). But such as in the univariate case volatility effects are much more

important than mean effects with respect to daily return series. Because of this and the
notational ease, we do not model the conditional mean process (i ):cz in this paper.

3.2 MGARCH Models- an Historical Overview

Multivariate GARCH models were introduced by Bollerslev, Engle, and Wooldridge
(1988) in the familiar half-vec (vech) form, providing a general framework for mul-
tivariate volatility models. In their paper they suggest the vector GARCH or VEC
model.



Definition 7. The process (X;):cz is a VEC process if it has the general structure
given in Definition 6, and the dynamics of the conditional covariance matrix >; are
given by the equations

q
vech X = ag —I—ZA vech (X;—; X]_;) Z i vech(X:_;)
=1 j=1

for ap € RU*1/2 and matrices A; and B; in R(A(d+1)/2)x(d(d+1)/2)

The operator vech in Definition 7 stacks the columns of the lower triangle of a
symmetric matrix in a single column vector of the length d(d + 1)/2. In this gen-
eral definition each element of 3 is a linear function of the lagged squared errors and
cross-products of errors and the values of the lagged conditional covariance matrices.
The fully unrestricted VEC model requires O(d*) parameters to be estimated by max-
imum likelihood, where d denotes the dimension of the underlying multivariate time
series. The VEC model is certainly the most general MGARCH model, but it has too
many parameters for practical purposes and is only of theoretical interest. It is also
difficult to ensure the positive definiteness of the conditional covariance matrix. In or-
der to overcome the drawbacks of the VEC model, Bollerslev, Engle, and Wooldbridge
proposed the diagonal VEC or DVEC model in the same paper. The DVEC model is
essential in the VEC model, but with the additional restriction that the matrices 4; and
Bj in Definition 7 have to be diagonal. The DVEC model can be formulated elegantly
in terms of the Hadamard product, denoted o, which signifies element-by-element
multiplication of two matrices of the same size.

Definition 8. The process (X} ).cz is called DVEC process if it has the general struc-
ture given in Definition 6 and satisfies equations of the form

p q
Y = A + Z Ajo (XX )+ Z BjoY:
=1 =

where Ay, A; and B; are symmetric matricesin R%*? gych that A, has positive diag-
onal elements and all others matrices have non-negative diagonal elements.

The conditional covariance matrix > is a linear combination of own lagged squared
errors and cross-products of errors. The advantage of the model compared to former
ones is that only O(d?) parameters needed to be estimated by maximum likelihood.
Furthermore, because of the Hadamard representation of the model it is easy to guar-
antee that X, is positive definite for all ¢: Provided that Ay, A;, B; and the initial
covariance matrix X, are positive definite for all ¢ Attansio (1991) showed that 3} is
positive definite for all ¢. Certainly, a disadvantage of the DVEC specification is that,
in contrast to the VEC model, the volatility of a single component series cannot be
affected directly by large lagged values in other time series. It should be mentioned
that the DVEC model is still highly parameterized and large-scale systems are difficult
to estimate in practice.

Bollerslev (1990) proposed the constant conditional correlation (CCC) multivari-
ate GARCH specification. The CCC-GARCH model is the simplest representative of
the class of MGARCH processes, where the marginals and the dependence structure



of the multivariate time series are modeled separately. In this class, the marginals are
modeled by univariate GARCH processes, whereas the dependence structure is defined
model specific. In the case of the CCC-GARCH model, the dependence structure is
captured by a constant correlation matrix leading to the following definition.

Definition 9. The process (X;).cz is called a CCC-GARCH process if it is a process
with the general structure given in Definition 6. The conditional covariance matrix is
of the form A, P.A;, where

(i) P.isaconstant, positive definite correlation matrix; and

(i) A isadiagonal volatility matrix with elements o; ;. satisfying

Pk qk
2 2 2
oty =k + > o Xi ikt Broi g k=1,...d, (1)
i=1 j=1

where agg > 0, ag; > 0,7 =1, veey Dk ﬁkzj >0,7=1,...,q.

It is easy to show that the design of the models guarantees a positive definite con-
ditional covariance matrix. Because of the separation of the marginals and the depen-
dence structure, an efficient two-step estimation procedure is available. In the first step
we fit univariate GARCH models to the marginals and in the second step we use the
devolatized residuals ¥; = A~1X;, to estimate the constant correlation matrix P.. This
approach has the advantage that it opens the door to modeling large-scale systems. On
the other hand, the model has a very parsimonious specification and the assumption
of constant correlation may seem to be questionable in empirical work. In particular,
Tsui and Yu (1999) have found that constant correlation can be rejected for certain
multivariate time series. However, the CCC-GARCH model is more popular in the
financial industry than the models described before and because of its simplicity it is a
good starting point for MGARCH modeling.

The BEKK model of Baba, Engle, Kroner and Kraft was published in Engle and
Kroner (1995). The model was also named after the two other authors who co-authored
an earlier unpublished manuscript.

Definition 10. The process (X;):cz isa BEKK process if it has the general structure
given in Definition 6 and if the conditional covariance matrix >3 follows the specifica-
tion

K »p K q
Se=Ao+ Y > AL Xe i X[ Api+ > BiiSi—Bj,
k=1 i=1 k=1i=1

wheret € Z, all matrices Ay, ; and By j arein R4 and A, is symmetric and positive
definite.

The advantage of the model is that it guarantees the positivity of the conditional
covariance matrix X; without imposing further restrictions. This is because of the gen-
eral quadratic structure of the model. One can show that the BEKK model is a special
case of the VEC model. The parameter K determines the generality of the process and
one can show that the BEKK model covers all DVEC models. In practical applications

10



the parameter K equals 1; even in this case the model is difficult to fit to data and it is
rarely used in dimension larger than 3 or 4. In the most common version of the BEKK
model O(d?) parameters have to be estimated. Certainly, a further disadvantage of the
model is that the exact interpretation of the individual parameters is not obvious.

Ding (1994) described the principal component GARCH (PC-GARCH) model for
the first time. This model was extensively investigated by Alexander (2002) under the
name orthogonal GARCH.

Definition 11. The process (X} )z follows a PC-GARCH model if it has the general
structure of the process described in Definition 6 and if there exists some orthogonal
matrix ' € R with I'T” = T'T" = Id such that (T" X} );cz follows a pure diagonal
GARCH model. The conditional covariance matrix ¥, satisfies for all ¢

¥, =TAILY,
where A, is defined as in Definition 9.

It can be seen that the model ensures a positive definite covariance matrix >; for
all ¢ without imposing further constrains. The strength of this approach is its simplic-
ity and the possibility for dimensionality reduction. The model allows the estimation
of large conditional covariance matrices since we have a straightforward estimation
technique: In the first step we estimate the sample covariance matrix and by using
the Spectral Decomposition Theorem, we calculate the sample principal components.
In a second step we fit univariate GARCH models to the principal components. Fur-
thermore, if certain components do not contribute much to the variability of the whole
system, they can be neglected, leading to a dimensionality reduction. As Alexander
(2002) stresses, the strength of the approach relies on modeling highly correlated sys-
tems such as the term structure of commaodities futures or interest rates, where only
a few principal components capture the behavior of the underlying multivariate time
series. On the other hand, the simplicity of the model permits only a very limited
evolution of the time series (%;):cz. If we have in mind that there is a one-to-one cor-
respondence between a covariance matrix and an ellipsoid, we can visualize the evo-
lution of (X;);ez: The corresponding ellipsoid can only be diluted and edged along
its principal components, a rotation of the ellipsoid is not possible. As a result, the
model only works well in those time series where the directions of the components
do not vary over time since the principal components vary their directions over time.
This is why the model reveals its weakness in modeling conditional correlation of asset
returns.

In 1996 RiskMetrics suggested the exponentially weighted moving average scheme
for modeling the conditional covariance matrix in RiskMetrics (1996).

Definition 12. The process (X;).cz IS an exponentially weighted moving average
(EWMA) processif it isa VEC process satisfying the updating scheme

Ye=(1-NX; 1 X[ + A2,
or equivalent,

t—1
Se=(1-)) Y XiX],

1=—00

11



for all ¢.

The RiskMetrics model is widely used in industry, especially for portfolio VaR and
is now considered to be an industry standard for market risk. The primary advantage of
the RiskMetrics model is that it is extremely easy to estimate, since it has no parameters
to be estimated. RiskMetrics suggested the smoothing factor \ to be 0.94 for daily
log-returns and A = 0.97 for monthly log-returns based on extensive data analysis in
various markets and countries. Since in practice we use only the last M observations,
we have to rescale the updating scheme in Definition 12, leading to

1-) &, ,
St = T > ONX X,
i=1
The obvious drawback of the model is that it has no estimated parameters, and that it
forces all assets to have the same decay coefficient irrespective of the asset type. It
is necessary to assume the same decay coefficient for all assets to guarantee a posi-
tive definite conditional covariance matrix. The EWMA model of RiskMetrics can be
regarded as the benchmark model that all other MGARCH models have to outperform.
As mentioned earlier, the assumption of constant correlation in the CCC-GARCH
model seems unrealistic in empirical application. Christodoulakis and Satchell (2002),
Engle and Sheppard (2001), and Tse and Tsui (2002) suggest a generalization of the
CCC-GARCH model the so-called dynamic conditional correlation (DCC) model.
There are different versions of the DCC model, the two most common being those
of Tse and Tsui (2002), denoted DCCr, and the one of Engle (2002), denoted DCC:.

Definition 13. The process (X} ):cz isa DCCr-GARCH process if it is a process with
the general structure given in Definition 6. The conditional covariance matrix is of
the form 3; = A;P.A,. The volatility matrix A, is defined as in Definition 9 and E.
satisfies

Po=(1—-a—-p)P.+a¥; 1+ [P 2

wherea > 0,3 > 0and o + 3 < 1, P. € R%™4 s a positive definite matrix
and ¥, ; € R isthe correlation matrix of (Y;_1,...,Y;_as), where (Y;)iez =
(A7 X) ez isthe devolatized process.

Definition 14. The process (X;)cz isa DCCg-GARCH processiif it has the structure
of the process given in Definition 13, but £ satisfies

p q p q
P=P@Q)andQ;=(1-Y oi—> B)Qc+ Y oV +> BiQi; (3)
i=1

=1 1=1 7j=1

for all ¢, where Q). is the unconditional covariance matrix of thetime series (¥))icz =
(A; "' X¢)1ez and the coefficients satisfy i > 0, 8; > 0and Y7, ai+ 321, B < 1.

The two versions of the DCC-GARCH model permit estimating large conditional
covariance matrices since we have the same two-step estimation procedure as in the
CCC-GARCH model. The chief difference is that the dependence structure is modeled
by a time dependent correlation matrix which is defined by equation (2) and equation

12



(3), respectively. In particular, we can divide the second step into sub-steps. In the first
sub-step, we estimate the matrices F. and (). and in the second sub-step we estimate
the scalars « and 5 and o; and 3;, respectively. The DCC-GARCH model guarantees
the positive definiteness of the sample covariance matrix without imposing further
constraints. Since in the DCCr model P., ¥;_;, and P;_; are positive definite, so is
P, and since in the DCCg model Q.,Y;—;Y, , and Q;—;, so is Q; and P.. If we set
a = = a; = B; = 0 we observe that the DCCy and the DCCg reduce to the CCC-
GARCH model. It can be tested if « = 3 = 0 and o; = 3; = 0 in order to check
whether imposing constant correlation is empirically relevant. Certainly, a drawback
of the DCC model is that « and 3 in the DCCy model and «; and 3; in the DCCg
model are scalars instead of matrices. Hence, all entries of the conditional correlation
matrix are influenced by the same coefficients which might not be realistic in empirical
work. However, these conditions are necessary in order to maintain the positivity of
the conditional correlation matrix. In the literature there are extensions of the DCC-
GARCH model to overcome the scalar problem. For a further discussion see Billio et
al. (2003), Engle (2002) and Pelletier (2003).

Patton (2000) and Jondeau and Rockinger (2001) were the first to propose a copula-
factor model. These models are specified in such a way that the marginals follow
GARCH processes and their time varying dependence structure is modeled by a cop-
ula. The following definition formalizes this class of processes.

Definition 15. The process (X} ):cz is a copula-GARCH model iff it is a process sat-
isfying
(i) themarginals (X; 1)z, k = 1, ..., d, follow a GARCH(py, g;;) process;

(i) the dependence structure of the marginals is modeled by a copula
C(ulv CEES) ud‘Rt)v

where R isthe parameter set defining the copula C and R; follows an updating
scheme R; = f(thl, Xi_o, ),

(iii) the conditional distribution is given by

Xi|Fi1 = C(F);t%l|}'t71(Xt,k)7 - F);tl,dlftfl(Xtd)‘Rt).

Note that R, is measurable with respect to F_; and time varying. Patton and Jon-
deau and Rockinger highlighted in both papers the need to allow for a time-variation in
the conditional copula function. The copula function is rendered time varying through
its parameters, which can be functions of past data. The copula-MGARCH model can
be viewed as an extension of the CCC and DCC-GARCH model.

In Table 1° we show an overview of the number of parameters used in the models
presented in this section. The VEC, BEKK and DVEC models are only applied in low
dimensions (d < 10) and the VEC is purely of theoretical interest. The CCC-, DCC-
and PC-GARCH models are implemented in dimensions larger than 10 in the financial
industry.

*Table 1 is adopted from McNeil, Frey, and Embrechts (2005).
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Model Parameter count >10 2 5 10
VEC d(d+1)(1+(p+q)d(d+1)/2)/2 No 21 465 6105

BEKK d(d+1)/2 + Kd*(p+q) No 11 65 255
DVEC d(d+1)/2(14+p+q) No 9 45 165
ccc d(d+1)/2 +d(p + q) Yes 7 25 77
DCCr d(d+1)/2+2+d(p+q) Yes 9 27 77
DCCe dd+1)/2+ (p+q)(d+1) Yes 9 27 77
PC dld+1)/24 (p+q)d Yes 7 25 75
EWMA d(d+1)/2 Yes 3 15 55

Table 1: Summary of numbers of parameters in various multivariate GARCH models:
in the CCC, DCCt and DCCg it is assumed that the numbers of GARCH terms are
p and ¢; in the DCCy we assume that the conditional correlation matrix has 2 para-
meters and in the DCCg we suppose that the conditional correlation matrix has p + ¢
parameters. The second column gives the general formula. The final columns give the
numbers for models of dimensions 2,5, and 10 when p = g = 1.

3.3 Factor Modelingwith MGARCH Models

The material presented in this section follows McNeil, Frey, and Embrechts (2005).
It is still not recommended to model all financial risk factors with general multivari-
ate GARCH models. Rather, these models have to be combined with factor-model
strategies to reduce the overall dimension of the time series modeling problem.

A fundamental consideration is whether factors are identified a priori and treated
as exogenous variables, or whether they are treated as endogenous variables and sta-
tistical factors manufactured from the observed data.

Suppose we adopt the former approach and identify a small number of common
factors F; to explain the variation in many equity returns X;. These common factors
can be modeled by multivariate GARCH models. The dependence of the individual
returns on the factor returns can then be modeled by calibrating a factor model of the

type
Xi=a+BF,+e t=1,...,n.

We assume then that, conditional on the factors £, the errors form a multivariate white
noise process with GARCH volatility structure.

The latter approach is based on a linear transformation of the equity returns X; to
define factors

Ft - (Ft,lv"'aFt,k),:FIIXtv

where T'; € R®* and k << d. The factors £, can be modeled by a transformation
invariant multivariate GARCH model and should explain most of the variability of the
equity returns X;. This approach leads to a factor model of the form

Xt = FlFt +€t7 t = 1,...,7’L,

where the error term is usually ignored in practice.
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4 Composed and Factor Composed MGARCH Models

For high dimensional multivariate GARCH modeling it is indispensable that the model
definition permits an efficient estimation procedure. In the previous section we have
seen that only those models that allow for a multi-step estimation procedure can be
applied in higher dimensions (d > 10). For example, the specification of the CCC-,
DCC-, and copula-GARCH model admits a two-step estimation procedure to esti-
mate the dynamics of the marginals and the temporal dependence structure separately.
Similar, in the PC-GARCH model the temporal dependence structure is captured by
modeling the principal components of the unconditional covariance matrix through
univariate GARCH processes. In addition, since we are interested in statistical factor
modeling it is essential that the presented models are invariant under linear transforma-
tion. In this section we show that composed and factor composed MGARCH models
exhibit the invariance property and allow for two-step estimation procedures.

4.1 Definitionsand Properties

The key idea behind the specification of the composed and factor composed MGARCH
model introduced in this section is to identify the temporal dependence structure of the
multivariate time series (X} ):cz through linear combinations of this time series. These
linear combinations are modeled by univariate GARCH processes. In a second step the
dependence structure is reconstructed by solving an optimization problem. But before
defining these two models, we have to introduce additional notions.

We assume in the following that all processes (X;):cz exhibit unconditional and
conditional second moments. Let (X;).cz be a d- dimensional process and we denote
by Fi(a) = o({a’Xs : s < t}) the sigma field generated by the past and present
values of the univariate time series (¢ X;)iez. If (a’X¢)iez follows a GARCH(p, )
process, we write o7 (a) for the conditional variance Var(d' X;|F;_1(a)).

The sigma field F; (defined in Section 3) includes more information than % (a). It
is important to note that mathematically

Var(a' X¢|Fi—1) = Var(a' X;| Fr—1(a)) 4)

is not true since we are dealing with different sigma fields.

But we reasonable assume that equation (4) holds for many multivariate financial
return series at least approximately. In the univariate case, we know that GARCH
models based on the filtration F(e;) have been successfully applied in volatility fore-
casting, implying immediately

Var(e;X;|Fi—1) = e;Xie; = op ~ Var(e; Xy|Fi_1(e;))
p q
= a+ Z X7+ Zﬁjaz?fj,i' Q)
=1 =1

Hence, equation (5) justifies equation (4) for the marginals, i.e. a = ¢,i = 1,...,d,
from an empirical point of view. Another argument as to why equation (4) holds
is the efficient market hypothesis (see Fama (1991)) which asserts that all relevant
information of an asset is represented by the past and present values of the time series
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(Xt,i)tez- Hence, we obtain
Var(e, X¢|Fi—1) = Var(e,Xi|F—1(e;)).

Concerning non-trivial linear combinations of multivariate financial time series,
we observe that a very widespread and successfully applied technique in the risk man-
agement of large portfolios is to take the current weights w; € R?, where d denotes
the number of assets in the portfolio, and to generate univariate time series (1} X;):cz
from the portfolio’s log-returns (X;);cz. Then a univariate GARCH process is fitted
to the time series (w}, X¢)iez. The success of this technique is based on the empirical
fact that we have at least approximately

Var(w, X¢| Fr—1) = wiSiwy ~ J?(’U)t) = Var(w; X¢| Fy—1(wy))

p q
= a0+ Y (W Xi i)+ Bior(wr),

i=1 j=1

where w, € R?. This consideration is evidence for equation (4).
In contrast to the marginals, it is at least not immediately clear how to justify

Var(a' X¢|Fi—1) = Var(a' X;| Fi—1(a))

with the efficient market hypothesis, since (¢ X;):cz is an artificial time series that is
not observable and traded in financial markets.
These semi-theoretical considerations are summed up in the following definitions.

Definition 16. A multivariate time series (X;):cz IS projection-efficient if it satisfies

d
adXe|Fror = d Xyl Fi-a(a), (6)

forall t € Z and a € R%.

Note that the last definition implies

Var(a’' X¢|Fi—1(a)) = Var(a' X¢|F;—1) = a/Sqa.

The next definition tells us how to model Var(d X¢|F;—1).
Definition 17. Amultivariate timeseries (X;)cz iscalled GARCH-projection-efficient
if it is projection-efficient and satisfies

p q
Var(a/ Xy Fi1) = a0+ Y ai(a' Xo—3)* + ) Bjof ;(a),
i=1 j=1

forall t € Z and a € R%.

The notion of projection-efficient is derived from the efficient market hypothesis in
the sense that all information about the projective time series (d X;):ez included in the
sigma algebra F;_1 equals the information in the sigma algebra %1 (a). Furthermore,
the term GARCH-projection-efficient stresses that all information about the volatility
a’ Xy is captured by F;_1(a) and can be modeled by a univariate GARCH(p, ¢) process.
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In particular, a GARCH-projection-efficient time series (X;).cz has the property that
the variance of o’ X;|F;_1(a) can be modeled by a GARCH process. Due to the con-
sideration above there should be many multivariate financial time series which are at
least approximately projection-efficient and GARCH-projection efficient. It is now
straightforward and consistent to define the following multivariate GARCH process.

Definition 18. The process (X;);cz follows a composed MGARCH (CMGARCH)
process if it is a process with the general structure given in Definition 6 and the con-
ditional matrix ¥, = (o} ;;)satisfies

(i) (07} )tez follows a univariate GARCH(py,qx) processfor k =1, ..., d.

(i) Foralli,j=1,...,d,1i+# j wehave
1
Otij = Z(Uf(ez‘ +e;) —oplei —ej)),

where (o7 (e; +¢;))tez and o7 (e; — ¢;) ez follow univariate GARCH(pf, ¢;5)

and GARCH(pZ.‘j, qi;) processes, respectively.
The composed MGARCH model does not impose any explicit functional form
of the conditional covariance matrix > such as the other models in Section 3. We
only have to assume that (X;);cz follows a multivariate GARCH process which is

GARCH-projection-efficient in order to be consistent. This idea is formalized in the
next theorem.

Theorem 2. Let (X;);cz be a GARCH-projection-efficient MGARCH process with
conditional covariance time series (X ):cz, then (X;):cz can be modeled by a com-
posed MGARCH process.

Proof. Leti,j = 1,...,d, then we have
orij = Cov(Xyi, Xej|Fi-1)

= BE((Xti — p,i)(Xej — pag) | Fe-1)

1
= ({0 X = it 1))

1
—Z(Xt,z‘ = Xpj— (i — Mt,j))Q)!}"t—1>

1
= 1 B((Xei + Xy — (uea + pit )2 Fi-1)
1
_ZE((X“ — Xuj — (i — p5))*) | Feet)
(Var((e; + ej)/Xt]}"t_l) — Var((e; — ej)’Xt\}'t_l))

(Var((e; + ;) X¢|Fi1(ei + ;) — Var((e; — e;)' X¢| Fr1(ei — €5)))

—_
*
N

el N B e N

= Z(O‘?(ez + ej) — U?(ei - ej))

(*) holds in the last equation, since the process is projection-efficient. In particular,
(02(ei + ¢€j))iez and (07 (e; — e;))iez follow GARCH processes, since (X;)ez is
GARCH-projection-efficient. The same arguments hold also for diagonal entries 4 ;;
of X;. O
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The property GARCH-projection-efficient is essential for CMGARCH processes
since it determines the class of processes that can be modeled by them. In contrast to
many applied MGARCH models, we have a motivation for the CMGARCH models®
The CMGARCH model resembles the PC-GARCH (see Definition 11) in the sense
that we use linear combinations of the multivariate time series (X;).cz to model the
conditional covariance matrix X; and hence, the temporal dependence structure. But
in the CMGARCH approach we extend this idea to a new level, since the conditional
covariance matrix is determined solely by univariate processes, which is not the case in
the PC-GARCH model. In contrast to most of the other multivariate GARCH models
we reviewed in Section 3 we can easily derive sufficient conditions for the covariance-
stationarity of a CMGARCH model.

Theorem 3. Let the time series (X})cz follow a composed MGARCH process. The
process is covariance stationary if all GARCH processes (a7, )iez, (07 (€i + €;))tez
and (o7 (e; — €;))tez are covariance stationary, or equivalently, if the coefficients of
the GARCH processes (Xy;)tez, (i + €;)' Xt))tez and ((e; — e;)' Xt)tez satisfy

pi ai
Sa + 3 80 < 1,
k=1 k=1

P a;;
Zagj” + Zﬂ,(fj“ < 1, and
k=1 k=1
P 49i;

Sl e <t
k=1 k=1
forali,j=1,....d.
Proof. Since (ot ;):cz is covariance stationary, we obtain

E(Xt22) = E(Utz,z'Zf) = E(Jz?,i) =0}

7

for 1 =1,...,d. Furthermore, for the unconditional covariances we have

E(Xy;Xy;) = E(Cov(Xyi, Xij|Fi1))
= E(o4)
— E(i(af(ei +e;)) — oi(e; — ¢j))
_ gE(ag(ei +e;)) — E(02(e; — ¢;))
- %(02(% +ej) —o’(ei —¢j))

forall i, = 1,...,d. In particular, we have o;; = F(X;;X; ;) forall t € Z. Since
(X¢)tez is amultivariate martingale difference with finite, non-time-dependent second
moments o5, 4, j = 1,...,d, it is covariance-stationary white noise. O

8See the arguments leading to Definitions 16 and 17.
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One further important property of a multivariate GARCH model is the invariance
of the model with respect to linear combinations, that is, the times series (¥);cz =
(FX})sez belongs to the same model class, where F' € RF*4, If (X;);cz is a time
series of asset returns, a linear transformation (F'X;);cz corresponds to new assets
(portfolios combining the original assets). It seems sensible that a model should be
invariant, otherwise the question arises as to which basic assets should be modeled.
This aspect becomes very important when we are interested in statistical factor mod-
eling in order to reduce the dimensionality of the portfolio. Statistical risk factors
are linear combinations of the underlying assets. Modeling the factors and the assets,
respectively, should lead to the same results.

Theorem 4. Let (X;);cz follow a GARCH-projection-efficient CMGARCH process.
Then the CMGARCH process isinvariant under linear transformation, i.e., the process
(Yy)tez = (FXy)iez follows a CMGARCH process in terms of (G; ).z and

Var(Y;|Fy_1) = FE F' = Var(Y;|Gi—1), )
where F € R¥*4 | ¢ N, and G; isthe sigma field generated by o({Y; : s < t}).

Proof. Note, that we have G, C F; for all t € Z. First we show equation (7).

1
Cov(Yes YijlGi-1) = 7 (Var((ei +¢;)'VilGr1) — Var((e; — €))Yi|Ge-1))

= (E(((ei + )Y IGi) ~(Bl(ei + ) YilGin))
(1) 2)

~ B({(e = )Yl 1) ~(Bl(ei = ) ¥ildi 1))
) (4)

(8)

Since we have F;((e; + ¢;)'F) C G, C F; we can derive from term (1) in equation
(8) that we have

B(((es + ) Y)?Gm1) = B(E(((es + €)Y Fim1)[Ger)

B(B(((e; + ) Yo\ Feor((es + €5 F))IGi1))

E(((es + ¢ Y| Fir (e + €)' F)

= B(((ei + ) Yol |Ficn). (©)
fi

Analogously, equation (9) holds also for terms (2), (3), and (4) in equation (8). Hence,
we obtain

Cov(Yyi, Y2 j1Gt—1) = i(E(((ei +¢;)'Y1)?| Fio1) — E((ei + €)' Vil Fi1)®
—E(((e; — ¢j)'Y2)*|Fimr) = E((es — €)' Vel Fi1)?)
= (Var((es + ¢ Vil Fios) — Vax((e: — €)Yl Fr 1)
= Cov(Ys, Yy j|Fe-1).
Furthermore, we observe that we have

Cov (Y3, Yij|Fio1) = e;F S Fe;
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and we have proved equation (7). We can derive from equations (8) and (9) that we
have

1
Cov(Yyi, YejlGi-1) = J(Var((e; +¢;)'Vi|Gi1(ei + ¢)))
— Var((e; + ¢;)'Yi|Gi-1(ei — €5))),

where Gi(e; + €j) = Fi((e; + €)' F) and Gy(e; — ej) = Fi((e; — €;)'F). Since the
process (X;)+cz is GARCH-projection-efficient, Var((e; + e;)'Y;|Gi—1(e; + ¢;)) and
Var((e; — €;)'Y:|Gi—1(e; — e;)) follow a GARCH process. Hence, the time series
(Y,)iez is a CMGARCH process. O

Because of Theorem 6 we can consistently define an extension of the composed
multivariate GARCH model what we call the factor composed multivariate GARCH
(FCMGARCH) model.

Definition 19. The process (X;);cz follows a factor composed MGARCH (FCM-
GARCH) process, if there exists some orthogonal matrix I' € R¥*? satisfying I'T' =
Id such that (I" X;).cz follows a composed MGARCH process.

The definition of the factor composed MGARCH model resembles the definition
of the PC-GARCH model. As with the PC-GARCH model we are interested in mod-
eling the principal components (Y;) = (I"X}):cz of the unconditional covariance
matrix Cov(X;). If the multivariate time series (X;):cz is highly correlated, this ap-
proach has the advantage that we can model the system through ¢ << d principal
components appropriately. But in contrast to the PC-GARCH model, the factor com-
posed GARCH model is more flexible because not only are the principal components
modeled by univariate GARCH processes but also the conditional covariance between
these factors. Furthermore, the FCMGARCH model offers the opportunity of reducing
the dimensionality of the estimation problem since the number of parameters needed
to be estimated is proportional to ¢2. This follows from the next proposition.

Proposition 2. Let (X;):cz be a d-dimensional CMGARCH process and the time se-
ries (Xti)iez, ((ei+ej)' Xi)icz and ((e;—e;) Xy )iez follow GARCH(p, ¢) processes,
then we have to estimate (p + ¢ + 1)d* parameters.

Proof. Since the conditional volatility process (o ;i )iez Of (Xt,i)iez follows a
GARCH(p, q) process, we have to estimate 1 + p + ¢ coefficients for one GARCH
process. Since there are d different marginal processes we have to estimate d(1+p+q)
parameters. For each conditional covariance process (o ;j)icz, @ 7# j, We estimate
2(1 + p + ¢) parameters due to the formula

2

1
ovij = 7(0i (ei +¢5) = o (ei — €5)),

fori,j =1,...,d. Since we have
Otij = Otji

we have d(d — 1)/2 different conditional covariance processes. Hence we have to
estimate d(d — 1)(1 + p + ¢) parameters for the conditional covariance processes
(0t,ij)tez. In conclusion, we estimate (1 + p + ¢)d* parameters. O
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In many financial applications, it is sufficient to use a GARCH(1, 1) to model the
linear combinations. In the case of a d-dimensional CMGARCH process (X;)¢cz, we
have to estimate 3d” coefficients. In the CMGARCH model, we have to estimate more
parameters than in the CCC-GARCH, DCC-GARCH or the PC-GARCH model as
can be seen from Table 1. But we stress, that the CMGARCH model is more flexible
than these models since we do not have a restrictive functional form which allows
only a very constrained evolution of the conditional covariance process (%;)icz. A
further advantage of this model is that we estimate >} only through univariate GARCH
processes. This approach allows us to circumvent the problem of applying maximum
likelihood estimation in high dimension. As stressed in Alexander (2001), this is the
fundamental problem of multivariate GARCH modeling.

Nevertheless, in multivariate GARCH modeling for large portfolios several re-
searchers such as Alexander (2001) and McNeil, Frey, and Embrechts (2005) recom-
mend a factor model approach in order to reduce the dimensionality of the portfolio.
According to Theorem 6, the FCMGARCH model is consistent with the CMGARCH
and, as mentioned before, is predestinated to model the principal components of the
unconditional covariance matrix Cov(X;).” In addition, in many financial time series
we observe the so-called ”80/20 rule” or "Pareto principle” which says that 20% of
the largest eigenvalues account for 80% of the overall variability. Hence, if we model
20% of the "largest” principal components we can decrease the parameters needed to
be estimated by 96%.

Certainly, a drawback of the CMGARCH model is that its definition does not en-
sure a positive definite conditional covariance matrix 3%, meaning that if the estimation
error of 33, becomes too large the matrix is not necessarily positive definite. In the next
section we present a method to deal with this problem.

4.2 Estimation of the Models

In this section, we introduce two approaches to estimate the CMGARCH and FCM-
GARCH model. The two approaches have in common that in the first step the problem
of estimating the conditional covariance matrix >} is decomposed into n € N simpler
estimation problems. For these estimation problems, efficient solving algorithms are
available. In the following steps we apply these solutions of the n estimation prob-
lems to reconstruct the conditional covariance matrix >3. A similar approach has been
successfully applied to estimate multivariate «-stable sub-Gaussian distributions (see
Nolan (2005) and Kring et al. (2007)).

Since the CMGARCH and FCMGARCH model specification does not guarantee
the positivity of the conditional covariance matrix >3, fortunately, the second pre-
sented estimation procedure ensures a positive definite estimate 3, of the conditional
covariance matrix by applying the Cholesky Decomposition Theorem.

The first estimation approach is immediately derived from the definition of the
CMGARCH process.

(1) Let X4,..., X; be a sequence of return data. Fit univariate GARCH processes
to the projective data sets X ;, ..., Xt ;, where (e; + ¢;)' X1, ..., (e; + €)' Xy

"Due to Theorem 3, we can assume (X;):cz to be covariance stationary.
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and (e; — e;)' X1, ..., (e; —e;)' Xy, 1 < i < j < d. Denote the corresponding
volatility estimates with 67 (e;), 67(e; + ¢;) and 67(e; — e;).

(2) Reconstruct the conditional covariance matrix 3, by

Sii = 62(e),
o Lo N s
Yiij = 4(Ut(€z+61)+0t(€z €5));

or alternatively,

(27) Reconstruct the conditional covariance matrix 3, by

Spi = 07(ed),

Suig = 03e+ej) — 7(e) — 63(ey),
where 1 <i < j <d.

This approach has the advantage that it is computationally straightforward. In step
(1) we have to fit &2 GARCH processes in order to calculate 3 in step (2) and for the
alternative approach we have to fit only d(d+1)/2 GARCH processes in step (1) since
we do not have to estimate 67 (e; — e;) in step (2°). This method has the drawback that
we cannot ensure the positivity of the conditional covariance matrix 3. Hence, we
always have to check whether 3, is positive definite. One way of doing this is to apply
the Spectral Decomposition Theorem.

If all eigenvalues are positive, then 3, is positive definite.

The second estimation approach is called the regression approach since we recon-
struct the conditional covariance matrix >, using a regression.

(1) Let X4,..., X; be a sequence of return data. Fit univariate GARCH processes
to the projective time series X1, ..., u, Xy, where u; € Rand i = 1,...,n.
Denote the volatility estimates with 62 (u;), i = 1, ..., n.

(2) Reconstruct the conditional covariance matrix by

n

21(52) = argmil’lzesdxd Z(U{LEU’L - Jt2 (ui))2’

=1
where 94 = [3|¥ € R™*4 3 = 3},

The regression approach may be more accurate than the former approach because it
uses multiple directions, whereas the first method only uses the directions ¢, e, e; +¢;
and e; — e;. In addition, this approach allows for more flexibility since the directions
u; are not predefined and their number n is also variable. For example, it might be
better to model the principal components Y;, i = 1,...,d of the sample covariance
matrix X and their linear combinations than the marginals in order to estimateit. Or,
one might increase the accuracy of the estimate for >} by increasing the number of
directions. But still, so far we cannot ensure 29 to be positive definite. We overcome
this drawback through an additional step (3).
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(3) In case det(2?) > 0, set
5 =5,

Otherwise reconstruct the conditional covariance matrixigg) by
n

Ay = argminpep, Z(ugAA'ui — &2(uy))?, and
i=1

50— AA

where Dy = {A|A € R**? A regular upper triangular matrix}. Finally set
5 =5,

Due to the Cholesky Decomposition Theorem, the optimization problem in step
(3) is equivalent to
n
3 = argming 2 Z(u;Zuz — 67 (u))?
=1
where Dfl is the set of all positive definite d x d matrices. Hence, the conditional step

(3) guarantees 3, to be positive definite. While the optimization problem in step (3)

is computationally much more involved than in the one in step (2F, it is important to
note that if 3\ is positive definite then % equals (%,

It is straightforward to show that (* = A, A/ is positive definite, since we have

u/itu = U/AtAQU
= ||Afulf?
> 0,

forall w € R*\ {0} and A; € D,.

5 «a-Stable Composed and Factor Composed MGARCH Mod-
els

51 «a-Stable Power-GARCH Processes

It is often observed when fitting GARCH models to financial time series that univariate
GARCH residuals tend to be heavy tailed. To accommodate this, GARCH models
with heavier conditional innovation distributions than those of the normal have been
proposed, among them the Student’s t and the Generalized Hyperbolic Distribution.
To allow for heavy-tailed, conditional distributions, GARCH processes with a-stable
error distributions have been considered by McCulloch (1985), Panorska, Mittnik, and
Rachev (1995), Mittnik, Paolella, and Rachev (1998), Rachev and Mittnik (2000),
among others.

8The optimization problem in step (2) can be solved by OLS regression.
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An objection against the use of the «-stable distribution is that it has no second
moments. This seems to contradict empirical studies suggesting the existence of third
or fourth moments for various financial return data. But as Mittnik, Paolella, and
Rachev (2002) stressed, these findings had been almost exclusively obtained by the use
of the Hill (1975) or related tail estimators, which are known to be highly unreliable.

In this section, we present «-stable power-GARCH processes which were orig-
inally introduced by Rachev and Mittnik (2000) and Mittnik, Paolella, and Rachev
(2002).

Definition 20. An univariate process (X;).cz is called an a-stable Paretian power-
GARCH process, in short, an S, 3 ;§GARCH(r, s) process, if it is described by

Xt = py + 042y, where Z, ~ S, (1, 3,0), (10)

and

P q
5 s 5
o, = Qo+ E | Xy—i — p—i]® + E Bjoi—js

i—1 j=1

whereay > 0,0, > 0,0 =1,...,r,3; >0, =1,...,¢,0 < d < aand S,(1, 3,0)
denotes the a-stable distribution with tail index o € (1, 2], skewness parameter 3 €
[—1,1], zero location parameter and unit scale parameter. The location parameter
process (1 )iez in (10) follows an ARMA process.

Since for « < 2 Z; in Definition 20 does not possess moments of order « or higher,
we restrict o to be in the set (1, 2] in order to possess first moments?® This restriction
is consistent with financial return data (see among others Hochstotter, Rachev, and
Fabozzi (2005) and Rachev and Mittnik (2000)), where we observe « to be in the same
range. Furthermore, it is important to note, that o; is just a time-varying scaling para-
meter, implying o0, Z;|Fi—1 ~ Sa(0y, 04(3,0). Hence, in an a-stable power-GARCH
process we forecast the scale parameter of the a-stable innovation distribution.

Mittnik, Paolella, and Rachev (2002) show the following proposition.

Proposition 3. The S, 3 ;GARCH process has unique, strictly stationary solution if
p q
Nags P i+ B <1, (11)
i=1 j=1

where A\ 5.6 = E(|Z:|°) and Z; ~ S,(1, 3,0).
Proposition 3 allows us to guarantee a unique, strictly stationary solution of

Sa,3,5GARCH process by imposing equation (11) during estimation.

5.2 A Multivariate a-stable GARCH M odéel

In this section, we propose an «-stable version of the composed and factor composed
MGARCH models, allowing similar estimation procedures as in the ordinary versions

%See Samorodnitsky and Taqqu (1994) for the existence of moments of an a-stable random variable.
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of these processes. In particular, we are dealing with processes with a-stable inno-
vation we believe, according to Rachev and Mittnik (2000), that these are the funda-
mental "building blocks” that drive asset return processes. But the main problem we
face in defining an a-stable MGARCH model with multivariate «-stable innovations
is that we do not possess second moments and the conditional covariance matrix or any
covariance matrix are not defined. 1 We overcome this problem by choosing the a-
stable sub-Gaussian distribution for the innovations. In this particular case, we obtain
a substitute for the covariance matrix, the so-called dispersion matrix. The dispersion
matrix has the same interpretation in terms of the scaling properties of the distribution
(see Samorodnitsky and Tagqqu (1994) and Kring et al. (2007) for a discussion of this
issue). But before defining these processes, we have to introduce additional notions.

Definition 21. (Z;).cz is multivariate a-stable strict white noise if it is a series of
independent and identically distributed a-stable sub-Gaussian random vectors with
dispersion matrix X.

An «-stable strict white noise process with mean p and covariance matrix > will
be denoted by a-SWN(u,>). It can be shown easily that a dispersion matrix of an
«-stable sub-Gaussian random vector has to be non-negative definite.

Definition 22. Let (Z;)cz be a-stable strict white noise a-SWN(0, Id). The process
(X1)iez issaid to bean a-stable multivariate GARCH processif it isstrictly stationary
and satisfies equations of the form

X, =x1"?z,tez,

where $1/2 js the Cholesky factor of a positive-definite matrix 3 which is measurable
with respect to 7.

As in Section 4, we take no account of the conditional mean vector for notational
ease. It is usually specified as function of the past, through a vectorial autoregressive
moving average (VARMA) representation.

Due to Kring et al. (2007, pp. 12-13), it follows immediately that we have

2,2 24 Fot ~ Ba(0, 5, Yo ) (12)
In order to shorten the notation we introduce the dispersion operator
Disp(X) = %,

where X is an «-stable sub-Gaussian random vector with dispersion matrix 3. In
particular, we define by

Disp(X¢|Fi—1) = %4

the conditional dispersion matrix of X; given F;_. This notion is well defined because
of equation (12). Furthermore, we have

Disp(a’ X¢|Fi—1) = a'Sea,

see also Doganoglu, Hartz, and Mittnik (2006) for a multivariate model with conditionally varying
and heavy-tailed risk factors.
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since we have o' Xy|F;—1 ~ E1(0,a’'YSa, ¥sup(., ) (see Kring et al. (2007, p. 13) or
Samorodnitsky and Tagqu (1994, p. 77 et seq.)).

In Section 4 we argued that equation (4) holds at least approximately for many
financial return time series possessing second moments. We can now repeat those
arguments for processes with a-stable sub-Gaussian innovations. Hence, we obtain

Disp(a’X¢|Fi—1) = Disp(a’X¢|Fi—1(a))
holds at least approximately. We can now rephrase Definition 16.

Definition 23. An a-stable multivariate GARCH process (X; ):cz iS a-stable projection-
efficient if it satisfies for all t € Z and a € R?

d
a/Xt’]:t—l — a/Xt’j:t—l(a) ~ El(oa alztaa ¢sub('v Oé)),
where ¥, isthe conditional dispersion matrix.

According to Kring et al. (2007) Proposition 2 and Samorodnitsky and Taqqu
(1994, p. 77 et seq.) the following equation holds for the scaling and dispersion
parameter of o’ X

1 1/2
ola) = (ia/2a> = (Disp(a’X))"/?, (13)

where X ~ E;(0, %, ¥gu(., ). Note that in the classical case where second mo-
ments exist, we have

o(a) = (aXa)"/?, (14)

where o (a) and (aXa)/? can be considered as the standard deviation and variance of
a’' X, respectively. In the a-stable case, we have to take the factor 1/2 in the relation
between scaling parameter and dispersion parameter of ¢ X due to equation (13). In
particular, we can write

1 1/2
E1(0,a'Ya, sup(., ) or Sy <<§a/2a> ,0,0)

for the distribution of ' X. In addition, if ¢’ X;|F;_1(a) is a-stable distributed, we
denote the scaling parameter with o;(a) and we can write

1/2
(o) = (5 Dip( X)) (15)

We restate Definition 17 in terms of a-stable power GARCH processes.

Definition 24. An «-stable multivariate GARCH process (X;):cz is called power-
GARCH-projection-efficient if it is «-stable projection efficient and satisfies

p q
(0(a)’ = a0+ > aila’Xei|” + Y Biol_;(a), (16)
=1

j=1

forallte€Z,a90>0,0;>0,0=1,...,1,3;>20,j=1,...,¢,0 < < a.
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We have now all notions to define an a-stable version of the CMGARCH model.

Definition 25. The process (X;):cz follows an a-stable composed MGARCH process
if it is a process with the general structure given in Definition 22 and the conditional
dispersion matrix 3; = (o;;) satisfies

() (0i(e:))tez = ((30141)"?)iez follows a S, 0 sGARCH(p;, ;) process for i =
1,...d.

(i) Foralli,j =1,...,di # j wehave
1 2 2
atij = 5 (07 (ei + ¢j) — i (ei — ¢5)),

where (o1(e; + €;))icz and (ot(e; — €;))iez follow a S, 0 sGARCH(p, g7)
and S, 0 sGARCH(p;;, ¢;;) processes, respectively.

An «-stable CMGARCH model does not impose any explicit functional form
of the conditional dispersion matrix ;. The next theorem shows which «-stable
MGARCH processes can be modeled by a-stable CMGARCH processes.

Theorem 5. Let (X;):cz bean a-stable multivariate GARCH process which is power-
GARCH-projection-efficient with conditional dispersion time series (3 );cz, then this
time series can be modeled by an «-stable composed MGARCH process.

Proof.
1
Otij = e T ej)Dilei —ej) — (ei — ¢j)Be(ei — ;)
1, . .
= 7 (Disp((es + €)' X¢|Fi—1) — Disp((e; — ¢;)' X¢|Fi-1))

—
*
~

1, .
Z(Dlsp((ei + ej)’Xt|]-},1(ei + ej))

—Disp((e; — €)' X¢|Fe—1(ei — ¢€5)))

i 1
equation (15) 1(203(61' +ej) — 20?(@ —€j))

1
= §(Uf(€i+€j)—0t2(ez‘—€j))
equation (x) holds because the process is a-stable-projection-efficient. of (e;+e;) and
o?(e; — e;) are modeled by power-GARCH-processes. O

Unfortunately, we cannot rephrase Theorem 3 for an a-stable CMGARCH process.
This is because of the fact that we do not know the unconditional distribution of X;,
t € Z, so we cannot ensure if the dispersion operator is well defined. But it seems
reasonable to impose that the univariate S, 3 ;GARCH processes of an a-stable CM-
GARCH model should be strictly stationary, i.e., Ao 5,5 21—y @i + 274 8 < L.

We show that an a-stable CMGARCH model is invariant under linear transforma-
tion. This is essential, since this result enables us to define consistently an «-stable

factor composed MGARCH model.
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Theorem 6. Let (X;).cz follow an a-stable GARCH-projection-efficient CMGARCH
process. Then the CMGARCH process is invariant under linear transformation, i.e.
the process (Y;)icz = (F'X;):ez follows an a-stable CMGARCH process in terms of
the filtration (G).cz, and we have

Disp(Y;|Fi—1) = FXF' = Disp(Y;|G—1) 17)
where F € R¥*4 | ¢ N, and G; isthe sigma field generated by o({Y; : s < t}).
Proof. We show Disp(F X;|F;—1) = FXF’ = Disp(F X;|G¢—1). We know
Disp(a’X¢|F;—1) = Disp(d' FX¢|F—1(d'F)) =d' F,F'a. (18)
for all a € R%. Hence, by using the characteristic function, we conclude

Ysun(a® (@ FEFa),a) = B(eFXOF
— E(eix(a/FXt)’Jrj't_l(a/F))

forall a € R and = € R. Since we have F(a'F) C G; C F; forall a € R? and
t € Z, we obtain

V(@ (d FSFla),a) = BE(e®@FX|g, ).

Since a € R% and = € R are arbitrary, we follow

beup(sSFEF's a) = B FX0|g,_y)
for all s € R®. Hence, we can conclude

FXi|Gi1 ~ Ep(0, FXtF' b (., @)
and we have Disp(FX;|F;—1) = FX:F' = Disp(FX¢|G:—1). We write for FY, F’
shortly ZtY. Since F X;|G;_ is sub-Gaussian, we can write

a,?;-j = i(Disp((ei +e;) FX;|G—1) — Disp((e; — €;) FX4|Gi—1)

1
= 5(0?((@ +e)'F) = ai((ei — ¢;)' F),
where (o¢((e; + €)' F))tez and (or((e; — €)' F))sez follow Sa’075GARCH(p$, q;;)
and Sa’075GARCH(p,L~_j,q,L~;). Hence, we have demonstrated that (Y;):cz follows an
«-stable CMGARCH process. O

We can consistently define an extension of the a-stable composed multivariate
GARCH model, what we label the «-stable factor composed multivariate GARCH
model.

Definition 26. The process (X;);cz follows an a-stable factor composed MGARCH
(a-FCMGARCH) process, if there exists some orthogonal matrix I' € R**? satisfying
I'T” = Id such that (I" X):cz follows an a-stable composed MGARCH process.
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As with the FCMGARCH model, the a-stable version allows for statistical factor
modeling and dimensionality reduction. Again, we estimate the sample dispersion ma-
trix of the process (X;):cz and model its principal components (Y;):cz by an a-stable
FCMGARCH model. In contrast to a a-stable version of the PC-GARCH model, we
have the advantage that we can capture the conditional dependence of the components.

As with Proposition 2 in Section 3, we have to estimate (p + ¢ + 1)d® parameters
for a d-dimensional «-stable CMGARCH process whose projective time series follow
«-stable power-GARCHY(p, g) processes.

5.3 Estimation of the Models

In principle, we can employ the same two estimation procedures as presented in Sec-
tion 4.2. In the first step, we have to use algorithms fitting «-stable power-GARCH
processes to data in both algorithms.

In the first algorithm we reconstruct the conditional dispersion matrix by

In the second approach we apply the univariate a-stable process ((u;))icz, ui €
S41, i =1,...,nto reconstruct the conditional dispersion. This leads to the following
optimization problem.

d

3t = argming gaxd Z(u;EuZ — 267 (u;))?
i=1

in step (2) and

n
¥ = argminacp, Z(u;AA/ui — 267 (uy))?
1=1

in step (3).

When fitting a-stable power-GARCH processes to the projective time series
(u} Xt)tez, @ = 1, ..., n via the standard maximum likelihood method, we need a global
tail parameter « in order to be consistent with the model specification. The simplest
way to obtain such an « is to estimate the unconditional tail parameter «(v;) of the
projective time series (u,;X;)icz, @« = 1,...,n. Then, the global tail parameter o is
defined by

o= Z a(u;).

i=1

SRS

This is certainly a very heuristic method, since we do not estimate the global tail para-
meter of the innovations Z; but of the returns X;. But since we estimate the parameter
ao(t;), ..., o (u;) and By (w;), ..., Bs (w;) of the power-GARCH(r,s)-process (u; Xt ):cz
via the classical ML-method, these estimates are robust under misspecification of the
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tail parameter «. For larger sample sizes, /X1, ..., u; Xy, (to large) the estimates for
the scale parameters and the tail parameter are nearly independent (see DuMouchel
(1973) for further information). Thus the estimates of the power-GARCH parame-
ters are nearly independent of the tail parameter « and hence the time series of scale
parameters (oy(u;))icz.

In addition, after having estimated the time series of conditional dispersion matri-
ces (it)tez we can use the residuals

7, =5717X,

to estimate the tail parameter of the innovations where ZA];/ * is the inverse of the
Cholesky factor of >;.

6 Applications

For the empirical analysis of the a-stable CMGARCH model, we investigated the daily
logarithmic return series for four German stocks included in the DAX index: Adidas,
Allianz, Altana, and BASF. The period analyzed is January 2, 2001 through March 31,
2006 (1,338 daily observations for each stock). For the estimation of our model, we
selected the first 1, 000 returns i.e. the period form January 2, 2001 until December 7,
2004. The balance of the observed returns are held out for an out-of-sample analysis
of the model.

The plots of the individual returns series in the estimation period for the four stocks
are shown in Figure 1. One can easily detect times of intense and less pronounced
volatility which is to be attributed to the well-known effect of volatility clustering. In
Table 2 the maximum likelihood estimates of the four return time series are listed. The
tail parameters « appear to be in a tight range around 1.69. Hence, assuming the same
parameter « is justifiable. The scale parameter is within in a range of roughly 0.1 and
0.15. The location parameters p are close to zero.
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Figure 1: 1,000 daily returns during the period from January 2, 2001 until December
7, 2004.

We assume that the four univariate return series follow 5, o 1GARCH(1,1)
processes. More precisely,

oi(e;) = aple;) + ai(e;)| Xi—1 — ple)| + Bi(ei)or—1(e;)
and
Xt = ple;) +oi(e;) Zy,

where Z; ~ S,(1,0,0) and x(e;) is the unconditional mean of the ith time series,
i=1,...,4and o = 1.69.' The estimated parameters based on the period from
January 2, 2007 until December 7, 2007 are reported in the right half of Table 2. As
discussed in Section 5.3, a misspecification of the tail parameter « has only a minor
influence on the estimated power-GARCH parameters.

For daily log-returns it is not necessary to model the daily mean process (i ):cz (see RiskMetrics
(1996)).
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Stock o o 1 g o1 51 LL
Adidas 1.667 0.0109 0.0001 || 0.0002 0.0413 0.9316 2617.30
Allianz  1.6672 0.0155 -0.0011 | 0.0002 0.0841 0.8854 2356.2
Altana 1.7337 0.0138 -0.0003 | 0.0004 0.0706 0.8837 2423.4

BASF 1.6992 0.011 0.0001 || 0.0003 0.0661 0.8966 2650.6

Table 2: The left half of the table depicts the unconditional stable estimates of the
returns time series. The right half shows the estimated parameters of the univariate
stable GARCH(1,1) processes for the returns. The time period is January 2, 2001 to
December 7, 2004.

The absolute mean ), o of a centered unit scale variable Z, ~ S,(1,0,0) is given
by

Due to Proposition 3, all processes are strict stationary since we have oy(e;), v (e;),
Bi(e;) > 0,and Ay paq(e;) + Bi(e;) < 1,4 = 1,...,4. This purely univariate analy-
sis of the return data does not reveal any contradiction to an a-stable CMGARCH
modeling.

6.1 In-Sample Analysisof the a-stable CMGARCH Model

In the following we assume that the return data Xi, ..., X199 Of the four stocks in our
study are power-GARCH-projection-efficient with § = 1 and follow an «a-stable CM-
GARCH model. In order to estimate the «-stable CMGARCH process we generate
random vectors u; € S3, i = 1,...,100, that are uniformly distributed on S®. The
projective time series (v, X;);cz follow again an «-stable power-GARCH process.
According to the estimation procedure described in Sections 4.2 and 5.3, we have
to estimate the parameters ag(u;), o1 (u;), and By (u;) of the corresponding power-
GARCH(1, 1)-processes. Figure 2 (a), (b), and (c) illustrate the estimates. The para-
meter estimates /3, (u;) are tightly scattered around 0.91; é& (u;) ranges from 0.038 to
0.082 and for ég(u;) from 0.7 - 104 to 3 - 10~%. All projective time series (v X;)icz
have a low market reaction (&4 (u;) small) but a high persistence (5 (u;) high).
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Figure 2: (a),(b),(c) show the stable GARCH(1,1) estimates for the 100 projective time
series (u;X¢)ter-

In particular, we see that each projective time series is strict stationary. Figure
4 depicts the 100 corresponding time series (o;(u;)) of the conditional, time-varying
scale parameters. The effects of volatility clustering can be seen.

33



0.05

02.01 02.07 02.01 01.07 02.01 01.07 02.01 01.07
2001 2002 2003 2004

Figure 3: The figure shows the 100 different time series (o;(u;))ser, ¢ = 1, ..., 100, of
the stable GARCH(1, 1)-Processes.

In order to obtain the time series of the conditional dispersion matrices 3; € R**4,
we have to apply steps (2) and (3) of the estimation algorithm given in Sections 4.2
and 5.3, respectively. Figure 2 (d) shows the number of not positive definite matrices
>4, t =1,...,1000, obtained after applying step (2) subject to the number of projective
time series (o;(u;))iez used in the regression.
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Figure 4: The figure illustrates the number of not positive definite matrices subject to
the number of projection used in the regression.

By increasing the number of projections in step (2), the number of these matrices
that exhibit this characteristic decreases fast. We notice the last not positive definite
matrix when applying 35 projections. In the range from 36 until 100 projections, all
matrices are positive definite. Furthermore, we observed a fast stabilization of the
entries of the time series (3;) subject to the number of projections used in step (2).
This observation supports the assumption that the considered multivariate time series
is GARCH-projection efficient.

In order to obtain a very high accuracy of our estimates, we use 100 projections
for the reconstruction of the time series (3). In particular, we do not need to apply
the optional step (3) since all conditional dispersion matrices are positive definite.

Figure 5 shows the 2-dimensional scatterplots between the different returns pairs.
We find that Adidas and Altana as well as Altana and BASF exhibit a very low cross
dispersion due to the scatterplots, while the ones of BASF-Allianz and Adidas-BASF
illustrate stronger cross dispersion. Figure 6 depicts the time series of the conditional
dispersion matrices (%¢):=1.... 1000 for the period January 2, 2001 to December 7, 2004.
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Figure 5: Two dimensional scatterplots of the returns in the period January 2, 2001
until December 7, 2004.
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Figure 6: The figure depicts the estimated conditional dispersion matrices 3; in the
period January 2, 2001 until December 7, 2004.
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In particular, the conditional dispersions (ot 13) and (o 34) corresponding to Adidas-
Altana and Altana-BASF are low, consistent with the observation made about Figure
5. Definitely the highest conditional dispersion can be observed between Allianz and
BASF, (0+34), Which is also the case in the unconditional graphical consideration of
Figure 5. For the time period investigated, the returns of Allianz are the most volatile
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especially in the period July 2002 until July 2003. Besides Altana, we observe an
increase in the conditional dispersion and cross dispersion in all stocks because of
September 11, 2001.

For a quantitative analysis of the a-stable CMGARCH model we examine its resid-
uals given by

Zy =5, - ),

where t = 1,...,1000, & € R* the unconditional mean of the four individual return
time series, and f]; 1/2 the inverse of the Cholesky factor of i)t. To test whether the
generated innovations are strict white noise (SNW(0,1d)) (see Section 3 and Definition
21), we estimate their unconditional dispersion matrix 3, by using the spectral esti-
mator.!? The spectral estimator is a robust estimator of the dispersion and covariance
matrix up to a scaling constant. To have a unique dispersion matrix we demand &;; to
be 1.

For comparison, we first list the normalized dispersion matrix of the original re-
turns given by

1.0000 0.5294 0.1929 0.3724
. 0.5294 1.8865 0.5637 0.8195
o(X1, - Xiono) = 0.1929 0.5637 1.4942 0.3121

0.3724 0.8195 0.3121 0.9499

One can clearly detect the non-zero cross dispersion between the stock returns, because
Gij (X1, ..., X1000), 4,5 = 1,...,4,i # j, deviate significantly from zero. Moreover,
the diagonal entries reveal non-standardized quantities, since &;(X1, ..., X1000), @ =
1,....4, differ significantly from 1. However, the residuals Z1, ...., Zip00 Of the a-
stable CMGARCH model yield the unconditional normalized dispersion matrix

1.0000 0.0381 —0.0223 0.0046
0.0381 1.0392 0.0305 0.0440
—0.0223 0.0305 1.1323 0.0146 |’
0.0046 0.0440 0.0146 1.0991

20(21, ceey 21000) =

which indicates that the scales of the individual stocks are close to one and zero, re-
spectively. In addition, the cross dispersion between the returns are definitely mini-
mized if not removed.

We compare these residuals with those of the EWMA model introduced by Risk-
Metrics.®®> The EWMA model is still the industry standard for multivariate conditional
risk modeling (see the discussion in Section 3 and RiskMetrics (1996)). In the EWMA
updating scheme

1-x &
M= T 2 A XX
=1

125ee Tyler (1987a) for further information about the spectral estimator.
135ee Definition 12.
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we choose M to be 112,50, and 20. For daily returns, RiskMetrics (1996) recommends
an optimal decay factor A = 0.94. By using A = 0.94, 99.9% of the information is
contained in the last 112 days and the classical RiskMetrics updating scheme

Y= (1= NXi 1 X 4 + A2,
is captured very well. In this case, the residuals are denoted bny(m), o 25)51012)
and their unconditional normalized dispersion matrix satisfies

1.0000  0.1562 —0.2340 —0.2519
0.1562  1.1071 —0.1848 —0.2198
—0.2340 —0.1848 1.5471  0.6278
—0.2519 —-0.2198 0.6278 1.8321

> S5 E(112 ~FE(112
So(ZEMD | ZEM2)y

We see that the diagonal elements of this matrix deviate significantly from one and
cross-dispersion is definitely not zero. It is obvious that the results of the «a-stable
CMGARCH are superior. Incorporating the last 112 might be too much.

In our statistical analysis we test different values of M (i.e., M = 10, 20, ..., 100).
We obtain the best results for A = 20. In this case, the dispersion matrix of the
residuals satisfies

1.0000  0.0408 —0.0162 0.0335
0.0408  1.2124 —0.0036 —0.0287
—0.0162 —0.0036 1.2769  0.0647
0.0335 —0.0287 0.0647  1.5789

& (5 E(20 5 E(20
Yo(Z, ( )w'leoE)o)) =

The cross dispersions are similar to those in the a-stable CMGARCH model but the
diagonal elements of the normalized dispersion matrix differ significantly from one.
This behavior is expected since we know from univariate GARCH- and EWMA-
modeling that volatility processes of univariate return series are captured much better
by a GARCH process. Moreover, we have one decay factor A\ = 0.94 that should be
valid for all stocks simultaneously, which is not realistic. In the case of M = 50, we
obtain

1.0000  0.0680 —0.0406 —0.0480
§(ZF00 gEGo) _ [ 00680 L1271 00404 —0.017

Lo e 21000 —0.0406 0.0404 1.1219 00771 |’
—0.0480 —0.0197 0.0771  1.7043

which does not significantly differ from the case M = 20.

The maximum likelihood estimates of the residuals Z, ..., Z1oo are depicted in
Table 3. We see that the innovations have a larger tail parameter than the uncondi-
tional returns depicted in Table 2. This phenomenon is to be expected because the
leptokurtosis in the unconditional distribution of the process (X;):cz is attributed to
the GARCH structure of the process (see RiskMetrics (1996) and McNeil, Frey, and
Embrechts (2005) for further information). By removing the MGARCH effects from
the data, we decrease the leptokurtosis and thereby increase the tail parameter.
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Stock a Disp o

Adidas 1.76 0.94 0.68
Allianz 192 112 0.75
Altana 18 1.11 0.74
BASF 19 118 0.77

Table 3: The table depicts the stable estimates of the a-stable CMGARCH residuals.

In particular, Zt,l, s Zt,lOOO has a scale parameter of 0.9440, thus the residuals
have an estimated dispersion matrix satisfying

0.9440 0.0359 —0.0211 0.0044
0.0359 0.9810 0.0288 0.0416
—0.0211 0.0288 1.0689 0.0138 |’
0.0044 0.0416 0.0138 1.0375

(21, s Z1000) =

that is close the identity. However, there is a difference between the estimates 4;(2)
of the spectral estimator and those of the univariate estimates depicted in Table 3. We
have greater confidence in the spectral estimates for two reasons. First, the spectral
estimator uses a four dimensional sample for its estimates whereas in the other case
we use only the univariate time series. Second, the spectral estimator estimates g,
i =1, ..., 4, immediately, whereas in the other method we estimate the scale parameter
& (e;) and then we calculate the dispersion by the formula 6; = 26 (e;)? increasing the
estimation error.

In order to complete our sample analysis, we analyze the autocorrelation of the
squared returns and squared residuals in the different models. While one might cor-
rectly object that due to the model specification second moments of the residuals and
returns do not exist, nevertheless the estimators of the autocorrelation function (ACF)
have distributions that have lower and upper confidence bounds under the independent
and identically distributed (i.i.d.) assumption. The range of these bounds is larger than
the ones in the case where second moments exist. Hence, if the residuals are within
the normal bounds, they are also in model specific confidence bounds. The results
are reported in Table 4. The lower and upper 95% confidence bounds are —0.0632
and 0.0632, respectively. The squared returns significantely violate these bounds (29
violations) and the hypothesis of independence can be rejected. In the case of the a-
stable CMGARCH residuals we find three violations of these bounds. In the classical
EWMA model (M = 112) there are eight violations. The EWMA model using the 20
last observations only violates these bounds twice and for M = 50 we observe five
values out of these bounds. All the models work well and remove a lot of autocorrela-
tion in the squared return data. The a-stable CMGARCH model seems to be superior
to the classical EWMA model since the estimates are closer to zero in most cases and
there are less violations of the confidence bounds.
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Stock 1 2 3 4 5 6 7
ACF((X7))) 02 0305 0119 0188 0159 0.116 0.083
ACF((X},)) 0236 0232 023 023 0353 019 0233
ACF((X}?;)) 0046 0016 0082 0012 0028 0.004 0.021
ACF((X},)) 0176 0246 0263 0355 0133 02 013
ACF((X2))) 02 0305 0119 0.88 0.159 0.116 0.083
ACF((Z})) 0028 0054 0004 0046 0041 004 -0.03
ACF((Z},)) 0101 0045 0073 0059 008l -0.006 -0.015
ACF((Z},)) 0002 -0.009 0033 -0.015 -0.009 -0.018 -0.021
ACF((Z2,))  -0009 001 0042 -0.003 0083 0001 -0.018

ACF((2;F™)) 0043 0058 0012 0066 0059 0.098 -0.004
ACF((2;y"'®)) 0155 0067 0137 012 014 003 0023
ACF((2;7™")) 0009 -0016 0.062 0.0l 0 0004 -0.007
ACF((ZEFM2)) 0049 0024 0095 0032 0072 0037 -0.008
ACF((z;P®)) 0011 0003 -0.018 0013 0018 0044 -0.037
ACF((Z;y®")) 0097 0007 0026 0028 0051 -0.014 0.1
ACF((Z;y®")) -001 -0012 0005 -0.008 -001 -0.014 -0.015
ACF((z5F®)) 0038 -0018 0041 0021 0033 -0.016 -0.006
ACF((Z;P™)) 0023 0034 -0001 005 0038 0082 -0.022
ACF((Z;y™)) 0128 0048 0086 0079 01 0018 0.045
ACF((Z77™)) 0003 -0.024 0054 0006 -0.008 -0.003 -0.014
ACF((z5F®9)) 0036 001 0077 0018 0059 0027 -0.014

Table 4: The table depicts the autocorrelation of the squared returns and the squared
residuals in the different models. The lower and upper 95% confidence bounds are
—0.0632 and 0.0632, respectively. The period covered is January 2, 2001 to December

7, 2004.

6.2 Out-Of-Sample Analysis of the a-stable CMGARCH Model

For the out-of-sample analysis we use the period from December 8, 2004 to March 31,
2006 (observations 1,001 to 1, 338). The normalized dispersion matrix of the observed

returns satisfies

A

Yo(X1001, .-y X1338) =

and the «a-stable CMGARCH residuals is given by

20(21001, ey 21338) =

1.0000
0.3756
0.0896
0.3487

1.0000
—0.0419
0.0954
—0.0118
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0.3756
1.1663
0.2344
0.5109

—0.0419

1.0558

—0.0354

0.0240

0.0896
0.2344
0.7438
0.1429

0.0954
—0.0354
0.9994
0.0025

0.3487
0.5109
0.1429
0.9180

—0.0118
0.0240
0.0025
1.1954



The normalized dispersion matrix of the returns once again exhibit a significant
cross dispersion. Furthermore, the diagonal entries of the normalized dispersion matrix
are not close to one, suggesting that the univariate return series exhibit different scale
properties. In contrast, the normalized dispersion matrix of the CMGARCH residuals
are much closer to the identity matrix. This means that the forecasted conditional
dispersion matrix explains fairly well the common scaling properties of the returns.

Again, comparing the model with the classical EWMA model (M = 112) we see
that the cross dispersion is explained well by the model but exhibits weakness on the
diagonal entries

1.0000  0.0335  0.0576  0.0555

So(ZE01  ppainy | 00335 13439 00199 —0.0647
1001 >0 91338 0.0576 —0.0199 0.8381  0.0503
0.0555 —0.0647 0.0503  1.4686

The two alternative EWMA-models (M = 20,50) show similar behavior: The
off-diagonal entries are close to zero while the entries on the diagonal exhibit poor
behavior. In particular, the standardized dispersion matrices of these residuals satisfy

1.0000 —0.0106 0.0980  0.0122

S (ZE | zEeoy _ [ —0.0106 13794 —0.0501 —0.0509
1001 >+ 1338 0.0980 —0.0501 1.2486  0.0194
0.0122 —0.0509 0.0194  1.8280

and

1.0000 0.0260  0.0671  0.0495

20(21%(0510) 2@%580)) _ | 0.0260 1.3679 —0.0200 —0.0717
T 0.0671 —0.0200 0.9335  0.0309

0.0495 -0.0717 0.0309  1.5179

As already mentioned, this is due to the well-known univariate phenomenon that the
volatility structure of univariate return series is captured better by GARCH processes
than EWMA processes.

Again, we consider the autocorrelation of the squared returns and squared residuals
in the period of December 8, 2004 until March 31, 2006. The results are depicted in
Table 5. The lower and upper 95% confidence bounds are —0.109 and 0.109. The
observed squared returns do not exhibit significant autocorrelation. This might be
explained by the low volatility in this period. We observe only three violations of
the 95% confidence bounds. The out-of-sample residuals of the «-stable CMGARCH
model violate the these bounds only once. In the classical EWMA model (M = 112),
we have three autcorrelation estimates out of this range. In the EWMA model using
only the last 20 observations, there are no the violation of these bounds and in the last
model we observe one violation.

6.3 Summary of the Results

Summing up, the a-stable CMGARCH model outperforms the EWMA models be-
cause the normalized dispersion matrix of its residuals is closer to strict white noise
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than the ones in the other EWMA models. The EWMA models, in particular, reveal
its weakness in estimating the diagonal entries. Furthermore, the autocorrelation in
the squared return data is captured better by the «-stable CMGARCH model than by
the classical EWMA model (M = 112) because we observe in the former one less
violation of the confidence bounds and, in general, the estimates are closer to zero.

These observations hold for the in-sample as well as the out-of-sample analysis.
The good empirical performance of the a-stable CMGARCH model is clear evidence
for the GARCH-projection-efficiency of the return series (X;).cz investigated.

Stock 1 2 3 4 5 6 7
ACF((X7,)) 0006 -0018 -0.012 -0.025 -0.03 -0.048 -0.043
ACF((X},)) 0112 0023 0123 0106 0121 0.062 0.041
ACF((X};))  -0.007 002 -0.003 -0.015 -0012 -001 -0.01
ACF((X2,)) 0028 0043 0098 -0.083 0015 -0.092 0.011
ACF((Z%))  -0025 -0009 -0.025 -0.026 -0.021 -0.04 -0.04
ACF((Z},))  -0.013 -0.041 0007 -0.015 0012 0055 -0.015
ACF((Z};))  -0.009 -0.005 -0.006 -0.011 -0.007 -0.0L -0.011
ACF((Z2,)) 0132 -0.077 -0.095 -0.061 -0.015 -0.043 -0.029

ACF((2;F™)) 0043 0058 0012 0066 0059 0.098 -0.004
ACF((2;y"'®)) 0155 0067 0137 012 014 003 0023
ACF((Z;7™)) 0009 -0016 0062 0.0 0 0004 -0.007
ACF((2;7")) 0049 0024 0095 0032 0072 0037 -0.008
ACF((Z;P®)) 0011 0003 -0.018 0013 0018 0044 -0.037
ACF((Z7y®")) 0097 0007 0026 0028 0051 -0.014 0.1
ACF((Z;7®")) -001 -0012 0005 -0.008 -001 -0.014 -0.015
ACF((z5F®)) 0038 -0018 0041 0021 0033 -0.016 -0.006
ACF((Z;P™)) 0023 0034 -0001 005 0038 0082 -0.022
ACF((Z;y™)) 0128 0048 008 0079 01 0018 0.045
ACF((Z77™)) 0003 -0.024 0054 0006 -0.008 -0.003 -0.014
ACF((z5F®9)) 0036 001 0077 0018 0059 0027 -0.014

Table 5: The table depicts the autocorrelation of the squared returns and the squared
residuals for the different models. The lower and upper 95% confidence bounds are
—0.109 and 0.109, respectively. The period covered is December 8, 2004 to March
31, 2006.

7 Conclusion

In this paper we introduce a new class of multivariate GARCH models that is flexi-
ble enough to model multivariate time series appropriately and allow for estimation
procedures that are applicable even in higher dimensions. We motivate these models
by introducing the notions of projection-efficient and GARCH-projection-efficient that
are fundamental for the working of these models.
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Moreover, in this paper we demonstrate that a--stable multivariate GARCH model-
ing is feasible. To do so, we develop «-stable versions of the CMGARCH and FCM-
GARCH model. We demonstrate the applicability of the model and report empirical
evidence that indicates that it outperforms the classical EWMA model introduced by

RiskMetrics.
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