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1. 1 Introduction

There are several tasks in the investment management @rotese in-
clude setting the investment objectives, establishing antmees policy,
selecting a portfolio strategy, asset allocation, and measamichgevaluat-
ing performance. Bayesian methods have been either used or propased as
tool for improving the implementation of several of these tabkere are
principal reasons for using Bayesian methods in the investmamaga-
ment process. First, they allow the investor to account foutlcertainty
about the parameters of the return-generating process adistifiteutions
of returns for asset classes and to incorporate prior badi¢fe decision-
making process. Second, they address a deficiency of the statetest-
cal measures in conveying the economic significance of tloeniation
contained in the observed sample of data. Finally, they providealnti-
cally and computationally manageable framework in models whierge
number of variables and parameters makes classical faromda formi-
dable challenge.

The goal of this chapter is to survey selected Bayegalications to
investment management. In Section 1.2, we discuss the single-period
folio problem, emphasizing how Bayesian methods improve the estimation
of the moments of returns, primarily the mean. In Section Je3jescribe
the mechanism for incorporating asset-pricing models intontresiment
decision-making process. Tests of mean-variance efficiercgwaveyed
in Section 1.4. We explore the implications of predictability fimestment
management in Section 1.5 and then provide concluding remarks-in Sec
tion 1.6.

1.2. The Single-Period Portfolio Problem

The portfolio choice problem represents a primary example a$idee
making under uncertainty. Let.,, denote the vectorN( x 1) of next-
period returns andV current wealth. We denote next-period wealth by
W, :W(1+ aJ'rm) in the absence of a risk-free asset and

W, :W(1+ r +a)'rm) when a risk-free asset with return is pre-

sent. Letaw denote the vector of asset allocations (fractions oftivadio-
cated to the corresponding stocks). In a one-period setting, thmabpti
portfolio decision consists of choosing that maximizes the expected
utility of next-period’s wealth,
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maxE(U W) = maxU W, Jplr 16, (@D

subject to feasibility constraints, whefkis the parameter vector of the re-
turn distribution andJ is a utility function generally characterized by a
quadratic or a negative exponential functional form. A key comyonife
Eqg. (1.1) is the distribution of returnp(r |¢9), conditional on the un-

known parameter vectof. The traditional implementation of the mean-

variance frameworkproceeds with setting? equal to its estimaté(r)

based on some estimator of the datéoften the maximum likelihood es-
timator). Then, the investor's problem in Eq. (1.1) leads to thenaptl-
location given by

o = argmaxEU (wr)|6=6(r)) (1.2)

w

The solution in Eqg. (1.2), known as ttertainty equivalent solution, treats
the estimated parameters as the true ones and completelysigmoeffect
of the estimation error on the optimal decision. The resufiortfolio dis-
plays high sensitivity to small changes in the estimaean, variance,
and covariance, and usually contains large long and short positédraséh
difficult to implement in practice.

Starting with the work of (Zellner and Chetty 1965), severdy esud-
ies investigate the effect parameter uncertainty ptaysptimal portfolio
choice by re-expressing Eq. (1.1) in terms of the predictive tgeiusic-

1 The mean-variance selection rule of (Markowitz’952), given by
MinwW Zw, St. o 1= 1*, Wi =1, where [ is the vector of expected re-
w

turns 2 is the covariance matrix of returns, anés a compatible vector of
ones, provides the same set of admissible porfad® the quadratic-type ex-
pected-utility maximization in Eq. (1.1). (Markowiand Usmen 1996) point
out that the conventional wisdom that the necessanglitions for application
of mean-variance analysis are normal probabilistritiution and/or quadratic
utility is a “misimpression” (Markowitz and Usme®96, p. 217). Almost op-
timal solutions are obtained using a variety ofitytifunctions and distribu-
tions. For example, it is possible to weaken ttstritiution condition to mem-
bers of the location-scale family. See (Ortob&Hchev, and Schwartz 2004).
2 See, for example, (Best and Grauer 1991)
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tion3 The predictive density function reflects estimation resdplicitly

since it integrates over the posterior distribution, which sariz@s the
uncertainty about the model parameters, updated with the informain-
tained in the observed data. The optimal Bayesian portfolio protalkes
the form:

maxEy{E,, (U Wr..)16) = 13)

w

maXJ..[U (WT+1) p(rm | (9) p

max(U W, )| plrr.; 16

—_

8r)

~—"

p(61r)d6]dr |

where by Bayes'’ rule, the posterior densnﬂm r) is proportional to the

product of the sampling density (the likelihood function) and the prior den-
sity, (r | 8)p(6).

The multivariate normal distribution is the simplest and most convenient
choice of sampling distribution in the context of portfoleestion, even
though empirical evidence does not fully support this mbttetthe case
where no particular information (intuition) about the model patarsds
available prior to observing the data, the decision-makedHfuse (non-
informative) prior beliefs, usually expressed in the form of #férely’s

prior p(u,=) 0 |Z|_(N+l)/2

vector and the covariance vector of the multivariate noretaln distribu-
tion, N is the number of assets in the investment universe[ Amgnotes
“proportional to”. The joint predictive distribution of returrssthen a mul-
tivariate Student-distribution.

Informative prior beliefs are usually cast in a conjugasenéwork to
ensure analytical tractability of the posterior and prediafiigtributions.
The predictive distribution is multivariate normal only whine covari-
ance 2 is assumed known angd is asserted to have the conjugate prior

, Where 4 and Z are, respectively, the mean

N(,uol, r?l ) where 1/, stands for the prior mean, is a vector of ones,

and 7| is the diagonal prior covariance matrix. When both parameters are
unknown and conjugate priors are assumed (the conjugate prikr ifoa

multivariate setting is an inverse-Wishart with scaleameterS™, where

3 See, for example, (Barry 1974; Winkler and Baréy'3; Klein and Bawa 1976;
Brown 1976; Jobson, Korkie and Ratti 1979; Jobsaa ldorkie 1980; Chen
and Brown 1983).

4 For example, see (Fama 1965).
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S is the sample covariance matrix), the predictive distributsomilti-
variate Student>

(Klein and Bawa 1976) compare the Bayesian and certainty dgpiiva
optimal solutions under the assumption of a diffuse prior for thenmer
ters of the multivariate normal returns distribution ((Barry 197 8rts-
formative priors) and show that in both cases the admissitdease the
same up to a constant. However, the optimal choice diffatgitwo sce-
narios since portfolio risk is perceived differently in eachec&oth the
optimal individual investor’s portfolio and the market portfolio hkoxger
expected returns in the Bayesian setting. (Brown 1976) showthéhtatil-
ure to account for estimation risk leads to suboptimal solutions.

It is instructive to examine the posterior mean under therrwdtive

prior assumption. Assuming that= ol , thei " element of’s poste-
rior mean has the form

(T YT 1 (1.4)
W lr,o” = ?"‘T—z ?ri"‘?ﬂo

wherer; is the sample mean of asgeandT is the sample size. The poste-
rior mean is a weighted average of the prior and samfidemation; that
is, the sample mean of asset is shrunk to the prior meap,. The de-
gree of shrinkage depends on the strength of the confidence pridhe

distribution, as measured by the prior precisidm®. The higher the prior
precision, the stronger the influence of the prior mean on the jooster
mean. Shrinking the sample mean reduces the sensitivity afptiraal
weights to the sampling error in it. As a result, weighk®tless extreme
values and their stability over time is improved. The pristritiution of

M could be made uninformative by choosing a very large padance

elementsr?. In the extreme case of an infinite prior variance, the posterior
mean coincides with the sample mean and the correction fonadisin
risk becomes insignificant (Brown 1979; Jorion 1985).

The approach of employing shrinkage estimators as a way of acwpunti
for uncertainty is rooted in statistics and can be tracekl tea@James and
Stein 1961), who recognized the inadmissibility of the sample nmean
multivariate setting under a squared loss function. The James-Sigia-es
tor given by

5 See, for example, (Brown 1976)



6 Bagasheva, Rachev, Hsu, Fabozzi

2% =0y +1-9)r, (1.5)

where I = (rlt,...,vat) is the vector of sample means, has a uniformly
lower risk thanr, regardless of the pointt, towards which the means are

shrunké However, the gains are greater the cloggris to the true value.
For the special case when the return covariance matrix heagotm

> =02, o? is known, and the number of asshits greater than 2, the
weight J is given by

0= min{], — (N __f)-[ }
(7= tot) 27 (7 = o)

Within the portfolio selection context, the effort was initiateith the
papers of (Jobson, Korkie, and Ratti 1979; Jobson and Korkie 1980, 1981)
and developed by (Jorion 1985, 1986; Grauer and Hakansson 1990). (Du-
mas and Jacquillat 1990) discuss Bayes-Stein estimation totiext of
currency portfolio selection.

While the choice of prior distributions is often guided by consiilans
of tractability, the parameters of the prior distribusioftalled hyper-
parameters) are determined in a rather subjective fashios. HHsi led
some researchers to embrace ¢hpirical Bayes approach, which uses
sample information to determine the hyperparameter values aidhie
heart of the Bayesian interpretation of shrinkage estimafbesshrinkage
target is the grand mean of retuMs

P(u)~N(M,r%). (1.6)

(Frost and Savarino 1986; and Jorion 1986) employ it in an examination
of the portfolio choice problem, asserting the conjugate invelisbafl
prior for 2. They estimate the prior parameters via maximum likelihood
assuming equality of the means, variances, and covariances. Qunpari
certainty-equivalent rates of return, they find that the optipuatfolios

6 (Berger 1980) points out that the inadmissibibfythe sample mean in the fre-
quentist case is translated into inadmissibilityref Bayesian rule under the as-
sumption of diffuse (improper) prior.

7 It is not unusual to assume that the degree ofnmiaty about the mean vector
is proportional to the volatilities of returns. Alue of T smaller than 1 reflects
the intuition that uncertainty about the mean igdpbthan uncertainty about the
individual returns.
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obtained in the Bayesian setting with informative priors outperform the op-
timal choices under both the classical and diffuse Bayes framefvorks
(Jorion 1986) assumes thatis known and is replaced by its sample es-

: T-1 . . , .
timator ﬁs. Jorion derives the so-called Bayes-Stein estimator

of expected returns — a weighted average of sample means ancathefme

- . D . .
the global minimum variance portfollqz—_lr (the solution to the vari-
1'271

ance minimization problem under the constraint that the weigintsts
unity).? He finds that the Bayes-Stein shrinkage estimator outpesfeig-
nificantly the sample mean, based on comparison of the empiiskal r
function® (Grauer and Hakansson 1990) observe that the portfolio-strate
gies based on the Bayes-Stein and the James-Stein estiraetoonly
marginally better than the historic mean strategies.

(Frost and Savarino 1986) obtain a shrinkage estimator not onliyefor t
mean vector but also for the covariance matrix of the prediceturns
distribution, thus contributing to a relatively neglected afesason why
there are relatively more studies concerned only with unogrtabout the
mean (see also the discussion of the Black and Litterman rhet=k)
may be that optimal portfolio choice is highly sensitive gtingation error
in the expected means, while variances and covariances (althsogimal
known) are more stable over time ((Merton 1980)). Howeveengihat
the optimal investor decision is the result of the traddsefiveen risk and
return, efficient variance estimation seems to be no hagsrtant than
mean estimatiof.

8 A certainty-equivalent rate of return is the risge rate of return which provides
the same utility as the return on a given combamatif risky assets.

9 (Dumas and Jacquillat 1990) argue that in thematgonal context this result in-
troduces country-specific bias. They advocate &hage towards a portfolio
which assigns equal weights to all currencies.

10 The empirical risk function is computed as theslo$ utility due to the estima-

Fmax - F (q)
|Fmax|
@’ is the solution to (1) when the true parametetare is known, @ is the

tion risk L(w*,cﬁ): averaged over repeated samples, where

portfolio choice on the basis of the sample es'e'zrr(Aht Facand F are the

corresponding values of the utility functions.
11 See, for example, (Frankfurter, Phillips, and $=4§72).
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1.3. Combining Prior Beliefs and Asset Pricing Models

(Ledoit and Wolf 2003) develop a shrinkage estimator for tdwarance
matrix of returns in a portfolio selection setting, choosing akramkage
target the covariance matrix estimated from Sharpe’s ( 8H63) sin-
gle-factor model of stock returns. They join a growing trenthe shrink-
age estimator literature of deriving the shrinkage taryattsire from a
model of market equilibrium. Equivalently, the asset pricing medeles
as the reference point around which the investor builds priefderhere
is a trade-off then between the degree of confidence inaldity of the
model and the information content of the observed data sample.flthe in
ential work of Black and Litterman (Black and Litterman 192091,
1992) (BL) presumably constitute the first analysis employhig &ap-
proachtz Their model allows for a smooth and flexible combination of an
asset pricing model, the Capital Asset Pricing Model (CARMY inves-
tor's views. The CAPM is assumed to hold in general, and img4die-
liefs about expected stock returns can be expressed in theofatavia-
tions from the model predictioasinterpretations of the BL methodology
from the Bayesian point of view are scarce (Satchell aoav&oft 2000;
He and Litterman 1999; Lee 2000; Meucci 2005), although, undoubtedly,
the BL decision-maker is Bayesian, and somewhat ambiguous.

The excess returns of tli¢ assets in the investment universe are as-

sumed to follow a multivariate normal distributian~ N(,u, Z) 1 The

implied equilibrium risk premiumd1 are used as a proxy for the true
equilibrium returns and the distribution of expected .equilibriumrnstis
centered on them, with a covariance matrix proportional to

u~N(n,75) (1.7)

where the scalar indicates the degree of uncertainty in the CAPVhe
investor's views (linear combinations of expected assetnst are ex-

12 For example, (Jorion 1991) mentions the possjhilftusing the CAPM equilib-
rium forecasts to form prior beliefs but doesn’tsue the idea further.

13 BL consider an equilibrium model, such as the CARBKIthe most appropriate
neutral shrinkage target for expected returns.esaguilibrium returns clear the
market when all investors have homogeneous views.

14 The covariance matriZ is estimated outside of the model (see (Litternach a
Winkelmann 1998)) for the specific methodology) aodsidered as given.

15 The equilibrium risk premiumd1 are the expected stock returns in excess of
the risk-free rate, estimated within the CAPM fravoek. In the setting of the
BL model, the vectorl1 is determined by a procedure appropriately called
“reverse optimization”. The market-capitalizatioeights observed in the capi-
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pressed as probability distributions of the expected returnsessotballed
“view” portfolios:

Pu~N(Q,Q), (1.8)

where P is a K x N) matrix whose rows correspond to feview portfo-
lio weights. The magnitudes of the elememtsof Q represent the degree

of confidence the investor has in each view.

There is no consensus as to which one of the distributions in Egs. (
and 1.8) defines the prior and which one the sampling densitichéla
and Scowcroft 2000; Lee 2000; Meucci 2005) favor the position tkat th
investor views constitute the prior information which sereespdate the
equilibrium distribution of expected returns (in the role of shenpling
distribution). This interpretation is in line with the Bayesteadition of
using subjective beliefs to construct the prior distribution. tBe other
hand, He and Litterman’s (He and Litterman 1999) reference to Eq. (1.8)
as the prior also has grounds in the Bayesian theory. Supposecthat
able to take a sample from the population of future returns, iohwdir
subjective belief about the expected stock returns is eghlithen, a view
could be interpreted as the information contained in this hypatheam-
pleit The sample size corresponds to the degree of confidence thminves
has in his view.

The particular definition one adopts does not have a bearinigeoret
sults. Deriving the posterior distribution of expected returres ssraight-
forward application of conjugate analysis and yields the famésult

#1M,Q,2,0,7 ~N(zV) (1.9)

where the posterior mean and covariance matrix are given by

fi= ((T 5) 4P Q_lp)—l((r )+ P.Q_lQ) (1.10)

and

tal market are considered the optimal weightd . Using the estimaté of
the covariance matrix, the risk premiums are baakgdf the standard mean-

variance resultc)* = (1/))(2_1I'| //'i_ll'l), where A is the coefficient of

relative risk aversion.

16 See (Black and Litterman 1992) for this interptieta Interpreting prior belief
in terms of a hypothetical sample is not uncommoBayesian analysis. See
also Stambaugh (1999).
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V= ((r )+ P'Q‘lp)_l, (1.11)

The estimator of expected returns in Eg. (1.10) clearly ha®itieof a
shrinkage estimator (the weights Bf and Q sum up to 1). When the
level of certainty about the equilibrium returns increagespproaches 0),
their weight ((T 5)*t+ P'Q‘lP) 1(r )™ increases and the investor opti-
mally holds the market portfolio. If, on the contrary, belief ia tevia-
tions from equilibrium returns is strong, more weight is puthenwiews.
(Lee 2000) extends the BL model to the tactical allocation problém
equilibrium risk premiumd1 are replaced by the vector of expected ex-
cess returns corresponding to a neutral position with respeettioat
bets, i.e., to holding the benchmark portfolio.

Admittedly, the BL methodology does not make use of all of tladl-av
able information in historical returns, particularly, the sampeans. (Pas-
tor 2000; Pastor and Stambaugh 1999) address this issue by developing a
framework in which uncertainty in the validity of the agseting model
is quantified in terms of the amount of model mispricing. The estirof
expected returns is a weighted average between the modeltiprediad
the sample mean, thus incorporating the benefits of both the Bagias-St
and the BL methodologi€s.

Let the return generating process for the stock’s excess return be

n=a+pf +¢s t=1..T, (1.12)

where f, denotes aK x 1) vector of factor returns (returns to benchmark

portfolios), andg, is a mean-zero disturbance term. Then, the slopes of the
regression in Eqg. (1.12) are stock’s sensitivities (betas).sTduk’s ex-
pected excess return implied by the model is

E(rt):ﬁI E(ft) (1'13)

That is, the model implies that = 0.8 When the investor believes there
is some degree of pricing inefficiency in the model, the expected excess
turn will reflect this through an unknown mispricing term:

17 The investigation of model uncertainty is expanded explicitly modeled in
the context of return predictability using the Bsig@ Model Averaging
framework by (Avramov 2000; Cremers 2002), amotgid. See Section 5

8 @ is commonly interpreted as a representatiorthe skill of an active portfolio
manager. (Pastor and Stambaugh 2000) point ouintieigretation is not infal-
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E(r)=a+BE(f,) (1.14)

In a single factor model such as the CAPM, the benchmartoporis
the market portfolio. In a multifactor model, the benchmarks could be
zero-investment, non-investable portfolios whose behavior egpficthe
behavior of an underlying risk factor (sometimes calledofactimicking
portfolios)* or factors extracted from the cross-section of stock retsns u
ing principal components analy$ts(Pastor 2000) investigates the impli-
cations for portfolio selection of varying prior beliefs abaut When be-

liefs about a pricing model are expressed, the prior mean,af,, is set
equal to zero. It could have a non-zero value, when, for exathglén-
vestor expresses uncertainty about an analyst's forecastribhegriance
o, of a reflects the investor’s degree of confidence in the pri@mmea

zero value ofg, represents dogmatic belief in the validity of the model;
o, = o suggests complete lack of confidence in its pricing powes- (Pa

a
tor and Stambaugh 1999), investigating the cost of equity of individual
firms, suggest thatr, could be set equal to the average ordinary least
squares estimate from a subset (cross-section) of firmgghavmmon
characteristics.

(Pastor 2000) assumes normality of stock and factor returns, and con;
gate uninformative priors for all parameters in Eq. (1.12) dutin the
special case of one stock and one benchmark, the optimal vieitie
stock is shown to be proportional to the ratio of the postereanof a
and the posterior mean of the residual varian®ég>. The posterior
meanq has the form of a shrinkage estimator:

(gj =M ‘{qﬂ("g’z} + (JZ(X'x)—l)‘l(zn | (1.15)

-1

where
M=y +(aZ(X'x)‘1)

lible. For example, the benchmarks used to defihanight not price all passive
investments.

19 See, for example, (Fama and French 1993).

20 See (Connor and Korajczyk 1986).
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UZ(X'X)_1 = (sample) covariance estimator of the least-squares esti-

matorsd@ and 3,
(UZ(X'X)_l)_l = sample precision matrix, and

W = prior precision matrix.

Pastor’'s results demonstrate greater stability of optipitfolio
weights, which take less extreme values. Examining the hoasetiuat is
observed in solutions to international asset allocation studasor finds
that the holdings of foreign equity observed for U.S. investorsrisistent

with a prior standard deviatioar, equal to 1% — evidence for strong be-

lief in the efficiency of the U.S. market portfolib.

Building upon the recognition of the fact that no model is corajyiet
accurate, (Pastor and Stambaugh 2000) undertake an empiricaigarvest
tion comparing three asset pricing models from the perspatftioptimal
portfolio choice, while accounting for investment constraints. Mbdels
are: the CAPM, the Fama-French model, and the Daniel-Titman #hodel
Pastor and Stambaugh explore the economic significance of dfffiere
vestors’ perceptions of the degree of model accuracy by corgptoe
loss in certainty-equivalent return from holding portfoidthe choice of
an investor with complete faith in moda), when in fact the decision-
maker has full confidence in modBlor C. They observe that when the
degree of certainty in a model is less than 100%, cross-mofkledices
diminish (the certainty-equivalent losses are smallernyedtment con-
straints dramatically reduce the differences between modkish is in
line with Wang’s (Wang 1998) conclusion that imposing constrairtts ac
to weaken the perception of inefficiency of the benchmark piartfsee
Section 4).

2 Home bias is a term used to describe the obs¢evetbncy of investors to hold
a larger proportion of their equity in domestic ci® than suggested by the
weight of their country in the value-weighted woequity portfolio

22 The (Fama and French 1993) model is a factor modehich expected stock
returns are linear functions of the stock loadingscommon pervasive factors.
Book-to-market ratio and size-sorted portfolios prexies for the factors. The
Daniel and Titman (1997) model is a characterisised model. Expected re-
turns are linear functions of firms’ characteristi€o-movements of stocks are
explained with firms’ possessing common charadiesisrather than being ex-
posed to the same risk factors, as in the FamaeRneodel.
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1.4. Testing Portfolio Efficiency

Empirical tests of mean-variance efficiency in the Bayesiontext of
both the CAPM and the Arbitrage Pricing Theory (APT) could ibled

into two categories. The first one focuses on the interceptiseomulti-

variate regressions describing the CAPM

n=a+pr, +&, i=1..,N (1.16)
and the APT
rn=a+pBf +.+Bf +u, t=1..T (1.17)

where returns are in risk-premium form (in excess of thlefree rate),
ry in (1.16) is the market risk premiun‘i,j’t is the risk premium (return)

of factorj at timet, and ,BJ- is return’s exposure (sensitivity) to facioAs

in the previous section, the pricing implications of the CAPM and\fie
yield the restriction that the elements of the parameter vectare jointly
equal to zero. Therefore, the null hypothesis of mean-variance effigeenc
equivalent to the null hypothesis of no mispricing in the m&dehe test
relies on the computation of the posterior odds ratio.

At the heart of the tests in the second category lies theuwtation of
the posterior distributions of certain measures of portfolioicieffcy. A
strand of the pricing model testing literature focuses on flity liiss as a
measure of the economic significance of deviations from trengrire-
strictions, for example, by comparing the certainty-equivalet of re-
turn. (McCulloch and Rossi 1990) follow this approach.

1.4.1 Tests involving posterior odds ratios

(Shanken 1987; Harvey and Zhou 1990; McCulloch and Rossi 1991) em-
ploy posterior odds ratios to test the point hypotheses of théctiesis
implied by the CAPM (the first two studies) and the APT (the thirdyst

The test of efficiency can be expressed in the usual way:

2 When returns are expressed in risk-premium fomd, expected returns are lin-
ear combinations of exposureskaources of risk, the mean-variance efficient
portfolio is a combination of thK benchmark (factor) portfolios and perform-
ing the test above in the context of the APT isieajant to testing for mean-
variance efficiency of this portfolio.
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H,:a=0vs. H;:a#0 (1.18)

The investor’s belief that the null hypothesis is true is ijpo@ted in the

prior odds ratio, and then updated with the data to obtain the posterior odds
ratio. The posterior odds ratio is the product of the ratiaediptive den-

sities under the two hypotheses and the prior odds and is given by

_ p(0=0|r): p(c | a =0)p(a =0) (1.19)
pl@#0|t) ple|a#0)plaz0)’
where r denotes the data.lt is often assumed that the prior odds is 1

when no particular prior intuition favoring the null or the altenegxists.
Then,G becomes:

[L(B.z]a =0)p,(B.2)dBdz (1.20)
[LB.z.ala#0)p,(a,B.5)dadBds’

where L(3,Z | a = 0) is the likelihood functionL(a, 3,Z) evaluated at

a = 0. Since the posterior odds ratio is interpreted as the prdiyahiit

the null is true divided by the probability that the alternaiivigue, a low
value of the posterior odds provides evidence against the nullhegiet
that the benchmark portfolio is mean-variance efficient.

Assume the disturbances in Eqg. (1.16) are identically and indepindent
distributed (.i.d.) normal with a zero mean vector and a covariance matrix
2 . (Harvey and Zhou 1990) explore three distributional scenarios —a mul
tivariate Cauchy distribution, a multivariate normal distributiand a
Savage density ratio approach. In the first two scenariogyitedistribu-
tion under the null is taken to be a diffuse one:

po(8,2) Oz " (1.22)
Under the alternative, the prior is
p(a,p.2)0 |Z|_(N+1)’2 f(a]2), (1.22)

where f(a | Z) is the prior density function aff (a multivariate Cauchy
or a multivariate normal). Following (McCulloch and Rossi 199 Brvidy

24\We assume thap(a’ = O) and p(a z O) are strictly greater than zero.



1. Bayesian Applications to the Investment ManagerReocess 15

and Zhou investigate also the so-called Savage density ratimaéaesas-
serting a conjugate prior under the alternative hypothesis,

pl(a',,B, Z) = N(a',,B | Z)IW(Z) (N denotes normal densiti\V denotes
inverted Wishart density)). The prior under the null is:

p(a.53) |
Jp(a.pz)dpdz|

Large deviations of the intercepts from zero, under theivaukte
normal prior, intuitively, provide greater evidence agaims thull hy-
pothesis than large deviations from zero under the multivariatehy
prior. Therefore, the normal prior is expected to produce lowderpas
odds ratio than the Cauchy prior.

The Savage density assumption leads to a simplification gfasierior
odds. Assuming a prior odds ratio equal to 1,

G- p(a |r) | (1.24)
p(@) |,

where both the marginal posterior densityafin the numerator and the
prior density in the denominator can be shown to be multivariatieSt
densitites.

In an examination of the efficiency of the market index, (Harvey a
Zhou 1990) find that the posterior odds increase monotonically for increas-
ing levels of dispersion in the prior distributions. Both the Gguwmnd the
normal priors provide evidence against the null. The posteriorbpiliip
of mean-variance efficiency varies between 8.9% and 15.5% uhéer t
normal assumption, and between 26.2% and 27.2% under the Cauchy as-
sumption. The Savage prior case is analyzed for three differeor as-
sumptions of relative efficiency of the market portfolio,leefed in the
choice of hyperparameters ¢f and Z .26 The Savage prior offers more

(1.23)
p(B.Z)=p.(a. 8.2 |a=0)=

% The Savage density ratio method involves selectingarticular form of the
prior density under the null, as in Eqg. (1.23), evhiesults in the simplification
of the posterior odds ratio in Eq. (1.24).

% Relative efficiency is measured by the correlatjgnbetween the given bench-
mark index and the tangency portfoligp =1 implies efficiency of the
benchmark. (Shanken 1987) shows that in the preseina risk-free asse
is equal to the ratio between the Sharpe measatie)(of the benchmark port-
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evidence against the null, compared to the normal and Cauchy-ptizes
probability of efficiency is generally less than 1%.

(McCulloch and Rossi 1991) explore the pricing implications haf t
APT and observe great variability of the posterior odds iatresponse to
changing levels of spread of the Savage pgridihe ratio in the high-
spread specification exceeds the one in the low-spread camerbythan
40 times when a five-factor model is considered. Overall, evidagaimst
the null hypothesis is weak in the case of the one-factor nfede¢pt in
the high-variance scenario) and mixed in the case of thdaitter model.
McCulloch and Rossi caution, however, against drawing conclusions about
the benefit of adding more factors to the one-factor modeladiigion of
factors needs to be analyzed in a different posterior-odds frameimor
which the restriction of zero coefficients of the new factors is imposed.

1.4.2 Tests involving inefficiency measures

Investors are often less interested in an efficiencya#ésting a “binary”
outcome (reject/do not reject) than in an investigation of #uges of in-
efficiency of a benchmark portfolio. (Kandel, McCulloch, and Stambaug
1995) target this argument and develop a framework for testing the
CAPM, in which the posterior distribution of an inefficiency aware is
computed® (Wang 1998) extends their analysis to incorporate investment
constraints.

Denote byp the portfolio whose efficiency is being tested andxbthe
efficient portfolio with the same variance gsThen, the observation that
the expected return gf is less than or equal to the expected returr of
immediately suggests an intuitive measure of portigkdnefficiency:

folio and Sharpe measure of the tangency portfpibich is the maximum
Sharpe measure).

27 A parallel could be drawn between McCulloch andgs$ts (McCulloch 1990,
1991) investigation and the traditional two-paggeesion procedure for testing
the APT. The authors first extract the factors gdime principal components
approach of (Connor and Korajzcyk 1986) and therfopm the Bayesian
analysis. In contrast, (Geweke and Zhou 1996) adaghgle-stage procedure
in which the posterior distribution of a measuretef APT pricing error is ob-
tained numerically. Admittedly, the Geweke-Zhou leggeh could only be em-
ployed to a relatively small number of assets, antast to the McCulloch-
Rossi approach.

28 (Shanken 1987; Harvey and Zhou 1990) also dissiusitar measures.
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A=y, U, (1.25)

where 1/, denotes the expected return of portfgli@he benchmark port-

folio is efficient if and only ifA = 0. The non-negative value @ could
also be interpreted as the loss of expected return frodingoportfolio p
instead of the efficient portfolia (carrying the same risk a®. Another
measure of inefficiency explored by Kandel, McCulloch, and Stantbaug
is 0, the correlation betwegmand any efficient portfolio. The posterior

density of A and o does not have a closed-form solution under standard
diffuse prior assumptions about the mean vegiorand the covariance
matrix 2 of the risky asset returns. An application of the Monte Carlo
methodology, however, makes its evaluation straightforward. Suppese t
posterior density of the mean and covariance are givep(}my| Z,r) and

p(Z |r), respectively. Then, a draw from the (approximate) posterier dis
tribution of A and p is obtained by drawing repeatedly from the posterior
distributions of # and Z and then computing the corresponding values of
Aandp.

Kandel, McCulloch, and Stambaugh observe an interesting divergence
of results depending on whether or not a risk-free assetikble in the
capital market. For example, in the absence of a risk-fret, asgst of the
mass of p’'s posterior distribution lies between -0.1 and 0.3, while when

the risk-free asset is included, the posterior mass shiftse interval 0.89
to 0.94 (suggesting a shift from a very weak to a very stoomgelation
between the benchmark and the efficient portfolio). Similahnky,gosterior
mass ofA lies farther away fromA = 0 in the former than in the latter
case. An investigation into the extent that the data influémegosterior
of p reveals that informative, rather than diffuse, priorsreaeessary to

extract the information of inefficiency contained in the data in theepiee
of a risk-free asset and, in general, the prior's influencéemaosterior is
strong. When the risk-free asset is excluded, the data updagidahéet-
ter, and the results show that the benchmark portfolio (cordpafddYSE
and AMEX stocks) is highly correlated with the efficient portfolio.

The methodology of Kandel, McCulloch, and Stambaugh is easily
adapted to account for investment constraints in testing fan+wariance
efficiency of a portfolio. (Wang 1998) proposes to modffyin the fol-
lowing way to incorporate short-sale constraints:
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5=ma><{x',u—xp',u|x2 0, X'IXx < xp'pr] (1.26)

where X, are the weights of the given benchmark portfolio under consid-
eration,x are the weights of the efficient portfolio, axig/ and x," i/ are

the expected portfolio returns, denoted pyand £/, respectively, in

(1.25). The constraint modification to reflect a 50% margin requent
is x. 2—05, i =1,...,N. For each set of draws of the approximate poste-

riors of 4 and X, the constrained optimization in (1.26) is performed and

a draw ofA is obtained.
Wang compares the posterior distributions of the inefficienepsures
with and without investment constraints. When no constraints are ichpose

the posterior mean ob is 20.9% (indicating that a portfolio outperform-
ing the benchmark by 20% could be constructed). Imposing the 50% mar-

gin constraint brings the values of the posterior meadoflown to
8.37%, while when short sales are not allowed, the posterior dean
creases to 4.25%. Thus, the benchmark’s inefficiency dessess stricter
investment constraints are included in the analysis. Additjion@vang
1998) observes that uncertainty about the degree of mispricingnetecli

with the imposition of constraints, making the posterior distion of A
less dispersed.

1.5 Return Predictability

Predictability in returns impacts optimal portfolio choicesaveral ways.
First, it brings in horizon effects. Second, it makes postildeémplemen-
tation of market timing strategies. Third, it introduces défe sources of
hedging demand. In this section we will explore how these twase-
guences of predictability are examined in the Bayesian literature.

With the exception of (Kothari and Shanken 1997) who investigate a
Bayesian test of the null hypothesis of no predictability, moshefpre-
dictability literature focuses on the implications of prealidity for the
optimal portfolio choice, rather than on accepting or rejectingntiiehy-

22 A 50% margin requirement is a restriction on tize &f the total short sale posi-
tion an investor could take. The short sale pasitan be no more than 50% of
the invested capital.
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pothesis, since portfolio performance and utility gains (lospesyide
natural measures to assess predictability power.

1.5.1 The static portfolio problem

The vector autoregressive (VAR) framework is a converaedt compact
tool to model the return-generating process and the dynamics ehthe
dogenous predictive variables. For the simple case of one faredis
form is:

r=a+Bx,+& (2.27)
X =0+ pXy U

where I, is the excess stock return (return on a portfolio of stockgke-
riodt, X,_, is a lagged predictor variable, whose dynamics is deschpe
a first-order autoregressive model, aad and u, are correlated distur-

bances. The vectqg, , U, ) is assumed to have a bivariate normal distribu-
tion with a zero mean vector and a covariance matrix

2
Z _ Uz Uzu
- 2
g a

&u u

The predictor is a variable such as the dividend yield, tlo&-bo-market
ratio, and interest rate variables, or lagged values afdh&énuously com-

pounded excess retum.®

The dividend yield is considered a prime predictor candidateathmod
the studies discussed below use it as the sole return predictor.

The investor maximizes the expected utility, weighted byptiedictive
distribution as in Eq. (1.1).

(Kandel and Stambaugh 1996) examine the problem in Eqg. (1.1) in a
static, single-period investment horizon setting, while (Barl2080) ex-
tends it to consider multi-period horizon stock allocations withnaitre-
balancing. Kandel and Stambaugh investigate a no-predictabfliyna-
tive prior for B and 2. They do so by constructing it as the posterior
distribution that would result from combining the diffuse prior

30 Numerous empirical studies of predictability hastentified variables with pre-
dictive power. See, for example, (Fama 1991).
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~(N+2)/2

p(B.z) 0 2]

ple, save for a sample coefficient of determinati®h equal to zeré: The
behavior of the optimal stock allocations is analyzed over a range of values
of the predictors, for a number of samples that differ byntheber of pre-

dictors N, the sample siz&, and the regressiofR®. Kandel and Stam-
baugh’s results confirm an intuitive relation between the optstoak al-

location and the current value of the predictor variabile, Specifically,
the greater the positive difference between the one-step &tiedd/alue

with a hypothetical sample identical to the real sam-

BXT and the returns’ long-term average= 6)‘(, the higher the stock al-

location.
Kandel and Stambaugh put forward a related criterion for asgebe
economic significance of predictability evidence. The optimiacation

«” in the case wherx, =X (where X is the long-term average of the

predictor variable) is no longer optimal wh&p # X . Then, a comparison
of the certainty-equivalent returns associated with the expedil@ies of
the optimal allocations wher, = X and whenX; # X allows one to ex-

amine the economic implications (if any).
(Kandel and Stambaugh 1996) emphasize the important departure of the
evidence of economic significance from the evidence of staistignifi-

cance. For example, given & (unadjusted) from the predictive regres-
sion of only 0.025 (implying a p-value of 0.75 of the standard reigneB
statistic), the investor optimally allocates 0% of his wetdtstocks when

predicted returrb X; is one standard deviation below its long-term aver-

ager , but 61% wherb X; =T, under a diffuse prior and a coefficient of

risk aversion equal to 2. Under the no-predictability informapinier, the
allocations are, respectively, 53% and 83%. Therefore, stalistgignifi-
cance of the predictability evidence does not translateettoomic insig-
nificance.

The mechanism through which predictability affects portfolio obads
further enriched by the investigation of (Barberis 2000), whattied<an-
del and Stambaugh’s framework to the issue of a varying ineestnori-
zon. Incorporating parameter uncertainty into the portfolio problem tends

31 |n a related paper, (Stambaugh 1999) charactettizesconomic importance of
the sample evidence of predictability by considgfitypothetical samples car-

rying the same information content abddt and 2 as the actual sample but
differing in the value ofy; .
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to reduce optimal stock holdings, and this horizon effect issuanqdris-
ingly, stronger at a long-horizon than at a short-horizon. In canwagn
the possibility of predictable returns is taken into accopmitgceived risk
of stocks by a buy-and-hold investor at long horizons diminishes because
the variance of cumulative returns grows slower than linesitlty the ho-
rizon. Thus, a higher proportion of wealth is allocated to statkeng ho-
rizons compared with the case when returns are assumedi.ialband
these differences increase with the horiZofinalyzing the interaction of
the two opposing tendencies, Barberis finds that introducing estimat
risk, in a static setting, reduces the horizon effect fislkaaverse investor
— the uncertainty about the process parameters adds to imygestzout
the forecasting power of the predictor(s) and increasestriskiger hori-
zons. As a result, the 10-year buy-and-hold portfolio strategy afvaas-
tor with a risk aversion parameter of 10, who takes both predittaind
uncertainty into account, results in up to a 50% lower allocatompared
to the case of predictability only, with no estimation risk.

Both (Barberis 2000) and (Stambaugh 1999) explore the sensitivity of

the optimal allocation to varying the initial predictor's wal X,. Long-

horizon allocations under uncertainty generally increase witlhahizon
for low starting values of the predictor and decrease for $tigiting val-
ues, leading to a lesser sensitivity to the predictoriisgavalue. Stam-

baugh demonstrates that treatirg as a stochastic realization of the same

process that generated, X,,...,X;, compared to considering it fixed,

brings in additional information about the regression parameters and
changes their posterior means. He observes that, when estimsitios
incorporated, the long-horizon (in particular, 20-years) optimatation

is often decreasing in the predictor, even though expected retuot. is
This pattern can be ascribed to the skewness of the preditisiribution.
Incorporating uncertainty (particularly the uncertainty about ahtore-
gressive coefficient of the predictor) induces positive skewnessviani-

tial values of the predictor (leading to high allocatica®)}l negative skew-
ness for high initial values (leading to low allocations).

32 Empirically observed mean-reversion in returnsgétize serial correlation)
helps explain the horizon effect. However, Barbaoges that predictability it-
self may be sufficient to induce this effect, iftmoean-reversion. Specifically,
the negative correlation between the unexpectetngtand the dividend yield
innovations is one condition for the horizon effegee also (Avramov 2000),
and Section 5 below.
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1.5.2 The dynamic portfolio problem

As mentioned earlier, market-timing is one of the modificatitmshe
portfolio allocation problem resulting from predictability. Supptisg an

investor at timerl with an investment horizom +T has a dynamic strat-

egy and rebalances at each of the ddtesl,..., T +T —1. The new in-

tertemporal context of the problem allows us to consider a nevetasipe
parameter uncertairt®y— not only does the investor not know the true pa-
rameters of the return generating process but the relatiobstviggen the
returns and the predictors may also be time-varying. Ad Tinthe Bayes-
ian investor solves the portfolio problem taking into accdhat at each
rebalancing date, the posterior distribution of the paraméteupdated
with the new information. It turns out that this “learningafyesian updat-
ing) process plays an important role in the way the inveist horizon af-
fects optimal allocation®.The underlying factor driving changes in alloca-
tions across horizons is now a hedging demand — a risk-aveesstadnyv
attempts to hedge against the perceived changes in the innesioper-
tunity set (equivalently, in the state variabkes).

(Barberis 2000) considers a discrete dynamic settingiwithstock re-
turns to explore the effects of learning about the unconditional ofean
turns and finds that uncertainty induces a very strong neghagdging
demand at long horizoAsA long-horizon investor who admits the possi-
bility of learning about the unconditional mean in the futulecates sub-
stantially less to stocks than an investor with a buy-and-hold strategy.

33 An early discussion of the Bayesian dynamic ptidfproblem in a discrete-
time setting (without accounting for predictabilitpan be found in (Winkler
and Barry 1975). (Grauer and Hakansson 1990) examhia performance of
shrinkage and CAPM estimators in a dynamic, disctiéte setting.

34 (Merton 1971; Williams 1977) show that incorpongtilearning in a dynamic
problem leads to the creation of a new state verispresenting the investor’s
current beliefs. Here, the new state variablesttz@eposterior estimates of the
unknown parameters, whose dynamics might be nariné learning is ig-
nored, the current dividend yield is the only steeiable, and it fully charac-
terizes the predictive return distribution.

35 Hedging demands are introduced by (Merton 1978).ivestor who is more
risk averse than the log-utility case (i.e., wittc@efficient of risk aversion
higher than 1) aims at hedging against reinvestmisktand increases his de-
mand for stocks when their expected returns are Reeall that expected stock
returns are negatively correlated with realizedlsteturns.

36 The intuition behind the negative hedging demanthat an unexpectedly large
return leads to an upward revision of unconditieglected return
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While the framework introduced by Barberis involves learning about the
unconditional mean of returns only, (Brandt, Goyal, Santa-Clara, and
Stroud 2004) address simultaneous learning about all model parameters
The utility loss from ignoring learning is substantial buhégatively re-
lated to the amount of past data available and to the invessk’awver-
sion parameter. Brandt et. al observe that the utility gaims &rccounting
for uncertainty or for learning are of comparable size, ang@sing with
the horizon and the current predictor value. They break down the hedging
demand and analyze its components — (1) the positive hedging component
arising from the negative correlation between returns and ekanghe
dividend yield and (2) the negative hedging component due to the positive
correlation between returns and changes in the model parameteisy-The
gregate effect can be positive at short horizons (up to fiaesyéut turns
negative for longer horizons.

Brandt et. al observe that learning about the mean of the di/igeld
and about the correlation between returns and the dividerdligighlice a
positive hedging demand which could partially offset the negatiggihg
demand above.

A question of practical importance to investors is whetherpbssible
to take advantage of the evidence of predictability in practicawellen
and Shanken 2002) offer an insightful answer which is unfortundigly
appointing. They find that patterns in stock returns, likedjatability,
which a researcher observes, cannot be perceived by a rational investor.

1.5.3 Model Uncertainty

(Avramov 2000; Cremers 2002) address what could be viewed d& a de
ciency shared by the predictability investigations above — moaetr-
tainty, introduced by selecting and treating a certain retenegting
process as if it were the true process. At the heart yéd8an Model Av-
eraging (BMA) is computing a weighted Bayesian predictiwtritiution
of the “grand” model, in which individual models are weighted tmjirth
posterior distribution¥.

Suppose that each individual model has the form of a linearcfivedi
regression:

ro=X; 4B +&;, (1.28)

87 If K variables are entertained as potential predictines,e are2® possible
models.
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where
I, = (N x 1) vector of excess returns dhportfolios,
Xj1 = L Zj,t—l)’

Z,,, = (kj x 1) vector of predictors, observed at the end o, that

belong to mods,
B, = ((k; +1) x N) matrix of regression coefficients, and

&, = disturbance of mod¢ assumed to be normally distributed with

mean O and covariance matri; (Avramov) or 2 (Cremersy® The
framework requires that two groups of priors be specified — maritais
(i.e., priors of inclusion of each variable in an individualdel), and pri-
ors on the parameter8; and 2, of each model. Each model could be
viewed equally likely a priori, and assigned the diffuse
priorP(M j): 1/2% . where M i ]=1...,Kis thej " model. A different

prior ties the model selection problem with the variablectin problem,
as in (Cremers 2002):

P(M, )= 0" (- p) ™, (129
where p denotes the probability of inclusion of a variable in mgdek-
sumed equal for all variables, but easily generalized teatedlifferent de-
grees of prior confidence in subsets of the predictors).

No predictability (no confidence in any of the potential predictis)
equivalent to not including any of the explanatory variabiethé regres-
sion in (1.28). Then, returns aréd., and, using (1.29), the model prior

isP(M,)=(1-p)<.
The posterior probability of modé¥l ; is given by

%8 Both Avramov and Cremers treat the regression nmpeters Bj as fixed.

(Dangl, Halling and Randl 2005) consider a BMA fework with time-
varying parameters.

3% (Pastor and Stambaugh 1999) observe that wherethef models considered
includes one with a strong theoretical motivatierg(, the CAPM), assigning a
higher prior model probability to it is reasonable.
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P(®, M, )PM)) (1.30)

Srlo, 1 plw))

where @, denotes all sample information available up to tinithe mar-

P(Mjlq)t):

ginal likelihood function P(CIDt |Mj) is obtained by integrating out the

parametersB; and 2 ; :

L(Bj’zi;cbj’Mj)P(Bj;zj|Mj) (1.31)
P(Bi’zi |®1’Mi) ’

P(Cbt |Mj):

where L(Bj,Z].;CDJ.,Mj) is the likelihood function corresponding to
model Mj , P(BJ.,Zj |Mj) is the joint prior andP(Bj,Zj |<Dj,Mj) is
the joint posterior of the model parameters.

The weighted predictive return distribution is given by:

P(RJ,-flq)t):ZZK:P(Mj lcbt)J.P(Bj’zj lcbt’Mj) (1.32)

=1
x P(R.;1B,,Z,,M,,® )dB,

where R . is the predicted cumulative return over the investment horizon

A

T.
To express prior views on predictability, Cremers consitteee quan-
tities directly related to it: the expected coefficient ddtermination,

E(Rz), the expected covariance of returttE(Z), and the probability of
variable inclusion,p . He asserts conjugate priors for the parameters and
includes a hyperparameter which penalizes large models. (Avragtn)
uses a prior specification fd8; and 2; based on the one of (Kandel and
Stambaugh 1996). The size of the hypothetical prior samipledeter-

mines the strength of belief in lack of predictability {gsincreases, belief
in predictability diminishes).
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Both Cremers and Avramov find in-sample and out-of-sample evédenc
of predictability* Avramov estimates a VAR model similar to Eq. (1.27).
His variance decomposition of predicted stock returns into nrsleles-
timation risk, and uncertainty due to forecast error shows thatimaee
certainty plays a bigger role than parameter uncertaingy fiktls that
model uncertainty is proportional to the distance of the currettiqior
values from their sample means. To gauge the economic siguiéicof
accounting for model uncertainty, Avramov uses the difference in certainty
equivalent metric and reaches an interesting result: the apgillocation
for a buy-and-hold investor is not sensitive to the investmeidrorThis
finding is contrary to the general findings of the Bayegieedictability
literature. He ascribes the finding to the positive cori@talietween the
unexpected returns and the innovations on the predictors with thethighes
posterior probability. The dividend yield, which is most often thg pné-
dictor in predictability investigations, has a lower postefrobability
than the term premium and market premium predictors, andfahere
smaller influence in the “grand” model (confirmed by Cremers’ refult

1.6. Conclusion

The application of Bayesian methods to investment managemantiis
brant and constantly evolving one. Space constraints did not alldw us
review many worthy contributiorts Active research is being conducted in
the areas of volatility modeling, time series models, anoneegwitching
models. Recent examples of stochastic volatility investigatiinclude
(Jacquier, Polson, and Rossi 1994; Mahieu and Schotman 1998; Uhlig
1997); time series models are explored by (Aguilar and West 2000;
Kleibergen and Van Dijk 1993; Henneke, Rachev, and Fabozzi 2006); re
gime switching has been discussed by (Hayes and Upton 1986; So, Lam,
and Li 1998), and employed by (Neely and Weller 2000).

Bayesian methods provide the necessary toolset when head/-tail
characteristics of stock returns are analyzed. (But@@b; Tsionas 1999)
model returns with symmetric stable distribution, while (Fernareted
Steel 1998) develop and employ a skewed Studeatameterization.

40 Other empirical studies of return predictabiiitiglude (Lamoureux and Zhou
1996; Neely and Weller 2000; Shanken and Tamayd 2@&@ramov and Chor-
dia 2005).

41 For a more detailed discussion, see (Rachev, Bagasheva, and Fabozzi
2007).
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These investigations have been made possible thanks to graatashin
computational methods, such as Markov Chain Monte Carlo (see Bau-
wens, Lubrano, and Richard 2000)).

The individual investment management areas mentioned abovealsever
of which were surveyed in the previous sections, will continue to evolv
future works. We see the main challenge lying in their iati@m into co-
herent financial models. Without doubt, Bayesian methods are th& indi
pensable framework for embracing and addressing the ensuing complex
ties.
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