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Asset Liability Management

by

Michael J. Grebeck

Multistage stochastic programming methods are applied to portfolio optimiza-

tion in the context of asset liability management. These methods can incorporate

rebalancing decisions and transaction costs to find optimal investment strategies

over a time horizon. Additionally, assets and liabilities are considered in the same

risk-reward optimization problem, thereby taking advantage of common risk fac-

tors.

The specific problem examined is that of a pension fund. The allocations are

found among various asset classes that optimize a tradeoff between the risk and

the expected final surplus wealth. A weighted average of the Conditional Value

at Risk of the negative surplus wealth over the time horizon is used as the multi-

period measure of risk. This particular risk measure permits a formulation of the

problem that has a convex, piecewise linear objective and linear constraints. A

decomposition procedure in the solution method allows parallel implementation.

Uncertainty is represented through a scenario tree, resulting in a very large

deterministic formulation of the stochastic program. The scenario generation

procedures attempt to produce representative discrete distributions that will result

in good decisions. The scenarios are generated from two multivariate time series

models that incorporate volatility clustering: The first assumes the innovations

are normal, and the second assumes the innovations are stable. Value at Risk

v



backtesting of the time series models rejects the normality assumption and shows

the superiority of the stable assumption.

Efficient frontiers for the 2-stage problem are found under both distributional

assumptions. Backtesting of the minimum risk portfolios is carried out to compare

the performance of the 1-stage problem with the 2-stage recourse problem and

the normal distribution with the stable distribution. By computing the risk of the

realized surplus wealths resulting from the optimal allocations, it is shown that the

2-stage recourse problem outperforms the 1-stage problem in dynamic backtesting

with transaction costs. Portfolio backtesting in a static setting without transaction

costs provides a better comparison of the distributional assumptions and shows

that the stable assumption produces a smaller realized risk.
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dardized residuals Q̂−1/2Êτ . . . . . . . . . . . . . . . . . . . . . . 63

5.1 Efficient frontiers under the normality and stable assumptions for

β = 0.95. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Dynamic backtesting: 1-stage versus 2-stage under the normality

assumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Dynamic backtesting: 1-stage versus 2-stage under the stable as-

sumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 Dynamic backtesting: Fixed-mixed rules. . . . . . . . . . . . . . 84

ix



List of Tables

4.1 Benchmarks for the pension fund asset classes. . . . . . . . . . . 48

4.2 Univariate ML estimates of the tail index and scale parameter for
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Chapter 1

Introduction

Asset liability management (ALM) attempts to find the optimal investment strat-

egy under uncertainty in both the asset and liability streams. In the past, these

two sides of the balance sheet have usually been separated, but simultaneous

consideration of assets and liabilities can be very advantageous when they have

common risk factors. If assets are allocated such that they are highly correlated

with the liabilities, it is possible to reduce the risk of the entire portfolio.

Two of the earlier ALM frameworks for constructing portfolios of fixed-income

securities are dedication and immunization. Basic dedication assumes that the

future liability payments are deterministic and finds an allocation such that bond

income is sufficient to cover the liability payment in each time period. Achieving

this type of cashflow matching in every period is likely to be costly, so traditional

immunization models match cashflows on average providing a cheaper, but usually

riskier, portfolio. The immunized portfolio is constructed by matching the present

values and interest rate sensitivities of the assets and liabilities, and it results in

an allocation that hedges against a small parallel shift in the term structure of

interest rates.

Both of these earlier frameworks are inadequate for ALM because they lack

1



the stochastic nature of interest rates and liabilities and the dynamic nature of

investing. The two main tools that help capture these dynamic and stochastic

characteristics are stochastic control and stochastic programming.

Stochastic control methods model uncertainty in a continuous-time setting

through Itô processes, but a drawback is that only a few driving variables, or

states, can be handled. Merton’s classical consumption and investment problem

in [16] is one successful application of stochastic control, and there are extensions

of this problem to include a stochastic interest rate in [39]. The application of

stochastic control to ALM has been limited so far, but an exception is surplus op-

timization for pension funds and life insurance in [54]: It is shown that an investor

holds a combination of the riskless asset, the market portfolio, a hedge portfolio

for the stochastic interest rate, and also a hedge portfolio for the liabilities.

An advantage of stochastic control over stochastic programming is that there

is no need to approximate uncertainty with scenarios; however, there are many

components of ALM, such as legal constraints, policy constraints, and transaction

costs, that the stochastic control methods cannot handle. The remainder of this

paper is devoted to stochastic programming techniques that can include such

components in a direct manner.

A general definition of stochastic programming is mathematical optimization

with uncertain parameters. These problems typically rely on uncertainty approx-

imated by a set of scenarios, often in the form of a scenario tree. For example, a

straightforward extension of dedication that includes scenarios for the liabilities,

cashflows, and reinvestment rates results in a stochastic linear program in [20].

As another simple example, the scenario immunization technique in [14] finds a

cheap portfolio that keeps the present value of the assets close to the present value

of the liabilities under all scenarios. However, the dynamic nature of both of these
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examples is limited because neither consider rebalancing decisions.

Multistage stochastic programming with recourse offers a general framework

that can directly incorporate portfolio rebalancing and linear transaction costs.

Two of the early successes in ALM, the Kusy-Ziemba model and the Russell-

Yasuda Kasai model, illustrate the potential:

• The Kusy-Ziemba model in [31] is a 2-stage stochastic linear program that

includes many various features: changing yield spreads over time, synchro-

nization of cash flows by matching maturities of assets with expected cash

outflows, simultaneous consideration of assets and liabilities to satisfy ac-

counting principles and match liquidities, transaction costs, uncertainty in

withdrawal claims and deposits, uncertainty in interest rates, and legal con-

straints. The stochastic program finds optimal decisions for asset alloca-

tions, deposit holdings, and borrowing throughout five years. Even with a

very limited set of scenarios, the recourse model produces results superior

to those of other models.

• The Kasai model found in [9, 11] is a 6-stage linear stochastic program for

a Japanese insurance company. The model is designed to handle multi-

ple investment and liability accounts while meeting regulations imposed by

Japanese insurance laws. The goal of the stochastic program is to produce

a high-income return to pay the interest on savings policies while also maxi-

mizing the wealth of the firm at a distant horizon. The model finds the best

allocation strategy over time of the firm’s funds to asset classes such as cash,

loans, bonds, equities, and real estate. Implementation of this model proves

to be a success over previous mean-variance methods used by the insurance

company.

Stochastic programming is becoming more popular in finance as computing

3



power increases. While multistage stochastic programs with recourse can more

adequately model dynamic and stochastic financial problems, they are much more

of a computational challenge, and simplifications are sometimes needed to make

the problems implementable. One popular approach in finance to ease the compu-

tational burden is to use decision rules, for instance as in [56]. Decision rules can

greatly reduce the decision space but create non-convex optimization problems.

A scenario generation procedure is needed to construct the set of scenarios

for the stochastic program that will result in good decisions. There are many

different techniques in scenario generation, and most of them rely on a distribu-

tional assumption for a data set. Since there is empirical evidence of heavy tails,

high peaks, skewness, long-range dependence, and volatility clustering in financial

data, it is desirable to include these characteristics when constructing the scenar-

ios. Special attention is given to time series models with stable distributions in

this dissertation.

This dissertation is organized as follows:

• Chapter 2 reviews relevant material on risk and optimization, mostly in a

single-stage context. Properties of the Conditional Value at Risk (CVaR)

risk measure are covered, and its use in stochastic programming is illus-

trated.

• Chapter 3 discusses general multistage stochastic programs with recourse

and sets up a program that is applied to pension fund data. It is a multi-

objective program that maximizes the expected final surplus wealth and

minimizes a multi-period risk measure while considering portfolio rebalanc-

ing and transaction costs.

• Chapter 4 describes the pension fund data and fits multivariate time series

models that account for volatility clustering using the normal distribution
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and a stable distribution. Value at Risk backtesting provides a comparison

of the models.

• Chapter 5 solves the deterministic equivalent of the ALM problem in Chap-

ter 3 with the scenarios generated from the time series model in Chapter 4.

Portfolio backtesting is carried out to compare the 2-stage problem with the

1-stage problem and the normality assumption with the stable assumption.
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Chapter 2

Risk and Optimization

The goal of risk-return optimization is to optimize the tradeoff between the risk

and return. This chapter reviews a few risk measures and discusses how they

can be implemented in simple single-stage portfolio optimization problems. The

techniques for optimizing CVaR presented in this chapter are later used in a

multistage problem in Chapter 3.

2.1 Risk Measures

The standard measure of risk for a portfolio of equities suggested by Markowitz in

[38] is the variance of the return. A portfolio consists of weights ω = (ω1, ..., ωn)′,

such that ωi ≥ 0 and
∑n

i=1 ωi = 1, in n assets with corresponding risky returns

R = (r1, ..., rn)′. The risk associated with the portfolio return rp = ω′R is given

by σ2
p = ω′Σω, where Σ is the covariance matrix of R. While the variance of

the investment return is the most traditional risk measure, a common criticism is

that the variance penalizes both large gains and large losses. A modification to an
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asymmetric risk measure that accounts only for large losses is the semivariance:

E
(
[ω′E(R) − ω′R]+

)2
.

However, numerical optimization of the semivariance is difficult. Another modi-

fication is the downside formula, which measures the degree that the returns are

distributed below some target return r∗:

E
(
[r∗ − ω′R]+

)2
.

A second criticism of variance is that financial returns are typically heavy-tailed,

and in that case, the variance does not even exist. A logical argument can then

be made for using the mean absolute deviation of the portfolio

mp = E |ω′R − ω′E(R)| ,

or alternatively, the scale parameter of a stable distribution. Stable distributions

are discussed in more detail in Chapter 4.

Some other risk measures rely only on the tail of the distribution, in which

case the modeling of the probability of extreme events becomes more important.

The following, VaR and CVaR, are two such measures. Value at Risk (VaR) is

a frequently used measure of risk for financial institutions and regulators. For a

given confidence level of 100β% with β ∈ (0, 1), VaR is the minimum value of the

loss, or negative return, that is exceeded no more than 100(1 − β)% of the time.

Its ease of understanding helps to make it a popular risk measure.

The following notations and definitions of VaR and CVaR resemble mostly

those in [53]. For a given decision x ∈ R
n, let the random variable L(x) ∈
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R represent a loss, or negative return, for each x, and let ΨL(x, ζ) denote the

cumulative distribution function for L(x), i.e.,

ΨL(x, ζ) = P (L(x) ≤ ζ) .

For a given decision x, the Value at Risk at the 100β% confidence level is given

by

VaRβ(x) = inf {ζ|ΨL(x, ζ) ≥ β} .

While it is not widely used in finance, the Conditional Value at Risk (CVaR)

has properties that make it a very logical alternative to VaR. These properties,

referred to as coherence, are described in the next section.

Define a random variable Tβ(x) on the β-tail of the loss L(x) through the

distribution function

ΨTβ
(x, ζ) =

⎧⎨
⎩ 0 ζ < VaRβ(x),

ΨL(x,ζ)−β
1−β

ζ ≥ VaRβ(x).
(2.1)

For a given decision x, the Conditional Value at Risk at the 100β% confidence

level is the mean of the tail random variable Tβ(x) with distribution function (2.1):

CVaRβ(x) = E (Tβ(x)) .

As is implied by its name, CVaR is closely related to the conditional expectation

beyond VaR. In general, CVaR satisfies the inequalities

E (L(x)|L(x) ≥ VaRβ(x)) ≤ CVaRβ(x) ≤ E (L(x)|L(x) > VaRβ(x)) . (2.2)

If there is no discontinuity in the distribution function of L(x) at VaRβ(x), then
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equality holds in equation (2.2). For this reason, CVaR is also sometimes called

the Expected Tail Loss (ETL). When there is a discontinuity, as illustrated in [53],

CVaRβ(x) splits the probability atom at VaRβ(x) in a certain way. CVaR is de-

fined in this manner because it has an equivalent representation that is easily

optimized when the distribution is described by a set of scenarios. This represen-

tation is referred to as Uryasev’s formula and is reviewed in Section 2.4.

A discussion of several other tail risk measures can be found in [1] and [2].

2.2 Coherence

To help define a sensible risk measure, Artzner et al. introduce properties that

are required of a coherent risk measure in [3]; however, VaR does not satisfy

these properties in general. As is well known, VaR is not sub-additive: Examples

have been constructed where the VaR of the sum of two portfolios is greater

than the sum of the individual VaRs. Lack of sub-additivity is very undesirable

because diversification is not promoted. However, for the special class of elliptical

distributions, VaR is sub-additive and coherent (see [6]).

The following properties of coherence are stated adhering to the axiomatic

definition in [1]. If V is the space of real-valued random variables, a risk measure

is a functional ρ : V −→ R. For two random variables v, v′ ∈ V that are thought

of as losses, ρ is coherent if it is

i. sub-additive: ρ(v + v′) ≤ ρ(v) + ρ(v′),

ii. positive homogeneous: ρ(λv) = λρ(v), ∀λ ≥ 0,

iii. translation invariant: ρ(v + c) = ρ(v) + c, ∀c ∈ R, and

iv. monotonous: ρ(v) ≥ 0, ∀v ≥ 0.
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Proof of the coherence of CVaR can be found in, for instance, [2, 47, 53]. The

coherence of the set of random variables {L(x)} can be stated as a function of x

when L(x) is linear:

L(x) = x1Y1 + ... + xnYn.

In this situation, Yi might be a random variable representing an individual asset

loss, and L(x) is a random variable representing the total portfolio loss. Coherence

of CVaRβ(x) is this framework means

i. CVaRβ(x) is sublinear in x,

ii. CVaRβ(x) = c when L(x) = c ∈ R, and

iii. CVaRβ(x) ≤ CVaRβ(x′) when L(x) ≤ L(x′).

See [53] for a proof.

Note that sub-additivity and positive homogeneity guarantee that a coherent

risk measure is convex, which is advantageous in portfolio optimization. A lack

of convexity of VaR contributes to numerical difficulties in optimization. VaR

is easy to work with when normality of distributions is assumed, but financial

data is typically heavy-tailed. This dissertation also considers optimization under

uncertainty where discrete probability distributions arise from scenario trees. In

addition to coherence, CVaR has a representation that is practical in minimization

problems with scenarios generated from any distributional assumption.

2.3 Risk-Return Optimization

If the risky returns R are assumed to have a multivariate normal distribution

N(µ, Σ), the portfolio return rp = ω′R is also normally distributed with mean

µp = ω′µ and variance σ2
p = ω′Σω. The classical mean-variance optimization
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problem is to minimize the risk of the portfolio for a minimum level of expected

return:

min
ω

ω′Σω

s.t. ω′µ = µ0,∑n
i=1 ωi = 1.

(2.3)

The solution to the above problem is easily obtained with Lagrangian techniques

and can be found in [8]. As µ0 is varied, the set of optimal portfolios trace out

the mean-variance efficient frontier. If short selling is not allowed, the restriction

ωi ≥ 0 is also included.

A drawback of optimization problem (2.3) is that it requires a large number

of parameters to be estimated. If there are n risky assets, the covariance matrix

consists of n(n + 1)/2 elements. For instance, if the universe of assets consists of

the S&P500, over 125,000 variances/covariances must be estimated. A solution,

as found in [58], is to model each asset with a multifactor equation:

ri = µi + βi1F1 + ... + βikFk + εi, (2.4)

where Fj is the deviation of the random factor j from its mean and cov(Fj, Fl) = 0

for all j �= l. Examples of typical factors include inflation, interest rates, and

GDP. The asset specific risks εi have zero expectation, are uncorrelated, and are

independent of the factors. The portfolio rp = ω′R can be written as

rp = µp +
k∑

j=1

βpjFj + εp,

where

µp = ω′µ, βpj =
n∑

i=1

ωiβij, εp =
n∑

i=1

ωiεi.
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It follows that the variance of the portfolio is

σ2
p =

k∑
j=1

β2
pjσ

2
Fj

+
n∑

i=1

ω2
i σ

2
εi
.

The first term in the right-hand side of this equation is the systematic or market

risk, and the second term is the unsystematic risk of the portfolio. If equal weight

is given to each asset, ωi = 1/n, the unsystematic risk is bounded by c/n for some

constant c, so this risk can be diversified away as n grows large. Using the factor

model converts the mean-variance optimization problem to

min
ω

σ2
p =

∑k
j=1 β2

pjσ
2
Fj

+
∑n

i=1 ω2
i σ

2
εi

s.t. ω′µ = µ0,

βpj =
∑n

i=1 ωiβij,∑n
i=1 ωi = 1.

The factor sensitivities βij, factor variances, and specific risk variances can be

estimated through linear regression in equation (2.4). This results in a significant

reduction in the number of parameter estimates needed as compared to optimiza-

tion problem (2.3).

Both of the above mean-variance problems are quadratic optimization pro-

grams. As an alternative to mean-variance analysis, one can optimize the risk

measures mentioned in Section 2.1. Also in [58], the author illustrates that a

linear optimization problem can be constructed when the variance of the portfolio

is replaced with its mean-absolute deviation mp. Since R is multivariate normal,

the relation holds that mp =
√

2
π
σp, so minimizing the mean-absolute deviation

produces the same optimal portfolio as minimizing the variance. In addition,

the linear equivalent program is easily modified to penalize upside and downside
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deviations from the mean with different weights.

The class of elliptical distributions offers special properties in portfolio theory

that are useful when minimizing VaR or CVaR. A very brief review follows; a

more complete introduction to elliptical distributions and their portfolio implica-

tions is found in [6]. For any elliptically distributed random vector R with finite

variance for all univariate marginals, variance is equivalent to any positive homo-

geneous risk measure ρ. If rp = ω′R and r̃p = ω̃′R are two linear portfolios with

corresponding variances σ2
p and σ̃2

p, then

ρ (rp − E(rp)) ≤ ρ (r̃p − E(r̃p)) ⇐⇒ σ2
p ≤ σ̃2

p.

In addition if ρ is translation invariant, the solution to the following risk-return

optimization problems coincide:

min
ω

σ2
p

s.t. rp = ω′R,

E(rp) = µ0,∑n
i=1 ωi = 1,

min
ω

ρ(rp)

s.t. rp = ω′R,

E(rp) = µ0,∑n
i=1 ωi = 1,

where µ0 is the desired return. Therefore, under this distributional assumption,

minimization of VaR, CVaR, or variance will all produce the same optimal port-

folios. This follows because CVaR is always coherent, and VaR is coherent for this

class of distributions.

The stable assumption makes portfolio optimization more difficult since the

variance is infinite and cannot be used as a risk measure. One natural solution

is to use the scale parameter of the portfolio return. The scale parameter is just

a generalization of the standard deviation of a normal distribution. Chapter 4

defines stable random vectors and the special case of a sub-Gaussian distribution,
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which is also in the class of elliptical distributions. If Q is the dispersion matrix

of the sub-Gaussian distribution, it can be shown that the VaR and CVaR of the

portfolio return are both strictly increasing functions of the dispersion parameter

of the portfolio return ω′Qω. Therefore, for a sub-Gaussian random vector R,

minimization of VaR and CVaR can both be achieved by the portfolio optimization

problem

min
ω

ω′Qω

s.t. ω′µ = µ0,∑n
i=1 ωi = 1.

Details of stable portfolio theory are found in [49], and a comparison of allocations

under the normality and stable assumptions is found in [48].

2.4 CVaR Optimization

One would like to be able to perform risk-return analysis for a portfolio by mini-

mizing VaR or CVaR, subject to a constraint on the return, for any distributional

assumption. In general, VaR is difficult to optimize and usually not used in this

setting. Typically, one can model the returns with any distribution and then

generate a discrete distribution of scenarios, but in this case, VaR is non-smooth

and non-convex in the portfolio positions with multiple local extrema (see [57]).

CVaR, on the other hand, has a representation that is easy to optimize for a set

of scenarios both as a constraint and in an objective function. Additionally, if

CVaR is constrained to be small, VaR must necessarily be small. Conversely,

minimization of VaR may produce very different solutions than minimization of

CVaR: VaR minimization may stretch the tail of the distribution beyond VaR

resulting in a poor CVaR value.
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2.4.1 Uryasev’s Optimization Shortcut

As defined earlier, for the decision x ∈ R
n, L(x) is the random variable repre-

senting the loss, or negative return, with associated VaRβ(x) and CVaRβ(x). To

begin, define the function

Γβ(x, ζ) = ζ +
1

1 − β
E
(
[L(x) − ζ]+

)
. (2.5)

CVaR is then expressed as a minimization through the following result: Γβ(x, ·)
is finite and continuous with

CVaRβ(x) = min
ζ∈R

Γβ(x, ζ), (2.6)

and, in addition,

VaRβ(x) = lower endpoint of argminζΓβ(x, ζ).

Equation (2.6) is referred to as Uryasev’s formula in this dissertation. As a

corollary, it can be shown that if L(x) is convex in x, then CVaRβ(x) is convex

in x and Γβ(x, ζ) is jointly convex in (x, ζ). In addition if a constraint set X is

convex, the following optimization shortcut gives a convex minimization problem

in (x, ζ): Minimizing CVaRβ(x) with respect to x ∈ X is equivalent to minimizing

Γβ(x, ζ) with respect to (x, ζ) ∈ X × R, i.e.,

min
x∈X

CVaRβ(x) = min
(x,ζ)∈X×R

Γβ(x, ζ).

Proofs of the above results are found in [53].

Similar to mean-variance efficient frontiers, [30] illustrates risk-reward analysis

using CVaR as a risk measure. If R(x) is a concave reward function and X is
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convex, then

min
x∈X

CVaRβ(x) subject to R(x) ≥ λ, (2.7)

min
x∈X

CVaRβ(x) − λR(x), and (2.8)

min
x∈X

−R(x) subject to CVaRβ(x) ≤ λ, (2.9)

produce the same efficient frontiers as λ is varied. As is already shown, the optimal

solution to (2.7) can be found by a jointly convex optimization problem. Similarly,

problems (2.8) and (2.9) produce the same optimal solutions as

min
(x,ζ)∈X×R

Γβ(x, ζ) − λR(x),

and

min
x∈X

−R(x) subject to Γβ(x, ζ) ≤ λ,

respectively.

An extension of these optimization procedures to risk shaping with CVaR is

found in [53]. If the CVaR at the 100βi% confidence level has a loss tolerance

equal to λi, for i = 1, ...I, then

min
x∈X

−R(x) subject to CVaRβi
(x) ≤ λi, for i = 1, ..., I,

has the same optimal solution as

min
(x,ζ1,...,ζI)∈X×R×...×R

−R(x) subject to Γβi
(x, ζi) ≤ λi, for i = 1, ..., I.

When L(x) has a discrete distribution arising from, for example, a scenario
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tree or sampling, equation (2.5) becomes

Γ̃β(x, ζ) = ζ +
1

1 − β

S∑
s=1

ps [Ls(x) − ζ]+ ,

where L(x) takes the value Ls(x) with probability ps for s = 1, ..., S. Additionally

if L(x) is linear, then Γ̃β is convex and piecewise linear. By introducing auxiliary

variables, a CVaR optimization problem can be solved by linear programming as

illustrated in the next section.

2.4.2 1-Stage Portfolio Optimization

This subsection applies Uryasev’s formula to risk-return analysis with CVaR and

obtains a linear programming problem. Define

X =

{
ω ∈ R

n

∣∣∣∣∣
n∑

j=1

ωj = 1, ωj ≥ 0, j = 1, ..., n

}
,

where x ∈ X represents the portfolio weights in n assets. The random return on

these assets at the end of a time period is represented by R = (r1, ..., rn)′, and the

negative return of the portfolio is given by

L(x) = −x′R.

If the mean of R is denoted by the vector µ, the risk-return problem is

min
x∈X

CVaRβ(x) s.t. x′µ ≥ µ0,

where µ0 is the required portfolio return, and by varying µ0, the efficient frontier

is obtained. This optimization problem fits into the form of equation (2.7). If
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the uncertainty in the return is given through the set of scenarios {R1, ..., RS}
where each Rs ∈ R

n occurs with probability ps, Uryasev’s optimization shortcut

produces the equivalent problem

min ζ + 1
1−β

∑S
s=1 ps [−x′Rs − ζ]+

s.t. x′µ ≥ µ0,

x ∈ X, ζ ∈ R.

By introducing auxiliary variables ys, s = 1, ..., S, a linear program results:

min ζ + 1
1−β

∑S
s=1 psys

s.t. x′µ ≥ µ0,

x′Rs + ζ + ys ≥ 0, s = 1, ..., S,

ys ≥ 0, s = 1, ..., S,

x ∈ X, ζ ∈ R.

This program is used to compare hedging strategies for international asset al-

location in [57]. In addition, the CVaR portfolio is compared with a portfolio

minimizing the mean absolute deviation (MAD). The empirical results indicate

that CVaR and MAD produce similar risk-return frontiers in a static setting.

However, in dynamic backtesting where the models are repeatedly applied over a

time horizon, CVaR produces higher returns and lower volatility than MAD.

2.5 Single-stage versus Multistage Optimization

Extending the single period risk-return problem to a multi-period setting is diffi-

cult and some modifications are necessary. In a multi-period setting, one usually

deals with a wealth process instead of returns so that the problems will be convex
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and sometimes linear. The general form of a stochastic program with recourse

allows any portfolio allocation to be made in each stage, and one typically opti-

mizes a function of the wealth process, not the return process, over the quantities

of assets held, not the portfolio weights. Instead of risk-return analysis, one can

perform risk-reward analysis where the risk, for instance, is a function of the

wealth process and the reward is the expected terminal wealth. This is the type

of problem that is addressed in the next chapter.

Decision rules such as fixed-mixed are useful because they reduce the decision

space, but they also limit the dynamic nature of the optimization problem. For

instance, one multi-period extension of mean-variance analysis is found in [37]:

max λE(wT ) − (1 − λ)var(wT ).

Here, wT is the terminal wealth, and the max is taken over all fixed-mixed decision

rules. In a fixed-mixed rule, the portfolio is reallocated in each time period to keep

a certain percentage of wealth in each asset. As λ is varied between zero and one,

a type of efficient frontier is obtained. While the number of decision variables are

greatly reduced, the problem becomes non-convex, and a global search algorithm

is necessary.

The coherence of a risk measure in a multi-period setting is also defined in

terms of a wealth process w = (w1, ..., wT ) where w1 is a known deterministic

wealth. It is shown in [21] that a weighted average of CVaR over the time horizon

is coherent: If CVaRβ(−wt) is the CVaR associated with the negative wealth −wt,

then a coherent risk measure is given by

ρ(w) = ρ(w1, ..., wT ) =
T∑

t=2

µtCVaRβ(−wt), (2.10)
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where the weights are nonnegative and sum to one. Here, coherence means that

ρ is

i. convex: ρ(λw + (1 − λ)w̃) ≤ λρ(w) + (1 − λ)ρ(w̃), ∀λ ∈ [0, 1],

ii. positive homogeneous: ρ(λw) = λρ(w), ∀λ ≥ 0,

iii. translation invariant: ρ(w1 + c, ..., wT + c) = ρ(w) − c, ∀c ∈ R, and

iv. monotonous: if wt ≤ w̃t a.s. for t = 1, ..., T, then ρ(w) ≥ ρ(w̃).

When implementing the risk measure in equation (2.10), one can use Uryasev’s

optimization shortcut in a similar manner as the previous section: Uryasev’s for-

mula can be applied to each CVaRβ(−wt) where the loss L is taken to be the

negative wealth −wt, and the wealth in each stage is a function of some deci-

sion variables. Of course, there are also constraints such as the balance of wealth

between stages. This is illustrated in detail in the next chapter for the surplus

wealth in an ALM problem.
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Chapter 3

Formulation of the Stochastic

Program

Stochastic programming offers a framework that can incorporate many of the

characteristics of an ALM problem. This chapter first discusses a general setup

for stochastic programs with recourse and then applies this framework to an ALM

problem for a pension fund.

3.1 General Recourse Problems

In a 2-stage recourse problem, a recourse decision is made after a realization of

uncertainty. The first stage has a vector of initial decisions x1 ∈ R
n1 made at

t = 1 when there is a known distribution of future uncertainty. The second

stage decisions x2 ∈ R
n2 adapt at t = 2 after the first stage uncertainty ξ1 is

realized. The second stage decisions usually also consider the distribution of

future uncertainty ξ2 realized after t = 2. For instance, consider an asset allocation

problem: The first stage decision is the initial portfolio allocation, the uncertainty

is the asset returns, and the recourse decision is the portfolio adjustments. This
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2-stage recourse problem finds the optimal initial and rebalanced allocations for

the given distribution of future stock movements.

This setup is described mathematically by first considering how the optimal

recourse decision is determined. For a given first stage decision vector x1 and

a given realization of the first stage uncertainty ξ1, the best recourse decision is

found through the following second stage problem

minx2 q2(x1, x2, ξ1) + Eξ2 (Q2(x1, x2, ξ1, ξ2)| ξ1)

s.t. B2(ξ1)x1 + A2(ξ1)x2 = b2(ξ1),

l2(ξ1) ≤ x2 ≤ u2(ξ1),

(3.1)

where

• q2(x1, x2, ξ1) is the cost of decision x2 for the given realization of the first

stage uncertainty ξ1 and the given first stage decision x1,

• Q2(x1, x2, ξ1, ξ2) is the cost of decision x2 for the given realizations of uncer-

tainties ξ1 and ξ2 and the given first stage decision x1,

• B2(ξ1) is the technology matrix that converts a first stage decision into

resources in the second stage, and

• A2(ξ1) is the recourse matrix.

It is possible to remove the cost function Q2 by including the second term of the

objective in the cost function q2. The problem is said to have fixed recourse when

A2 is independent of ξ1. The subscripts indicate at which t a value is known

except in the case of ξt. For instance, the realizations of B2, A2, and b2 are all

known at t = 2, which is the beginning of the second stage, but ξ2 is not realized

until after t = 2.
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The full 2-stage recourse problem incorporates the second stage problem as

follows: With the optimal value of the second stage problem (3.1) denoted by

Q1(x1, ξ1), the 2-stage problem minimizes the sum of a first stage cost q1(x1) and

the expected value of the second stage cost EQ1(x1, ξ1):

minx1 q1(x1) + EQ1(x1, ξ1)

s.t. A1x1 = b1,

l1 ≤ x1 ≤ u1.

(3.2)

The first set of constraints in the above problem are referred to as the first stage

constraints. A good introduction to the various properties of 2-stage recourse

problems, such as feasibility, is found in [4].

An obvious criticism of the 2-stage model is that it only allows one recourse

decision to be made, not a sequence of decisions over the time horizon. A multi-

stage recourse program can provide a more realistic model, but it is more complex

and can often be very difficult to solve numerically. As in the 2-stage problem,

the initial vector of decisions x1 is made before the first realization of uncertainty

ξ1, and a second stage decision x2 is then made based on x1 and ξ1. In the T -stage

problem, this process continues for the uncertainties ξt, t = 1, ..., T − 1, and the

decisions vectors xt, t = 1, ..., T . There is usually one additional realization of

uncertainty ξT following the final decision xT .

The T -stage recourse program can be defined recursively as an extension of the

2-stage program. Let the uncertainty up to and including stage t, for t = 1, ..., T ,

be denoted by ξt = {ξj, j = 1, ..., t}, where each ξj is the uncertainty realized in

stage j. Similarly, let the decisions up to and including stage t be denoted by

xt = {xj, j = 1, ..., t}, where each xj is the decision made for stage j. The first
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stage problem is essentially the same as problem (3.2):

minx1 q1(x1) + Eξ1Q1(x
1, ξ1)

s.t. A1x1 = b1,

l1 ≤ x1 ≤ u1,

(3.3)

with Qt, for t = 1, ..., T − 1, given by the minimization problems

Qt(x
t, ξt) = minxt+1 qt+1(x

t+1, ξt) + Eξt+1 (Qt+1(x
t+1, ξt+1)| ξt)

s.t. Bt+1(ξ
t)xt + At+1(ξ

t)xt+1 = bt+1(ξ
t),

lt+1(ξ
t) ≤ xt+1 ≤ ut+1(ξ

t),

(3.4)

and QT (xT , ξT ) is a known function, not the solution to another minimization

problem. It is possible to set QT = 0 by including the second term of the objective

in qT . The above problem (3.3-3.4) is a form of the multistage recourse program

that is relevant to the ALM problem that is presented in Section 3.4. Other

forms, such as those found in [20], allow the first constraint of (3.4) to depend on

all decisions up to t:

t∑
τ=1

Bt+1,τ (ξ
t)xτ + At+1(ξ

t)xt+1 = bt+1(ξ
t),

but this type of constraint is not necessary in this dissertation.

3.2 Scenario Generation

To numerically solve the recourse problem (3.3-3.4), the distribution of (ξ1, ..., ξT )

is approximated by a set of scenarios usually organized in the form of a scenario

tree. Figure (3.1) contains an example of a small scenario tree similar to the one
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Figure 3.1: A balanced scenario tree.

that is used in the 2-stage ALM problem in Chapter 5. A first stage optimal

allocation is found in the node at t = 1, and optimal recourse allocations are

found in every node at t = 2. In the 2-stage problem, there are no additional

allocation decisions made in the nodes at t = 3. The tree shown in the figure is

called balanced because each node at t = 2 is connected to two nodes at t = 3.

To describe the scenario tree, assume the nodes are numbered starting with

the value of one at t = 1, and let It be the number of nodes up to and including

those at t. Define the sets of indices It = {It−1 +1, ..., It}, for t = 2, ..., T +1, with

I1 = 1. A scenario s, which is a path through the scenario tree, is then represented

by the set of indices (i2, ..., iT+1) where it ∈ It. Two useful functions defined on

the node indices are the predecessor, pred(·), and the descendant, dec(·): pred(it)

returns the node in It−1 connected to it, and dec(it) returns a subset of nodes in

It+1 connected to it. At t, the probability of being at node it ∈ It is denoted by

p(it) so that
∑

it∈It
p(it) = 1. Sometimes it is more useful to use the transition
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probabilities p(it, it+1), for it+1 ∈ dec(it), where
∑

it+1∈dec(it)
p(it, it+1) = 1.

A topic of active research examines how to generate a set of scenarios to

represent the underlying distribution and produce good optimal decisions. The

simplest approach is to just generate a very large number of scenarios by sampling

from a time series model. This is reasonable for a 1-stage problem, but recourse

problems quickly become too difficult or time-consuming to solve as the number of

scenarios is increased. Even with parallel implementations of solution algorithms,

multistage problems must typically limit the number of scenarios. In this case, it

becomes necessary to somehow generate a smaller set of “good” scenarios.

One technique in scenario selection is sequential importance sampling. The

general idea behind importance sampling is to obtain scenarios that are important

(in some sense) in the stochastic program. Sequential importance sampling obtains

these scenarios in an iterative fashion. First, scenarios are generated for some given

tree structure. The stochastic program is then solved and values for an importance

sampling criterion are obtained at each node. These nodal values determine where

the structure of the scenario tree should be changed and/or where to resample a

subtree. A more complete description of this method is in [19]. As an example,

the importance sampling criterion used in [15] is the expected value of perfect

information (EVPI). If the EVPI of a node is below some threshold, a new subtree

emanating from that node is generated by resampling. If the EVPI is consistently

below the threshold, the tree is collapsed beyond that node. If the EVPI is above

the threshold for a node with no descendants, the tree is expanded beyond that

node.

Discretization is an alternative to sampling from a distribution. One relatively

simple technique for discretization is moment matching. For instance, to discretize

the normal distribution it is possible to match the first two moments with three
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symmetric points. The work of Dupačová [20] presents a moment matching model

for a two-dimensional random vector where the first and second random variables

may represent the first and second stage uncertainties, respectively. To obtain the

scenario values and probabilities, the first three marginal moments of both ran-

dom variables are matched with the corresponding moments of the approximate

distributions. In addition, the covariance between the true random variables is

matched with that of the approximations. If the number of desired scenarios is

large enough, and the moments are consistent, this procedure will provide a so-

lution. However, if the moments are inconsistent, Dupačová suggests a weighted

least squares minimization problem.

As an alternative to moment matching, the discretization technique of Pflug

in [46] relies on the minimization of a transportation metric to approximate a

continuous distribution with a discrete distribution. In this method, a desired

scenario tree structure has already been determined. The goal is to minimize

the difference between the optimal value of the stochastic program with the true

distribution and the optimal value of the stochastic program with the approxi-

mate distribution. This difference is termed the approximation error, and Pflug

shows this error can be bounded through the Fortet-Mourier distance between

the true and approximate probability distributions. The algorithm for the opti-

mal discretization minimizes this bound. Through a simple 1-stage example, it

is illustrated that this method performs better (in the sense of minimizing the

approximation error) than moment matching.

Scenario reduction procedures can be used when a large number of scenarios

are already given. An approach involving moment matching is found in [10]. A

second approach involving probability metrics is found in [17] and [25]: Scenarios

are recursively deleted with redistribution of the probability among the remaining
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scenarios by considering the Monge-Kantorovich functional.

There are many different methods to generate sample paths of the uncertainty,

and not all of them initially consider a tree structure. Sample paths may come

from an expert’s expectation, historical observations, or any time series model.

The problem is then to convert a set of sample paths into a scenario tree. The

method of clustering is described in [20]: One can group similar first stage values of

the sample paths into clusters and then continue sequentially through each stage,

or one can use a multi-level scheme in which the clusters consider the similarity

of the entire sample paths. A second method based on probability metrics which

converts sample paths into a tree structure by combining scenario reduction with

scenario bundling is found in [24].

3.3 Deterministic Equivalent Forms

The discrete and finite distribution of a scenario tree allows the stochastic re-

course problem to be written as a deterministic program. Once a scenario tree is

constructed, each node it determines realizations for At(ξ
t−1), Bt(ξ

t−1), bt(ξ
t−1),

lt(ξ
t−1), ut(ξ

t−1), and qt(·, ξt−1), which are denoted by Ait , Bit , bit , lit , uit , and

qit(·). The recourse problem (3.3-3.4) can then be written as

minx1 q1(x1) +
∑

i2∈I2
p(i2)Qi2(x

1)

s.t. A1x1 = b1,

l1 ≤ x1 ≤ u1,

(3.5)
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with Qit , for it ∈ It, t = 2, ..., T , given by the minimization problems

Qit(x
t−1) = minxt qit(x

t) +
∑

it+1∈dec(it)
p(it, it+1)Qit+1(x

t)

s.t. Bitxt−1 + Aitxt = bit ,

lit ≤ xt ≤ uit ,

(3.6)

and QiT+1
can be taken to be equal to zero.

The above (3.5-3.6) is the form of the recourse program that is relevant when

the solution method for the ALM problem is discussed in Section 3.4.4; however,

there are other ways to proceed. Two other deterministic forms are now mentioned

so that one can solve the ALM problem by possibly other solution algorithms. As

is shown in the next section, the ALM problem has a piecewise linear objective

with linear constraints. By introducing auxiliary variables, the piecewise linear

problem can be converted into a fully linear problem (with potentially a huge

number of decision variables). In this case, the function qit(·) takes a linear form:

qit(·) = 〈qit , ·〉,

where qit is now a vector of appropriate dimension.

The deterministic equivalent for the linear program in arborescent form care-

fully considers the structure of the scenario tree:

min 〈q1, x1〉 +
∑
i2∈I2

p(i2)〈qi2 , xi2〉 + · · · +
∑

iT∈IT

p(iT )〈qiT , xiT 〉
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subject to

A1x1 = b1,

Bi2x1+ Ai2xi2 = bi2 , ∀i2 ∈ I2,

Bi3xpred(i3) + Ai3xi3 = bi3 , ∀i3 ∈ I3,

...

BiT xpred(iT ) + AiT xiT = biT , ∀iT ∈ IT ,

lit ≤ xit ≤ uit , ∀it ∈ It, t = 1, ..., T.

(3.7)

This arborescent form implicitly includes non-anticipatory constraints that the

decision taken at t does not depend on the uncertainty that is realized in the

future. Note that the decision vectors are xit , it ∈ It, t = 1, ..., T , so there is one

decision for each node of the scenario tree except for those at T + 1.

The split-variable formulation is an equivalent form that lends itself to decom-

position and parallel implementation. If there are a total of S sample paths in

the scenario tree, S independent subproblems are created by allowing all decisions

to be scenario dependent. For the multistage case, the individual subproblem for

scenario s with nodes (i2, ..., iT+1) is

min 〈q1, x
s
1〉 + 〈qi2 , x

s
2〉 + ... + 〈qiT , xs

T 〉

s.t. A1x
s
1 = b1,

Bi2x
s
1+ Ai2x

s
2 = bi2 ,

Bi3x
s
2 + Ai3x

s
3 = bi3 ,

...

BiT xs
T−1 + AiT xs

T = biT ,

(3.8)

plus any upper and lower bounds on xs
t . When combining all subproblems into

one problem, non-anticipatory constraints must be explicitly considered in this
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formulation: For any two scenarios s and s̃ with a common path up to and in-

cluding t, xs
j = xs̃

j , for j = 1, ..., t, must be enforced. Essentially this amounts to

a 0 − 1 matrix of coefficients. If ps is the probability of scenario s, the overall

split-variable representation for the multistage program is

min
S∑

s=1

ps (〈q1, x
s
1〉 + 〈qi2 , x

s
2〉 + ... + 〈qiT , xs

T 〉) ,

subject to a set of constraints (3.8) for each s, the non-anticipatory constraints,

and any upper and lower bound constraints on xs
t . As [45] states, this representa-

tion is advantageous for algorithms that temporarily ignore the non-anticipatory

constraints.

Many multistage applications in finance can be posed as stochastic generalized

networks. This means that each scenario subproblem of the split-variable formu-

lation has a generalized network structure. Parallel implementation of highly

efficient network algorithms can provide substantial computational advantages;

however, some characteristics of a desired application, such as policy constraints,

may destroy the network structure. Additionally, the arborescent form does not

preserve any network structure present. Algorithms and computational studies of

stochastic generalized networks are found in the work of Mulvey and Vladimirou

[41–44]. See also [12], especially for parallel implementation.

Additional resources including solutions techniques for 2-stage and multistage

linear stochastic programs with recourse are in [4], [12], and [20].

3.4 The T -Stage ALM problem

A specific ALM problem is now put into a form of a stochastic program with the

goal of finding the allocations over a time horizon in a set of assets that optimize
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a tradeoff between the risk and reward. The risk measure is a weighted average

of the CVaR of the negative surplus wealth at each stage, and the reward is the

expect final surplus wealth. Let the asset prices and liability value be denoted by

st and lt, respectively. There are n assets available at each t giving st ∈ R
n, and

there is just one liability stream giving lt ∈ R. For the T -stage problem, (st, lt)

are defined for t = 1, ..., T + 1. The current prices known today are (s1, l1), so

these are not random variables; however, (st, lt) is a bivariate random variable

with realizations in R
n+1 known at t for t = 2, ..., T + 1. The CVaR of interest

in stage t is just the CVaR of the distribution of the surplus wealth at t + 1. For

instance, the stage 1 CVaR is determined by the distribution of surplus wealth at

t = 2, which depends on the allocation decision made at t = 1. For this reason,

the CVaR of interest in stage t is written as CVaRβ(−swt+1) where swt+1 is the

surplus wealth at t + 1. The ALM problem of interest is now written as:

min λ

(
T∑

t=1

µtCVaRβ(−swt+1)

)
− (1 − λ)E(swT+1) (3.9)

s.t. an initial wealth constraint, (3.10)

balance of wealth constraints between stages, and (3.11)

linear transaction costs. (3.12)

Other constraints may include bounds on positions invested in each asset, bounds

on the total transaction costs in each stage, and bounds permitting short selling;

however, these are not included in this dissertation.

The above problem (3.9-3.12) does not directly fit into the form (3.3-3.4),

but the deterministic equivalent can be put into form (3.5-3.6) with the help of

Uryasev’s formula for CVaR. To begin, assume a scenario tree has already been
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constructed for (st, lt):

(st, lt) = (sit , lit) with probability p(it), ∀it ∈ It, t = 1, ..., T + 1. (3.13)

The deterministic equivalent of the optimization problem determines optimal asset

allocations at each node of the scenario tree from t = 1 to t = T . These allocations

are decision variables in the stochastic program and are denoted by ait for it ∈ It,

t = 1, ..., T . The distribution of swt+1 depends not only on (sit+1 , lit+1), ∀it+1 ∈
It+1, but also on the allocation decisions made in the nodes at t. Note that this

corresponds to the surplus wealth at t+1 before the portfolio reallocation occurs.

The realization of the surplus wealth in node it+1 is therefore a function of the

allocation made in the node that immediately precedes it+1. With this allocation

denoted by apred(it+1), the distribution of the surplus wealth for t+1 = 2, ..., T +1,

is

swt+1 = 〈sit+1 , apred(it+1)〉 − lit+1 with probability p(it+1), ∀it+1 ∈ It+1.

For the given scenario tree, Uryasev’s formula can now be applied to each CVaR:

The term CVaRβ(−swt+1) is replaced with

ζt +
1

1 − β

∑
it+1∈It+1

p(it+1)
[
lit+1 − 〈sit+1 , apred(it+1)〉 − ζt

]+
,

where there is one auxiliary variable ζt introduced for each stage. To simplify

things, let

hit+1(ζt, apred(it+1)) =
[
lit+1 − 〈sit+1 , apred(it+1)〉 − ζt

]+
, and (3.14)

giT+1
(apred(iT+1)) = 〈siT+1

, apred(iT+1)〉 − liT+1
. (3.15)
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The entire objective function is then

OBJ = λ

T∑
t=1

µtζt +
T∑

t=1

⎛
⎝ λµt

1 − β

∑
it+1∈It+1

p(it+1)hit+1(ζt, apred(it+1))

⎞
⎠

−(1 − λ)
∑

iT+1∈IT+1

p(iT+1)giT+1
(apred(iT+1)). (3.16)

Two versions of the constraints for the main problem are given in the next

two subsections: the first is without transaction costs, and the second is with

transaction costs. The version with transaction costs requires introducing addi-

tional decision variables that account for the quantities of assets bought and sold

because it is not enough to only keep track of the quantities held.

3.4.1 Constraints Without Transaction Costs

Recall that the quantities of assets held in each node is a n-dimensional vector,

that is, for all it ∈ It, t = 1, ..., T ,

ait =

⎡
⎢⎢⎢⎣

a1
it

...

an
it

⎤
⎥⎥⎥⎦ . (3.17)

Now define the first stage decision variables, which are just the decision variables

in node i1(= 1), as

x1 =

⎡
⎣ ζ

a1

⎤
⎦ , where ζ =

⎡
⎢⎢⎢⎣

ζ1

...

ζT

⎤
⎥⎥⎥⎦ , (3.18)

and define the decision variables at each node it ∈ It, for t = 2, ..., T , as xit = ait .
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The initial wealth constraint (3.10) can now be expressed as a stage 1 con-

straint. If a0 ∈ R
n contains the current investments, the total wealth in node

i1 is 〈si1 , a0〉. The initial wealth constraint just states that the wealth before

reallocation is equal to the wealth after reallocation. That is,

A1x1 = b1, where

A1 =
[

01×T s′i1

]
, and b1 = 〈si1 , a0〉.

(3.19)

Since there is no short selling of the assets, and there is no restriction on each ζi

is Uryasev’s formula, the bounds on the first stage decision variables are

x1 ≥ lt =

⎡
⎣ −∞T×1

0n×1

⎤
⎦ . (3.20)

Slightly different than the initial wealth constraint, the balance of wealth con-

straint for each i2 ∈ I2 is written as

Bi2x1 + Ai2xi2 = bi2 , where

Bi2 =
[

01×T −s′i2

]
, Ai2 = [s′i2 ], and bi2 = 0,

(3.21)

and for each remaining node it ∈ It, t = 3, ..., T , this constraint is

Bitxpred(it) + Aitxit = bit where

−Bit = Ait = [s′it ], and bit = 0.
(3.22)

The no short selling constraint in each nodes it ∈ It, t = 2, ..., T , gives the bound

xit ≥ lit = 0n×1. (3.23)
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3.4.2 Constraints With Transaction Costs

The transaction cost to buy is determined by the positive vector TCB = (TCB1, ...

, TCBn)′ ∈ R
n, and the transaction cost to sell is determined by the positive

vector TCS = (TCS1, ..., TCSn) ∈ R
n. Each element TCBk gives the fraction

of transaction wealth lost when asset k is bought. For example, if TCBk = .005

and $1000 worth of asset k is bought, then the total wealth lost in the transaction

is $5. Additional decision variables need to be included in each node that keep

track of the amounts bought and sold of each asset. These are the nonnegative

variables buyit ∈ R
n and sellit ∈ R

n. The first stage decision variables in this case

are

x1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ζ

a1

buy1

sell1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (3.24)

and the decision variables in the remaining nodes are

xit =

⎡
⎢⎢⎢⎣

ait

buyit

sellit

⎤
⎥⎥⎥⎦ , (3.25)

for all it ∈ It, t = 2, ..., T . The bounds become

x1 ≥ l1 =

⎡
⎣ −∞T×1

03n×1

⎤
⎦ , and xit ≥ lit = 03n×1. (3.26)

There are now two types of constraints to consider: The first keeps track of the

quantities bought and sold, and the second keeps track of the wealth. The first

type states that the quantity of each asset held is the quantity previously held
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plus the amount bought and less the amount sold. Let a0 ∈ R
n denote the current

quantities of investment again, then in the first stage the equation for asset k is

ak
1 = ak

0 + buyk
1 − sellk1 ,

and now in matrix form for all assets,

[
0n×T In −In In

]
x1 = a0,

where In is the n × n identity matrix. The second type of constraint states that

the wealth after portfolio reallocation is equal to the wealth before reallocation

minus the total transaction costs. In the first stage, that is

〈si1 , a1〉 = 〈si1 , a0〉 − 〈si1 ∗ TCB, buy1〉 − 〈si1 ∗ TCS, sell1〉,

where ∗ is element by element matrix multiplication:

si1 ∗ TCB =

⎡
⎢⎢⎢⎣

s1
i1
TCB1

...

sn
i1
TCBn

⎤
⎥⎥⎥⎦ .

Now combining both types of constraints gives

A1x1 = b1 where

A1 =

⎡
⎣ 0n×T In −In In

01×T s′i1 (TCB ∗ si1)
′ (TCS ∗ si1)

′

⎤
⎦ , and

b1 =

⎡
⎣ a0

〈si1 , a0〉

⎤
⎦ .

(3.27)
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For each node i2 ∈ I2, the constraints on quantities become

[
0n×T 0n 0n −In

]
x1 +

[
In −In In

]
xi2 = 0n×1,

and the wealth constraint becomes

〈si2 , ai2〉 = 〈si2 , a1〉 − 〈si2 ∗ TCB, buyi2〉 − 〈si2 ∗ TCS, selli2〉.

Combining the previous two gives

Bi2x1 + Ai2xi2 = bi2 , where

Bi2 =

⎡
⎣ 0n×T 0n 0n −In

01×T 01×n 01×n −s′i2

⎤
⎦ ,

Ai2 =

⎡
⎣ In −In In

s′i2 (TCB ∗ si2)
′ (TCS ∗ si2)

′

⎤
⎦ , and

bi2 = [0(n+1)×1].

(3.28)

For the remaining nodes it ∈ It, t = 3, ..., T , the equations are easily modified to

Bitxpred(it) + Aitxit = bit , where

Bit =

⎡
⎣ 0n 0n −In

01×n 01×n −s′it

⎤
⎦ ,

Ait =

⎡
⎣ In −In In

s′it (TCB ∗ sit)
′ (TCS ∗ sit)

′

⎤
⎦ , and

bit = [0(n+1)×1].

(3.29)
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3.4.3 Recursive Formulation of the Deterministic Equiva-

lent

The problem is now to minimize the piecewise linear, convex objective function

given by equation (3.16) subject to constraints (3.19-3.23) in the case of no trans-

action costs, or subject to constraints (3.26-3.29) in the case of transaction costs.

In either case, the constraints are linear and fit exactly into the form of the con-

straints in problem (3.5-3.6). Additionally, the piecewise linear objective function

can be converted into a fully linear objective by introducing auxiliary decision

variables. The deterministic equivalent of the T -stage ALM problem can then

be posed precisely as problem (3.7), and a good linear solver could potentially

be used. The drawback of this setup is that there is one auxiliary variable in-

troduced for each scenario in each stage. For a huge number of scenarios, this

creates a huge number of decision variables, and even if the problem is linear, a

solver might be inadequate because of memory and time considerations. For this

reason, a solution algorithm for the piecewise linear objective is discussed in the

next subsection; but first, the deterministic equivalent of the ALM problem needs

to be rewritten into the recursive formulation of (3.5-3.6).

To put the objective function into the recursive form, note that the sums can

be expressed in terms of the transition probabilities: for instance,

∑
it+1∈It+1

p(it+1)hit+1(ζt, apred(it+1))

=
∑

i2∈I2

∑
i3∈dec(i2) · · ·

∑
it+1∈dec(it)

p(i2)p(i2, i3) · · · p(it, it+1)hit+1(ζt, ait).

Define the terms

q1(ζ1, a1) = λ

T∑
t=1

µtζt +
λµ1

1 − β

∑
i2∈I2

p(i2)hi2(ζ1, a1), (3.30)
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qit(ζt, ait) =
λµt

1 − β

∑
it+1∈dec(it)

p(it, it+1)hit+1(ζt, ait), t = 2, .., T − 1, (3.31)

qiT (ζT , aiT ) =
∑

iT+1∈dec(iT )

p(iT , iT+1)

(
λµT

1 − β
hiT+1

(ζT , aiT ) − (1 − λ)giT+1
(aiT )

)
.

(3.32)

Then after rearranging terms, and moving the minimizations, the restated problem

is

minx1 q1(ζ1, a1) +
∑

i2∈I2
p(i2)Qi2(x1)

s.t. A1x1 = b1

x1 ≥ l1.

(3.33)

The Qit , for t = 2, ..., T , are defined recursively as

Qit(ζt, ..., ζT , xt−1) = minxt qit(ζt, at)

+
∑

it+1∈dec(it)
p(it, it+1)Qit+1(ζt+1, ..., ζT , xt)

s.t. Bitxt−1 + Aitxt = bit ,

xt ≥ lit ,

(3.34)

with QiT+1
= 0. Note that it is redundant to write Qi2(ζ2, ..., ζT , x1) since ζ is

contained in x1, so one can just write Qi2(x1) as in (3.33).

3.4.4 Solution Algorithm for the 2-Stage Problem

In the ALM problem (3.9-3.12), both the risk and reward are included in the ob-

jective function. While it might be more desirable to minimize the risk subject to

a reward constraint, or maximize the reward subject to a risk constraint, including

both the risk and reward in the objective allows a solution method that is easily

computed in parallel. If the risk or reward is included as a constraint, there is a

single constraint over all nodes at t = 3 in the 2-stage problem, and the algorithm
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of this section can no longer be implemented.

This solution algorithm for a piecewise linear 2-stage problem is developed in

detail in [27], and a sketch of this algorithm is repeated here. This algorithm uses

a modification of Bender’s outer linearization. The basic idea is to linearize the

objective function at various points and find the point that yields the minimum

value that lies above all the objective linearizations. Linearization points are

sequentially added until the minimum value above all linearizations coincides with

the actual objective value at the corresponding point. This point is the optimal

solution.

The 2-stage ALM problem fits into the following form:

minx1≥0 q1(x1) +
∑

i2∈I2
p(i2)Qi2(x1)

s.t. A1x1 = b1,
(3.35)

with

Qi2(x1) = minx2≥0 qi2(x1, x2)

s.t. Ai2x1 + Bi2x2 = bi2 .
(3.36)

This form is basically the same as (3.33-3.34) since the bounds on the decision

variables can be changed by separating each ζi into a positive and negative part

(this only slightly modifies the constraint matrixes). The functions q1 and qi2 are

essentially the same as those given in the previous section, only the dependence

is written differently to make the following easier to present.

The solution algorithm makes use of subgradients since the objective function

is piecewise linear. Let q′1(x
0
1) be a column vector that denotes a subgradient of q1

at the point x0
1, and let Q′

i2
(x0

1) similarly denote a subgradient of Qi2 at x0
1. For

simplicity, let Q1(x1) =
∑

i2
p(i2)Qi2(x1), which implies a subgradient of Q1 at x0

1

is Q′
1(x

0
1) =

∑
i2

p(i2)Q
′
i2
(x0

1). Note that q1 and each qi2 are just piecewise linear
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functions, so it is easy to calculate a subgradient for each of them. Calculating

a subgradient for the optimal value of each minimization problem Qi2 is more

difficult and is shown shortly.

The first stage algorithm is:

(A.0) Select an initial point x0
1 satisfying A1x

0
1 = b1 and solve

min(θ,x1) θ

s.t. A1x1 = b1,

q1(x
0
1) + Q1(x

0
1) + 〈q′1(x0

1) + Q′
1(x

0
1), x1 − x0

1〉 ≤ θ.

Let the optimal solution to this problem be at (θ1, x1
1).

(A.1) If q1(x
1
1) +Q1(x

1
1) ≤ θ1, then the optimal solution to (3.35) is at x1

1. If not,

add an additional constraint and solve the linear problem

min(θ,x1) θ

s.t. A1x1 = b1,

q1(x
0
1) + Q1(x

0
1) + 〈q′1(x0

1) + Q′
1(x

0
1), x1 − x0

1〉 ≤ θ,

q1(x
1
1) + Q1(x

1
1) + 〈q′1(x1

1) + Q′
1(x

1
1), x1 − x1

1〉 ≤ θ.

Let the optimal solution to this problem be at (θ2, x2
1).

...

(A.m) If q1(x
m
1 ) + Q1(x

m
1 ) ≤ θm, then the optimal solution to (3.35) is at xm

1 . If
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not, add an additional constraint and solve the linear problem

min(θ,x1) θ

s.t. A1x1 = b1,

q1(x
0
1) + Q1(x

0
1) + 〈q′1(x0

1) + Q′
1(x

0
1), x1 − x0

1〉 ≤ θ,

...

q1(x
m
1 ) + Q1(x

m
1 ) + 〈q′1(xm

1 ) + Q′
1(x

m
1 ), x1 − xm

1 〉 ≤ θ.

Let the optimal solution to this problem be at (θm+1, xm+1
1 ).

...

In order to find Q1 and Q′
1 at the given point xi

1 in the above, one has to compute

Qi2(x
i
1) and Q′

i2
(xi

1) for all i2 ∈ I2. A subgradient of qi2 at (xi
1, x

0
2) can be separated

into two parts: A part corresponding to the first stage variables qx1
i2

(xi
1, x

0
2) and a

part corresponding to the second stage variables qx2
i2

(xi
1, x

0
2). The value of Qi2(x

i
1)

is then found through the following algorithm:

(B.0) Select an initial point x0
2 satisfying Ai2x

i
1 + Bi2x

0
2 = bi2 and solve

min(θ,x2) θ

s.t. Ai2x
i
1 + Bi2x2 = bi2 ,

qi2(x
i
1, x

0
2) + 〈qx2

i2
(xi

1, x
0
2), x2 − x0

2〉 ≤ θ.

Let the optimal solution to this problem be at (θ1, x1
2).

(B.1) If qi2(x
i
1, x

1
2) ≤ θ1, then the optimal solution is at x1

2 and Qi2(x
i
1) = θ1. If
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not, add an additional constraint and solve the linear problem

min(θ,x2) θ

s.t. Ai2x
i
1 + Bi2x2 = bi2 ,

qi2(x
i
1, x

0
2) + 〈qx2

i2
(xi

1, x
0
2), x2 − x0

2〉 ≤ θ,

qi2(x
i
1, x

1
2) + 〈qx2

i2
(xi

1, x
1
2), x2 − x1

2〉 ≤ θ.

Let the optimal solution to this problem be at (θ2, x2
2).

...

(B.m) If qi2(x
i
1, x

m
2 ) ≤ θm, then the optimal solution is at xm

2 and Qi2(x
i
1) = θm.

If not, add an additional constraint and solve the linear problem

min(θ,x2) θ

s.t. Ai2x
i
1 + Bi2x2 = bi2 ,

qi2(x
i
1, x

0
2) + 〈qx2

i2
(xi

1, x
0
2), x2 − x0

2〉 ≤ θ,

...

qi2(x
i
1, x

m
2 ) + 〈qx2

i2
(xi

1, x
m
2 ), x2 − xm

2 〉 ≤ θ.

(3.37)

Let the optimal solution to this problem be at (θm+1, xm+1
2 ).

...

To obtain a subgradient of Qi2 , assume that the procedure is stopped immediately

after step (B.m), so Qi2(x
i
1) = θm+1, where θm+1 is found by solving problem

(3.37). Let the lagrange multipliers of (3.37) be denoted by the column vector πi2 ,

then

Q′
i2
(xi

1) =
[

A′
i2

qx1
i2

(xi
1, x

0
2) qx1

i2
(xi

1, x
1
2) · · · qx1

i2
(xi

1, x
n
2 )

]
πi2
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This algorithm is easily implemented in parallel. Given a first stage decision xi
1,

the second stage procedure (B) for Q′
i2
(xi

1) can be computed on different processors

corresponding to different nodes i2.
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Chapter 4

Time Series Methods

For the ALM problem of the previous chapter, scenarios are generated by cali-

brating and simulating a time series model. This chapter first describes the mul-

tivariate data set and then fits a time series model under the normal and stable

distributional assumptions.

There are two major approaches in modeling multivariate data:

• Fit a multivariate distribution.

• Fit each individual time series with a univariate distribution and use a copula

to describe the dependence structure.

The second approach is more flexible in the sense that it allows any type of

distribution to be fit to the individual series. For instance, one can first calibrate

univariate GARCH models with stable distributions to each time series and then

capture the dependence with a time-varying copula. This approach was attempted

for the ALM data, but it produced poor scenarios: Estimation resulted in an

integrated GARCH model and an explosion of sample paths in simulation.

This chapter only discusses the first approach for which scenarios are generated

and the optimization problem is solved in the next chapter. A good illustration
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of the second approach is found in [26].

4.1 Data Description and VAR modeling

The T -stage ALM problem of Section 3.4 is now applied to data that is representa-

tive of a defined-benefit pension fund. A liability index lτ provided by Ryan Labs

is used as a proxy for the liabilities. This is a generic index that does not corre-

spond to the liabilities of a specific corporate defined-benefit plan, but this index

helps to illustrate the current predicament of pension funds in [55]. This same

reference also provides the typical asset classes invested in by pension funds: cash,

bonds, equities, real estate, international stocks, international bonds, mortgages,

GIC’s and annuities, and private equities. Table (4.1) contains the benchmarks

used for the asset classes in this dissertation. It was difficult to obtain benchmarks

for all the asset classes just listed, but the major three (bonds, equities, and in-

ternational equities) are included. Given the historical data for the liability index

lτ and asset indexes si
τ , i = 1, ..., 5, one can construct a multivariate scenario tree.

This is achieved by fitting a multivariate time series model to the return vector:

Rτ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

r1
τ

r2
τ

...

r6
τ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

lτ/lτ−1 − 1

s1
τ/s

1
τ−1 − 1

...

s5
τ/s

5
τ−1 − 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Once a time series model is calibrated, it is simple to generate sample paths for

the returns and then convert the returns back to index values. It is important to

note that in this chapter τ is interpreted as time, and in the previous chapter, t is

interpreted as the stage in a stochastic program. It is possible that they coincide;
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Asset Class Benchmark
s1 Cash Ryan Labs Cash Index
s2 Bonds Lehman U.S. Aggregate Bond Index
s3 Equities S&P500
s4 International Equities Morgan Stanley EAFE Index
s5 Mortgages Lehman Mortgage Index

Table 4.1: Benchmarks for the pension fund asset classes.

however, there are usually many smaller time periods between stages. In one

application in this dissertation, a time series model is fit to monthly data, but a

stage covers a 6 month period.

Figure (4.1) contains the plots of the monthly returns for the components

of Rτ . There are 237 data points corresponding to the returns for the months

of April 1985 to December 2004. An obvious characteristic of the data is the

volatility clustering, especially noticeable in the equity index. This indicates that

a time series model with time-varying volatilities is appropriate, but the length of

the data set proved to be very short when trying to also incorporate a multivariate

stable distribution. Ideally, one would have at least 1000 points of daily data, but

daily data is not available for all the benchmarks in Table (4.1).

As a first step in fitting a model to the data, the major trends of the individual

series are removed by an exponentially weighted moving average (EWMA) process

for the means. The means of the univariate return series are assumed to follow

mτ = λmmτ−1 + (1 − λm)rτ−1,

where mτ is the vector of means and λm is a fixed parameter. The new return

series of interest is

R̃τ = Rτ − mτ ,
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Figure 4.1: Monthly returns Rτ from April 1985 to December 2004.
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and as the next step, a vector autoregressive (VAR) model is calibrated to R̃τ .

The VAR model has had much success in modeling financial and economic

data. The general VAR(p) model for R̃τ is

R̃τ = Π1R̃τ−1 + ... + ΠpR̃τ−p + Eτ ,

where the innovations process Eτ = (e1
τ , ..., e

6
τ )

′ is assumed to be white noise with

covariance matrix Σ. It is both easy to calibrate and easy to simulate scenarios

from VAR models. An introduction to modeling and estimation of VAR models

can be found in [59]. For the data at hand, the Akaike Information Criteria (AIC)

indicates that the VAR equation of order 1 is optimal, and all the backtesting

in the next chapter is carried out under the assumption of a VAR(1) model.

More generally, one may fit a multivariate autoregressive moving average (ARMA)

model such as in [7]; however, multivariate financial data typically indicates only

an autoregressive component, so it is reasonable to restrict the model to VAR.

Another extension of the above VAR model that additionally includes economic

regime changes and long term equilibria in an ALM context can be found in [5].

To find the optimal value of λm, a coarse grid is created, and for each element

in the grid, the AICs of low order VAR models are compared. VAR(1) always

results in the lowest AIC for any value of λm in the grid. A fine grid for λm is then

constructed, and the AICs of the corresponding VAR(1) models are compared.

This procedure produces an optimal value of λm = 0.952.

To simulate the VAR model, one needs to make a distributional assumption

for the innovations. After estimation of the VAR(1) model, the residuals are

computed by

Êτ = R̃τ − Π̂1R̃τ−1,
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and the standardized residuals Σ̂−1/2Êτ are plotted in Figure (4.2). The usual

assumption is that the innovations are Gaussian, in which case the standardized

residuals should be i.i.d. Normal(0,I6). This is clearly not the case because there

is still a significant amount of volatility clustering and extreme events. The stan-

dardized residuals are aggregated into one series, and the corresponding QQ-plot

versus the standard normal distribution is found in Figure (4.3).

To get an idea of the variability and dependence structure of the innovations

in the VAR(1) model, the estimated volatilities σ̂i of the univariate series êi =

{êi
τ , τ = 1, ..., 237}, where each êi

τ is a component of Êτ , are

σ̂1 σ̂2 σ̂3 σ̂4 σ̂5 σ̂6

0.0404 0.0015 0.0124 0.0450 0.0494 0.0105
,

and the estimated correlation of Eτ is

CorrE =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0000 0.5176 0.9343 0.1734 0.0652 0.8134

0.5176 1.0000 0.6261 0.0303 −0.0332 0.6168

0.9343 0.6261 1.0000 0.1792 0.0780 0.9350

0.1734 0.0303 0.1792 1.0000 0.5933 0.2026

0.0652 −0.0332 0.0780 0.5933 1.0000 0.0874

0.8134 0.6168 0.9350 0.2026 0.0874 1.0000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The first noticeable point is that the volatilities corresponding to the equity returns

are the largest, the volatility corresponding to the bond returns is smaller, and

the volatility corresponding to the cash returns is very small. Also, the volatility

corresponding to the liability returns is almost as large as that of the equities,

meaning that the liabilities of pension funds are actually quite risky. The second

noticeable point is that the liability returns and bond returns are highly correlated

as one would expect. When the optimization program is solved for the minimum
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Figure 4.2: Standardized residuals Σ̂−1/2Êτ of the VAR(1) model for Rτ .
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Figure 4.3: QQ-plot of the standard normal versus the standardized residuals
Σ̂−1/2Êτ .

risk portfolio, one could expect a large allocation in the bonds to offset the risk

in the liabilities. As is shown by the numerical results in the next chapter, this is

indeed the case.

4.2 Stable Distributions

When looking at the distributions of financial time series, the Gaussian assumption

often provides a poor fit to the data. As far back as the 1960’s, the works of

Mandelbrot [33–36] and Fama [22] proposed the more general stable laws as an

alternative to the special case of Gaussian laws for the returns of various financial

assets. In addition to the ability to capture heavy tails, skewness, and peakedness,

stable distributions have many other desirable properties:

Stability Property Each stable distribution has an index of stability α that can

act as an overall parameter in inference and decision making.
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Additive Property Any linear combination of independent stable random vari-

ables with given α is a stable random variable with the same α. This prop-

erty is advantageous when looking at portfolios of assets with stable returns.

Domain of Attraction It is possible to determine if a random variable is in the

domain of attraction of a stable law by looking at the decay of the tails. The

normalized sum of independent random variables in the domain of attraction

of a stable law has properties similar to those of the stable law.

4.2.1 Univariate Stable

A random variable z has a stable distribution if for any a > 0 and b > 0 there

exists c > 0 and d ∈ R such that

az1 + bz2
d
= cz + d,

where z1 and z2 are independent copies of z. Stable distributions are represented

by four parameters, α, β, µ, and σ, and are denoted by Sα(σ, β, µ). When the

index of stability, α ∈ (0, 2], is small, the distribution has a high peak and heavy

tails. The skewness parameter, β, determines if the distribution is skewed to the

left (β < 0) or the right (β > 0). The scale parameter, σ, generalizes the notion

of standard deviation, and the variation, σα, generalizes the notion of variance. If

α = 2 and β = 0 the stable distribution is the Gaussian distribution.

For α ∈ (0, 2) the heavy tails can be described by

P(z > λ) ∼ c1λ
−α, P(z < −λ) ∼ c2λ

−α, ∀λ > 0,

where c1 and c2 are constants. In this case, the p-th absolute moment of z,

E|z|p =
∫∞

0
P(|z|p > λ)dλ, is finite if and only if p < α. If α = 2, all absolute
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ê1 ê2 ê3 ê4 ê5 ê6

α̂i 1.8569 1.7411 1.9900 1.8727 1.9702 1.8096
σ̂i

α 0.0263 0.0008 0.0087 0.0285 0.0343 0.0067

Table 4.2: Univariate ML estimates of the tail index and scale parameter for each
residual series êi.

moments are finite. Models of financial data typically assume α ∈ (1, 2], so

it is possible to discuss expected returns. In general, there is no closed form

density or distribution function for stable random variables (see [23]). However,

the characteristic function, Φz(θ) = E (exp(izθ)), is given by

Φz(θ) =

⎧⎨
⎩ exp

{−σα|θ|α (1 − iβsign(θ) tan πα
2

)
+ iµθ

}
, if α �= 1,

exp
{−σ|θ| (1 − iβ 2

π
sign(θ) ln θ

)
+ iµθ

}
, if α = 1.

Densities can be computed through the characteristic function by fast Fourier

transform methods, and parameters can by estimated by maximum likelihood

methods. Also, see [28] for another interesting approach in estimating α.

Returning to the ALM data, a symmetric stable distribution is fit to each of

the univariate residual series of the VAR(1) model by maximum likelihood es-

timation. The estimates of the tail index α̂i and scale parameter σ̂i
α from each

univariate series êi is given in Table (4.2). The estimation is restricted to symmet-

ric distributions because of the short length of the data series. Alternatively, it is

reasonable to assume that α = 1.8 for financial data and carry out the estimation

for the scale parameter alone. The empirical density of the liability return innova-

tions is compared to both the estimated normal density and the estimated stable

density in Figures (4.4) and (4.5). As is seen, the stable density better matches

the peak of the empirical density and has a slower decay at the tails than that of

the normal density.
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Figure 4.4: Density functions for the residuals of the liability return series.
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Figure 4.5: Right tail of the density functions for the residuals of the liability
return series.
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ê1 ê2 ê3 ê4 ê5 ê6

Normal 0.0505 0.0685 0.0578 0.0673 0.0422 0.0509
Stable 0.0332 0.0291 0.0572 0.0677 0.0418 0.0569

Table 4.3: Comparison of KD under the normality and stable assumptions for
each residual series êi.

ê1 ê2 ê3 ê4 ê5 ê6

Normal 0.6546 45.9484 0.1674 12.4620 0.1965 0.3848
Stable 0.1116 0.0947 0.1523 0.1366 0.0856 0.1151

Table 4.4: Comparison of AD under the normality and stable assumptions for
each residual series êi.

Two goodness-of-fit measures are employed to compare the normal fit and the

stable fit of the univariate series. The first is the Kolmogorov distance (KD)

between the empirical distribution function Fe(x) and the estimated distribution

function F̂ (x):

KD = sup
x∈R

∣∣∣Fe(x) − F̂ (x)
∣∣∣ .

The KD is considered a robust measure that emphasizes the deviation of the

estimated distribution from the empirical distribution about the median. The

second goodness-of-fit measure emphasizes the deviation at the tails and is called

the Anderson-Darling (AD) statistic:

AD = sup
x∈R

∣∣∣Fe(x) − F̂ (x)
∣∣∣√

F̂ (x)
(
1 − F̂ (x)

) .

The KD and AD of the normal and stable estimated distributions for each of the

series can be found in Tables (4.3) and (4.4). The normal fit slightly outperforms

the stable fit twice under the KD measure, but the stable fit is clearly superior

under the AD measure.
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4.2.2 Multivariate Stable and Sub-Gaussian

A n-dimensional random vector Z has a multivariate stable distribution if for any

a > 0 and b > 0 there exists c > 0 and d ∈ R
n such that

aZ1 + bZ2
d
= cZ + d,

where Z1 and Z2 are independent copies of Z and aα +bα = cα. The characteristic

function of R is given by

ΦZ(θ) =

⎧⎪⎨
⎪⎩

exp
{
− ∫

Sn
|θ′s| (1 − isign(θ′s) tan πα

2

)
ΓZ(ds) + iθ′µ

}
, if α �= 1,

exp
{
− ∫

Sn
|θ′s| (1 + i 2

π
sign(θ′s) ln |θ′s|)ΓZ(ds) + iθ′µ

}
, if α = 1,

where θ and µ are n-dimensional vectors. The spectral measure ΓZ is a finite

measure on the sphere in R
n that replaces the roles of β and σ in stable random

variables. Again, α and µ are the index of stability and location parameter,

respectively. A symmetric stable random vector with µ = 0 is called symmetric

alpha-stable (SαS), and in this case, the stable equivalent of covariance is the

covariation [
z̃1, z̃2

]
α

=

∫
S2

s1s
〈α−1〉
2 Γ(z̃1,z̃2)(ds),

where (z̃1, z̃2) is a SαS vector with spectral measure Γ(z̃1,z̃2) and y〈k〉 = |y|ksign(x).

Additionally, the covariation norm is given by

‖z̃i‖α =
([

z̃i, z̃i
]
α

)1/α
.

See [49] and [29] for details on estimating the index of stability, spectral measure,

and scale parameter for a general stable random vector. A simple estimate of

the index of stability α̂ can be obtained from the univariate estimates α̂i of each
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component zi of Z:

α̂ =
1

n

n∑
i=1

α̂i. (4.1)

Alternatively, since all one-dimensional projections u′Z, u ∈ R
n, are α-stable

random variables, a better estimate might be obtained by averaging the univariate

estimates of many one-dimensional projections.

The special case of a sub-Gaussian distribution for a random vector Z is both

stable and elliptical with characteristic function

ΦZ(θ) = exp
{
− (θ′Qθ)

α/2
+ iθ′µ

}
,

where Q =
(
q2
ij

)
is called the dispersion matrix. If α = 2, this reduces to the

multivariate Gaussian distribution, and if α < 2, the variance is infinite. Each

term q2
ij is the co-dispersion between components zi and zj of Z, and it is defined

in terms of the SαS vector Z̃ = Z − µ:

q2
ij =

[
z̃i, z̃j

]
α
‖z̃j‖2−α

α .

The sub-Gaussian random vector offers an advantage in portfolio optimization

because it is in the class of elliptical distributions. For instance, if the portfolio

returns are modeled with a sub-Gaussian vector, the VaR of a portfolio with

weights ω is just k
√

ω′Qω, for a constant k. This means that minimizing VaR

can be achieved by minimizing the quadratic function ω′Qω. A second advantage

of a sub-Gaussian random vector is that it is straightforward to simulate: One

just needs to be able to simulate a multivariate Gaussian G ∼ N(0, 2Q) and an

independent, positive, stable random variable s ∼ Sα/2

(
((cos(πα/4))2/α , 1, 0

)
,

and use

Z̃
d
=

√
sG. (4.2)
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G is referred to as the governing Gaussian vector.

A method of estimation for Q based on the moments E |z̃i|p and E
(
z̃i(z̃j)〈q−1〉),

for a p ∈ (0, α) and q ∈ (1, α), is found in [32]. Given a multivariate data series

{Zτ , τ = 1, ..., τm}, the moment estimator of Q is computed from the centered

data Z̃τ = Zτ − µ by

q̂2
jj =

(
A(p)

1

τm

τm∑
τ=1

∣∣z̃j
τ

∣∣p)2/p

, (4.3)

q̂2
ij = q̂2−q

jj A(q)
1

τm

τm∑
τ=1

z̃i
τ

(
z̃j

τ

)〈q−1〉
, (4.4)

where

A(p) =
Γ(1 − p/2)

√
π

2pΓ(1 − p/α)Γ((p + 1)/2)
. (4.5)

The authors of the above reference note that the rates of convergence for q̂jj and

q̂ij are fastest for p and q as small as possible. They suggest to take q = 1 and

describe a selection method for p. Alternatively, for financial data it is common

to take p = α/3.

A sub-Gaussian distribution can be fit to the residuals Êτ of the ALM data.

First, α is estimated using equation (4.1) and the univariate estimates from Table

(4.2), yielding α̂ = 1.8705. Assuming the residuals have zero mean, the moment

estimator of Q in equations (4.3-4.5) is applied to Z̃τ = Êτ with p = α̂/3 and

q = 1. The resulting moment estimates of the scale parameters q̂jj are

q̂11 q̂22 q̂33 q̂44 q̂55 q̂66

0.0257 0.0008 0.0080 0.0282 0.0319 0.0066
.

They can be compared with the ML estimates in Table (4.2). The moment es-

timate for Q given by the above equations is not symmetric, but a symmetric

estimate is given by Q̂ =
(
(q̂2

ij + q̂2
ji)/2

)
. The standardized residuals Q̂−1/2Êτ are
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also computed and plotted in Figure (4.6). In this case, the data points should

all be temporally and serially independent realizations of a S1.8705(1, 0, 0) random

variable. This is clearly not the case because there is a significant amount of

volatility clustering. The QQ-plot of the stable random variable versus the aggre-

gated standardized residuals is found in Figure (4.7). This plot appears closer to

linear than the QQ-plot with the standard normal in Figure (4.3), which indicates

the sub-Gaussian distribution provides a better fit than the multivariate normal;

however, neither of these capture the time-varying nature of the innovations.

4.3 Exponentially Weighted Moving Average

Models

To account for the volatility clustering, three types of models are implemented:

The first model assumes the innovations have a time-varying Gaussian distri-

bution, and the second two models assume the innovations have a time-varying

sub-Gaussian distribution.

4.3.1 Normal EWMA

Given a multivariate data set {Eτ , τ = 1, ..., τm} with zero mean, the sample

estimate of the covariance is just

Σ̂ =
1

τm − 1

τm∑
τ=1

EτE
′
τ .

Note that there is equal weight applied to each observation in the data set. To

construct a time-varying volatility estimate, the covariance estimate at time τ is

allowed to depend on the data before time τ , and the weights are assumed to
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Figure 4.6: Standardized residuals Q̂−1/2Êτ of the VAR(1) model for Rτ .
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Figure 4.7: QQ-plot of the symmetric stable with α = 1.8705 versus the stan-
dardized residuals Q̂−1/2Êτ .

decay exponentially from the most recent observation:

Σ̂τ |τ−1 = (1 − λe)
(
Eτ−1E

′
τ−1 + λeEτ−2E

′
τ−2 + λ2

eEτ−3E
′
τ−3 + . . .

)
,

where 0 < λe < 1 and the weights are chosen such that they sum to one for an

infinite series. This estimate can also be written in the recursive form

Σ̂τ |τ−1 = (1 − λe)Eτ−1E
′
τ−1 + λeΣ̂τ−1|τ−2, (4.6)

which is known as the exponentially weighted moving average (EWMA) covariance

model with decay factor λe. In practice, an initial covariance Σ̂0|−1 is needed to

estimate λe, compute standardized residuals, and simulate sample paths. The

approach taken in this dissertation is to estimate Σ0|−1 from the sample covariance

of the initial 10% of the data set.
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RiskMetrics [40] provides an estimation technique for λe based on the root

mean squared prediction error (RMSE) of (ei
τ )

2:

RMSEi
2(λe) =

√√√√ 1

τm

τm∑
τ=1

(
(ei

τ )
2 − σ̂2

τ |τ−1,ii(λe)
)2

, (4.7)

where σ̂2
τ |τ−1,ii(λe) is a diagonal component of Σ̂τ |τ−1 in equation (4.6). Since the

data series is assumed to have zero mean, Eτ−1 (ei
τ )

2
= σ2

τ |τ−1,ii, so the prediction

error of (ei
τ )

2 is the difference of terms that is squared in equation (4.7). A single

optimal estimate λ∗
e for the decay factor is computed from the RMSE of each

univariate series through the formula

λ∗
e =

n∑
i=1

φiλ
∗
i , (4.8)

where

λ∗
i = argmin

λ
RMSEi

2(λ), θi =
RMSEi

2(λ
∗
i )∑n

k=1 RMSEk
2 (λ∗

k)
, φi =

θ−1
i∑n

k=1 θ−1
k

.

(4.9)

Using this technique, RiskMetrics recommends typical parameter values of λe =

0.94 for daily data and λe = 0.97 for monthly data. Based on the experience of this

author, reducing λe removes more of the volatility clustering, but the distribution

of the standardized residuals becomes more peaked with heavier tails.

4.3.2 Stable EWMA

The ideas of the previous subsection are extended to the sub-Gaussian case in

[32] by allowing a time-varying dispersion matrix. Similar to the Gaussian case,

exponential weights are applied to the moment estimators in equations (4.3-4.4),
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α p λ∗
e

Normal 2 0.6667 0.9496
Stable 1.8705 0.6235 0.9494

Table 4.5: Comparison of the optimal decay factors λ∗
e under the normality and

stable assumptions using the selection criterion based on RMSEi
p.

yielding the equations:

q̂p
τ |τ−1,jj = (1 − λe)

∣∣ej
τ−1

∣∣p A(p) + λeq̂
p
τ−1|τ−2,jj (4.10)

Bτ |τ−1,ij = (1 − λe)e
i
τ−1

(
ej

τ−1

)〈q−1〉
A(q) + λeBτ−1|τ−2,ij (4.11)

q̂2
τ |τ−1,ij = Bτ |τ−1,ij q̂

2−q
τ |τ−1,jj, i �= j, (4.12)

and the symmetric estimator for the time-varying dispersion matrix is given by

Q̂τ |τ−1 =
(
q̂2
τ |τ−1,ij + q̂2

τ |τ−1,ji

)
/2. This model is referred to as the stable expo-

nentially weighted moving average model (SEWMA). The authors also extend the

estimation technique for the decay factor by considering the prediction error of

|ei
τ |p. They note that Eτ−1 (|ei

τ |p) = qp
τ |τ−1,ii/A(p) and suggest to minimize the

following RMSE error for each univariate series:

RMSEi
p(λe) =

√√√√ 1

τm

τm∑
τ=1

(
A(p) |ei

τ |p − q̂p
τ |τ−1,ii(λe)

)2

.

The single optimal decay factor λ∗
e is then found by replacing RMSEi

2 with

RMSEi
p in equations (4.8-4.9). Using the VAR(1) residuals of the ALM data, this

technique is applied in both the Gaussian and sub-Gaussian cases with p = α/3.

A grid for λ is constructed with increments of 0.001, and RMSEi
p(λ) is minimized

over this grid. In both cases, a value of λe = 0.95 for equations (4.10-4.12) is found

to be appropriate. The exact values of λ∗
e are found in Table (4.5).

65



There are difficulties in implementing the SEWMA model for the ALM resid-

uals: While the estimate Q̂τ |τ−1 is defined to be symmetric, there is no guarantee

that it is positive definite. In the case of the ALM residuals, the eigenvalues are

often negative and often very near zero. The negative eigenvalues are easily dealt

with by using an incomplete Cholesky decomposition when computing the stan-

dardized residuals and generating sample paths. The eigenvalues very near zero,

on the other hand, cause the standardized residuals to explode beyond any reason-

able value. The likely cause of this inadequate estimate of the dispersion matrix is

the short length of the data series. For this reason, the scenarios generated from

the SEWMA model are not inputted into the ALM optimization problem.

4.3.3 Stable Subordination EWMA

To overcome the difficulties of the SEWMA model, a more ad hoc approach is

taken by modeling the time-varying sub-Gaussian distribution in terms of the

governing Gaussian distribution and the scale parameters of the individual uni-

variate series. First, one needs the following result: if

y ∼ Sα (σy, 0, 0) , g ∼ N(0, σ2
g), s ∼ Sα/2

(
2σ2

y

σ2
g

(
cos

(πα

4

))2/α

, 1, 0

)
,

and g and s are independent, then

y
d
=

√
sg.

See [52], and for an application in finance, [51]. If the governing Gaussian dis-

tribution Gτ has a time-varying covariance matrix Στ |τ−1 =
(
σ2

τ |τ−1,ij

)
and each

univariate series is modeled with an αi-stable random variable with time-varying

scale parameter qτ |τ−1,i, the previous result and equation (4.2) suggest a way to
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model Eτ with a time-varying distribution similar to the sub-Gaussian:

Eτ
d
=

⎡
⎢⎢⎢⎣
√

s1
τg

1
τ

...

√
sn

τ g
n
τ

⎤
⎥⎥⎥⎦ ,

Gτ =

⎡
⎢⎢⎢⎣

g1
τ

...

gn
τ

⎤
⎥⎥⎥⎦ ∼ N

(
0, Στ |τ−1

)
,

si
τ ∼ Sαi/2

(
2q2

τ |τ−1,i

σ2
τ |τ−1,ii

(
cos

(παi

4

))2/αi

, 1, 0

)
.

When generating a sample for Eτ , the samples of si
τ , i = 1, ..., n, are taken from

the same random seed so that the above equations are close to the sub-Gaussian

representation in equation (4.2) where the same subordinator multiplies each com-

ponent of the normal random vector. In the above equations, the covariance of the

governing Gaussian distribution captures the dependence between the series, and

each subordinator si
τ is chosen to give the proper tail index and scale parameter

for each of the univariate series. Recall that for the sub-Gaussian distribution, all

marginals have the same tail index, so the above equations are actually an exten-

sion that allow different tail indexes, αi, for the marginals. The scale parameters

and covariance matrix are estimated from EWMA equations already seen. The

time-varying estimate for the scale parameter is given by

q̂pi

τ |τ−1,i = (1 − λe)
∣∣ej

τ−1

∣∣pi
A(pi) + λeq̂

pi

τ−1|τ−2,i,

which is similar to equation (4.10), and it is reasonable to take pi = αi/3 for

financial series. To obtain the estimate for the covariance of the governing Gaus-
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sian, the data set of Eτ is first truncated at 5% and 95% to remove the effects of

extreme events. The estimate is then obtained from the truncated series E∗
τ by

Σ̂τ |τ−1 = (1 − λe)E
∗
τ−1

(
E∗

τ−1

)′
+ λeΣ̂τ−1|τ−2.

The optimal value of λe is best calibrated through backtesting, or alternatively,

the RiskMetric technique for RMSEi
p can be carried over. The latter approach

is used for the ALM data in this dissertation, which gives λe = 0.95 again. This

model is referred to as the stable subordination exponentially weighted moving

average model (SSEWMA).

4.4 VaR Backtesting

The forecasting performances of the EWMA and SSEWMA models are examined

by comparing the predicted VaRs with the observed returns as done in [50]. From

the definition of VaR, the null hypothesis to test is

P (rτ < −VaRβ(τ)) = 1 − β, (4.13)

for a return series {rτ}. This hypothesis is tested for each ALM return series

ri = {ri
τ , τ = 1, ..., 237}, i = 1, ..., 6, and for various values of β.

In this backtesting analysis, both the VAR(1)-EWMA and VAR(1)-SSEWMA

models are fit to a moving window of 100 data points. Since it is difficult to

estimate the tail index of the stable distribution with such a short time series,

it is assumed that αi = 1.8 for each of the univariate series in the SSEWMA

model. Let VaRβ(τ), for τ = 101, ..., 237, be the estimate of VaRβ(τ) from a
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model calibrated to {rτ̃ , τ̃ = τ − 100, ..., τ − 1}. If equation (4.13) holds, then

χτ = 1
(
rτ < −VaRβ(τ)

)
=

⎧⎨
⎩ 1 with probability 1 − β,

0 with probability β,

where 1(·) is the indicator function, and the total number of VaR exceedings has

a binomial distribution:

X =
237∑

τ=101

χτ ∼ Bin(137, 1 − β).

The testing rule is to reject the null hypothesis at 100δ% level of significance if

X∑
k=1

⎛
⎝ 137

k

⎞
⎠ (1 − β)kβ137−k ≤ δ/2, (4.14)

or,
X∑

k=1

⎛
⎝ 137

k

⎞
⎠ (1 − β)kβ137−k ≥ 1 − δ/2. (4.15)

The number of exceedings and the corresponding p-values for each ALM return

series are contained in Tables (4.6-4.7). The conclusions are:

• At 1% level of significance, neither the EWMA or the SSEWMA model is

rejected for any value of β.

• At 5% level of significance, the EWMA model is rejected three times for

β = 0.99 and once for β = 0.95 while the SSEWMA model is never rejected.

This indicates that the normal distribution is overly optimistic in predicting

the occurrence of the largest losses, and the stable distribution results in a

more reliable forecast.

• For β = 0.90 and 0.80, the EWMA model produces reasonably large p-
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Exceedings and p-values
β r1 r2 r3 r4 r5 r6

0.99 4 (0.0252) 3 (0.0990) 4 (0.0252) 4 (0.0252) 3 (0.0990) 3 (0.0990)
0.95 12 (0.0405) 11 (0.0850) 9 (0.2984) 8 (0.4955) 10 (0.1657) 6 (0.9379)
0.90 16 (0.4168) 13 (0.9851) 14 (0.7920) 16 (0.4168) 14 (0.7920) 12 (0.7586)
0.80 26 (0.8639) 28 (0.7987) 26 (0.8639) 32 (0.2773) 28 (0.7987) 26 (0.8639)

Table 4.6: Number of VaRβ exceedings in 137 data points with corresponding
p-values under the normality assumption.

Exceedings and p-values
β r1 r2 r3 r4 r5 r6

0.99 1 (0.7968) 2 (0.3171) 2 (0.3171) 3 (0.0990) 2 (0.3171) 3 (0.0990)
0.95 11 (0.0850) 11 (0.0850) 9 (0.2984) 9 (0.2984) 10 (0.1657) 8 (0.4955)
0.90 16 (0.4168) 14 (0.7920) 17 (0.2808) 18 (0.1800) 18 (0.1800) 16 (0.4168)
0.80 28 (0.7987) 31 (0.3783) 27 (0.9659) 32 (0.2773) 29 (0.6417) 27 (0.9659)

Table 4.7: Number of VaRβ exceedings in 137 data points with corresponding
p-values under the stable assumption (α = 1.8).

values, which just indicates that the normal distribution could be suitable

for forecasting more toward the middle of the distribution.

Overall, the SSEWMA model provides a better fit to the tails and is preferable

based on the examination of the p-values.
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Chapter 5

Results for the 2-Stage Problem

The ALM optimization problem of Chapter 3 is now solved using scenarios gen-

erated from the time series models of Chapter 4. First, efficient frontiers are

developed for the 2-stage problem with scenarios from the EWMA and SSEWMA

models, and post-optimality analysis is briefly discussed. Then, backtesting is

carried out to compare the performance of the 1-stage problem versus the 2-stage

recourse problem and the normality assumption versus the stable assumption. The

results from varying the distributional assumption are mixed, but the 2-stage re-

course problem outperforms the 1-stage problem. Before presenting these results,

the parameters of the optimization problem are first specified.

For pension funds, decisions are made approximately on an annual basis, so

a stage in the stochastic program should correspond to 12 months. A 12 month

stage leaves too few data points in the backtesting, so the decision is made to

shorten the stage to cover a 6 month period. In addition to giving more points for

comparison in the backtesting, time series models typically generate more reliable

scenarios over shorter horizons.

For the 2-stage problem, a balanced scenario tree is generated with 104 first

stage scenarios and 107 second stage scenarios, giving 103 second stage nodes
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connected to each first stage node. This huge number of scenarios gives fairly

reliable optimal allocations, and memory limitations do not allow much larger

scenario trees to be considered. The first stage scenarios are created by simulating

104 sample paths of the time series model out to 6 months, and the second stage

scenarios are created by simulating another 103 sample paths out an additional

6 months for each of the first stage scenarios. Scenario reduction and bundling

using the methods of probability metrics are also attempted in order to created a

better set of first stage scenarios, but these methods cannot handle sample paths

of this number with the given hardware.

It is necessary to convert the generated sample paths of the returns back

to the index values of the benchmarks. This is not a problem when using the

normal distribution, but it does cause some small difficulties when using the stable

distribution. Since the returns have infinite variance under the stable assumption

and are temporally dependent, the sample paths of the corresponding index values

will explode. For this reason, the stable return scenarios are truncated at levels

corresponding to p-values of 0.001 and 0.999 of the estimated distribution. This

eliminates the explosion of the index values while still fitting the tails of the return

distributions better than the normality assumption.

For the efficient frontiers and at the start date of the dynamic backtesting, it

is assumed that the pension fund is fully funded: The total asset wealth and the

liability obligation are both taken to be $1,000, and because of the structure of

the deterministic equivalent form of the optimization problem, any pension fund

that is fully funded has the same optimal allocations (as a percent of the asset

wealth). For instance, a fund with an initial $1,000,000 in both asset wealth and

liability obligation has the same optimal allocations as one with $1,000 in both.

When transaction costs are considered, the optimal allocations depend also
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on the initial allocation, not just the generated scenarios and initial wealth. In

this case, it is assumed that the fund initially holds 40% of its wealth in bonds

and 60% of its wealth in equities. A reasonable assumption for the transaction

costs, as a percent of wealth traded, is obtained from data on mutual funds in [13].

Given in that report, the median trading cost (TC) is 0.70% of fund assets per

year:

TC ≈ 0.0070 × Fund Assets.

The turnover, defined as the ratio of annual fund sales to the fund assets, is

determined to have a median of 0.70:

Fund Sales ≈ 0.70 × Fund Assets.

Assuming that the fund buys approximately as much as it sells, then

Traded Wealth ≈ 2 × Fund Sales.

Combining equations yields

TC ≈ 0.0070

2 × 0.70
Traded Wealth,

or trading costs are approximately 0.5% of the traded wealth. Additionally as-

suming that the transaction costs are the same for each of the five ALM asset

classes, the values of TCBi = TCSi = 0.005, for i = 1, ..., 5, are used in the

optimization problem.

All computations are carried out in Matlab on a Linux cluster of 10 nodes,

each with 2 processors and at least 2 GB of RAM. The parallel implementation

of the solution algorithm is run on either four or five processors. Solution times
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typically vary between a couple hours and one day. Since incorporating transaction

costs nearly triples the number of decision variables, solving the problem with

transaction costs is more time-consuming than without.

5.1 Efficient Frontiers

The numerical results for the efficient frontiers of the 2-stage recourse problem

are now given. Recall that the risk measure for the 2-stage problem is

ρ2 = µ1CVaRβ(−sw2) + µ2CVaRβ(−sw3),

where swt+1 is the surplus wealth at the end of stage t (and sw1 = 0 since the

pension fund is initially fully funded). A CVaR confidence level of 95% is used

in this section to emphasize the differences between the normality and stable

assumptions. For the remainder of this dissertation, it is taken that µ1 = µ2 = .5,

and studies in assigning different weights to the CVaR at different stages is saved

for a later time. Since the reward is the expected surplus wealth at the end of

the second stage, E(sw3), the efficient frontier is obtained by varying λ in the

minimization objective: λρ2− (1−λ)E(sw3). Figure (5.1) contains three different

efficient frontiers:

• Optimization without transaction costs and scenarios generated from the

normality assumption (EWMA model).

• Optimization with transaction costs and the same set of scenarios generated

from the normality assumption.

• Optimization without transaction costs and scenarios generated from the

stable assumption (SSEWMA model) using the tail index estimates from
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Figure 5.1: Efficient frontiers under the normality and stable assumptions for
β = 0.95.

Table (4.2).

The optimal allocations, as percents of the initial wealth, are found in Tables (5.1-

5.3). In all three cases and for any value of λ, the optimal first stage allocations

are some combination of the bond and international equity indexes. The portfolio

that maximizes the expected final surplus wealth (λ = 0) invests entirely in the

international equity index, and the minimum risk portfolio (λ = 1) invests entirely

in the bond index. A couple immediate comments can be made about the figure.

Since the stable distribution has a higher probability of extreme events, the frontier

of the stable distribution lies below that of the normal distribution. The inclusion

of transaction costs also moves the efficient frontier downward, and the distance
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Optimal First Stage Allocations
λ E(sw3) ρ2 CVaR(−sw2) CVaR(−sw3) Cash Bonds Eq. Int. Eq. Mort.
0 72.18 399.46 319.44 479.48 0 0 0 100 0

0.10 71.68 389.07 319.44 458.70 0 0 0 100 0
0.20 70.82 384.04 319.44 448.63 0 0 0 100 0
0.25 64.49 364.44 299.09 429.80 0 10.6483 0 89.3517 0
0.30 42.92 306.50 232.28 380.71 0 48.3706 0 51.6294 0
0.35 32.63 284.80 207.23 362.36 0 64.9963 0 35.0037 0
0.40 25.61 273.09 194.71 351.47 0 75.1793 0 24.8207 0
0.45 19.75 265.12 186.68 343.57 0 82.9291 0 17.0709 0
0.50 15.08 259.96 182.16 337.76 0 88.1928 0 11.8072 0
0.60 6.72 253.12 177.31 328.92 0 95.7591 0 4.2409 0
0.75 -2.74 248.36 175.47 321.24 0 100 0 0 0
1.00 -20.23 246.13 175.47 316.79 0 100 0 0 0

Table 5.1: Efficient frontier under the normality assumption with β = 0.95.

Optimal First Stage Allocations
λ E(sw3) ρ2 CVaR(−sw2) CVaR(−sw3) Cash Bonds Eq. Int. Eq. Mort.
0 70.47 409.60 321.91 497.29 0 0 0 100 0

0.10 70.08 401.18 321.91 480.45 0 0 0 100 0
0.20 69.36 396.97 321.91 472.03 0 0 0 100 0
0.25 68.92 395.45 321.91 468.99 0 0 0 100 0
0.30 57.09 365.74 288.65 442.84 0 20.8749 0 79.1251 0
0.35 43.60 337.37 256.10 418.64 0 44.3374 0 55.6626 0
0.40 34.79 322.43 239.12 405.73 0 58.8847 0 41.1153 0
0.45 27.67 312.73 228.49 396.97 0 69.8927 0 30.1073 0
0.50 21.83 306.25 221.75 390.75 0 78.1959 0 21.8041 0
0.60 13.85 299.59 216.06 383.12 0 87.1561 0 12.8439 0
0.75 2.97 294.23 212.78 375.68 0 95.7426 0 4.2574 0
1.00 -19.85 291.21 212.08 370.34 0 100 0 0 0

Table 5.2: Efficient frontier under the stable assumption with β = 0.95.

it moves for various values of λ depends on the initial allocation.

A few risk-reward points obtained by replacing the surplus wealth with the

wealth in the optimization problem, under the normality assumption, are also

included in Figure (5.1). The optimal allocations, found in Table (5.4), are very

different in this case: The minimum risk portfolio has a very large proportion

of wealth invested in the cash index. When the corresponding ρ2 and E(sw3)

are calculated, the points for the risk-averse portfolios lie far below the efficient

frontier. This illustrates the advantage of considering the liabilities and assets

together in the same optimization problem. Maximizing the expected final wealth

and maximizing the expected final surplus wealth result in the same values of ρ2
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Optimal First Stage Allocations
λ E(sw3) ρ2 CVaR(−sw2) CVaR(−sw3) Cash Bonds Eq. Int. Eq. Mort.
0 59.28 415.61 328.26 502.96 0 0 0 99.0050 0

0.10 58.80 405.57 328.26 482.89 0 0 0 99.0050 0
0.20 57.83 399.83 328.26 471.41 0 0 0 99.0050 0
0.25 37.16 327.52 251.65 403.39 0 40.0000 0 59.4030 0
0.30 34.81 321.78 247.18 396.37 0 42.6534 0 56.7496 0
0.35 21.80 294.29 217.23 371.35 0 61.8604 0 37.5426 0
0.40 13.93 281.12 203.63 358.61 0 72.4813 0 26.9217 0
0.45 7.14 271.91 194.45 349.36 0 81.0294 0 18.3736 0
0.50 2.07 266.31 189.48 343.14 0 86.5774 0 12.8256 0
0.60 -6.25 259.47 184.36 334.58 0 94.1698 0 5.2331 0
0.75 -15.27 254.86 181.98 327.75 0 99.4030 0 0 0
1.00 -31.96 253.21 181.98 324.45 0 99.4030 0 0 0

Table 5.3: Efficient frontier under the normality assumption with transaction costs
and β = 0.95.

Optimal First Stage Allocations
λ E(sw3) ρ2 CVaR(−sw2) CVaR(−sw3) Cash Bonds Eq. Int. Eq. Mort.
0 72.18 399.46 319.44 479.48 0 0 0 100 0

0.25 56.24 349.48 271.26 427.70 0 25.7090 0 74.2910 0
0.50 8.00 293.29 214.21 372.38 0 0 0 20.8588 79.1412
0.75 -40.48 333.07 247.64 418.49 74.2995 0 0 3.9844 21.7161
1.00 -53.29 353.66 253.02 454.30 84.9059 1.0005 0 2.4420 11.6516

Table 5.4: Wealth optimization under the normality assumption with no transac-
tion costs and β = 0.95.

and E(sw3) because of the linearity of the problem.

5.2 Post-optimality Analysis

A short review of the contamination technique for post-optimality analysis is found

in the work of Dupačová et al. [18]. The basic technique examines how the optimal

value of a stochastic program changes as the initial probability distribution P1

becomes contaminated with another probability distribution P2. These authors

consider problems of the form

φ(P1) = min
x1∈X

F (x1, P1)
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where P1 is a discrete probability distribution of scenarios, X does not depend on

P1, x1 are the scenario independent first stage decision variables, and F is convex

in x1 and linear in P1. The original probability distribution is assumed to become

contaminated through

Pψ = (1 − ψ)P1 + ψP2, with 0 < ψ < 1.

This means that the scenarios of both distributions are aggregated into one set

of scenarios where the probabilities of the scenarios in P1 and P2 are weighted by

1 − ψ and ψ, respectively. If the optimal solution is denoted by

x1(P1) = arg min
x1∈X

F (x1, P1),

a set of bounds for the optimal value of the stochastic program under the con-

taminated distribution, φ(Pψ), are given by

(1 − ψ)φ(P1) + ψφ(P2) ≤ φ(Pψ)

≤ min {(1 − ψ)φ(P1) + ψF (x1(P1), P2), (1 − ψ)F (x(P2), P1) + ψφ(P2)} ,

(5.1)

where F (x1(P1), P2) is the value of the objective under distribution P2 when the

first stage decision is x1(P1) (there is still an implicit minimization over the second

stage variables). F (x1(P2), P1) is found in a similar manner.

It is not difficult to verify that the ALM problem can be written in the above

form. This contamination method can be easily applied to the situation where

P1 corresponds to the set of scenarios generated from the normality assumption

and P2 corresponds to the set of scenarios generated from the stable assumption.

In the case of the minimum risk portfolio (λ = 1), the optimal objective value
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coincides with the minimum risk value. Let

ρn
2 = φ(P1), and ρs

2 = φ(P2),

correspond to the 2-stage risk under the normal and stable distributions, respec-

tively. Also, denote the risk under distribution Pψ by ρψ
2 . As seen in Tables (5.1-

5.2), the optimal allocations under both distributional assumptions invest all the

wealth in the bond index. It follows that F (x(P2), P1) = ρn
2 and F (x(P1), P2) = ρs

2,

and the bounds in equation (5.1) produce

ρψ
2 = (1 − ψ)ρn

2 + ψρs
2,

= (1 − ψ) · 246.13 + ψ · 291.21.

The minimum risk in the 2-stage program is then easily calculated when scenarios

under the normality and stable assumptions are combined. The general contam-

ination technique can also be applied for any value of λ, but direct information

about the risk can no longer be calculated.

5.3 Portfolio Backtesting

The results from two rounds of backtesting are now presented. The first round

includes transaction costs, and the initial conditions for each run of the optimiza-

tion problem come from the previous period considered. This provides a realistic

comparison for the 1-stage problem versus the 2-stage problem, but it is diffi-

cult to calculate the realized risk using the risk measure that is optimized. In

the second round, the transaction costs are removed, and the initial conditions

are reset every run of the optimization problem. This allows the realized risk
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to be directly calculated in terms of the optimized risk measure and provides a

better comparison for the distributional assumptions; however, this setup favors

the 1-stage problem over the 2-stage problem because the second stage becomes

irrelevant.

5.3.1 Dynamic Backtesting: 1-Stage versus 2-Stage

This subsection performs the dynamic backtesting of the minimum risk 1-stage

and 2-stage portfolios with transaction costs. The 2-stage problem finds the op-

timal allocations that minimize ρ2, and the 1-stage problem finds the optimal

allocation that minimizes

ρ1 = CVaRβ(−sw2).

For a given distributional assumption, the same sets of scenarios are used when

solving the 1-stage and 2-stage problems: The 1-stage problem is just restricted

to considering the 104 first stage scenarios.

The time series models are fit to a moving window of 100 data points un-

der both the normality and stable assumptions using the EWMA and SSEWMA

models, respectively. Running the optimization problems with scenarios gener-

ated from the time series models fit to the first 100 monthly data points give

optimal allocations for the 6 month period beginning in July, 1993. It is again

assumed that the pension fund is initially fully funded with 40% of its wealth in

the bond index and 60% of its wealth in the equity index. The window is then

shifted forward by 6 data points, and the optimization problems output optimal

allocations for January, 1994. The asset wealths resulting from the previous al-

locations, and those allocations themselves, are used as the initial conditions for

the new optimization problems. This setup means that the 2-stage problem is run

on a rolling horizon: Since new scenarios are generated every 6 months, only the
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first stage allocations are actually implemented.

Since it is difficult to obtain a good estimate for the tail index of a stable dis-

tribution with only 100 data points, it is assumed that α = 1.8 in the SSEWMA

model. The backtesting, therefore, gives a comparison of the normality assump-

tion with the stable assumption for this particular value of the tail index.

The window is shifted 21 times resulting in a final surplus wealth for July,

2004. Since this produces only 22 values of the surplus wealth for comparison, the

CVaR confidence level is reduced to 80% in ρ1 and ρ2. To measure the relative

performances, it is necessary to calculate the risk of the realized surplus wealths.

However, it is not reasonable to directly calculate the CVaR of these values because

the surplus wealths that are used as the initial conditions in the optimization

problems vary over the time horizon and are different for the various assumptions.

It is also not possible to calculate the CVaR of the return of the surplus wealth

because the surplus wealth is not strictly positive. By the translation invariance

property of a coherent risk measure, it is more reasonable to look at the change

in surplus wealth:

CVaRβ(−sw2) = sw1 + CVaRβ(−∆sw),

since sw1 is a fixed initial condition. Therefore, minimizing the CVaR in the next

time period has the effect of minimizing the CVaR of the change, but one still

cannot make a direct comparison because the initial asset wealths also vary for

the different assumptions over the horizon. The measure of realized risk, ρ̃, used

in the comparison is the CVaR with β = 0.80 of the change in negative surplus

wealth per dollar of asset wealth from the previous period. One can expect that

minimizing ρ1 and ρ2 produces small values of ρ̃, but ρ̃ does not give a perfect

comparison of risk because the resulting optimal allocations depend on the ratios
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ρ̃ final sw
1-stage Normal 0.0466 1177.29
1-stage Stable 0.0509 1077.64
2-stage Normal 0.0456 1209.22
2-stage Stable 0.0491 1217.92
Fixed-Mixed 0/40/60/0/0 0.0924 241.04
Fixed-Mixed 0/100/0/0/0 0.0776 -371.39

Table 5.5: Dynamic backtesting results.

of assets to liabilities, not just the asset wealths. Values of ρ̃ and the final surplus

wealth are found in Table (5.5). For comparison, this table also includes values

for the fixed-mixed rule of 40% bonds and 60% equities, and the rule of 100%

bonds. Under both the normality and stable assumptions, the 2-stage recourse

problem outperforms the 1-stage problem by both reducing ρ̃ and increasing the

final surplus wealth. While the 2-stage problem under the stable assumption

results in the highest final surplus wealth, the normality assumption gives lower

values of ρ̃. The fixed-mixed rules are no comparison with the stochastic programs.

Figures (5.2-5.4) show the evolution of the asset wealths and liability value

over the time horizon. One can see that minimizing CVaR does not look like a

typical index tracking problem because the upside is not penalized. The asset

wealths and the liability values are in Table (5.6), and the optimal allocations are

in Tables (5.7-5.10). These tables also include the percents of asset wealth lost to

transaction costs.

An additional comparison of the performance of the stable and normal distri-

butions is obtained by VaR backtesting similar to Section 4.4. Under the optimal

allocations, the forecasted VaRs of the surplus wealth are compared with the

observed surplus wealths. The number of exceedings of VaR0.80 has a binomial

distribution, Bin(22, .2), and the rejection rule in equations (4.14-4.15) is easily

modified to this situation. While it is very difficult to reject with only 22 points,
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the resulting p-values of the test can be compared: In both the 1-stage and 2-

stage problems, the normality assumption has 5 exceedings (p-value=0.5429) and

the stable assumption has 4 exceedings (p-value=0.9142). This indicates that the

stable assumption does a better job in forecasting the VaR of the surplus wealth.

In this round of backtesting, the expectation is that running the 2-stage prob-

lem on a rolling horizon should be less risky than the 1-stage problem, as ρ̃ in-

dicates. Besides looking at scenarios farther into the future, the 2-stage problem

considers the loss of wealth in rebalancing in the future, which can be costly for

a significant change in allocations. If the distributions are independent over time,

and if there are no transaction costs, the major advantages of the 2-stage model

are lost.
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Figure 5.2: Dynamic backtesting: 1-stage versus 2-stage under the normality
assumption.
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Figure 5.3: Dynamic backtesting: 1-stage versus 2-stage under the stable assump-
tion.
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Figure 5.4: Dynamic backtesting: Fixed-mixed rules.
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Asset Wealth
Date Liability 1-stage 2-stage Fixed-mixed

Value Normal Stable Normal Stable 0/40/60/0/0 0/100/0/0/0
7/93 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00
1/94 1067.19 1036.08 1033.60 1034.93 1032.71 1067.69 1034.72
7/94 936.20 1006.58 1003.17 1005.07 1002.12 1031.23 1000.94
1/95 932.01 1015.83 1009.89 1014.77 1009.76 1061.09 1010.78
7/95 1085.82 1119.68 1106.91 1118.45 1108.27 1233.43 1102.13
1/96 1267.52 1230.57 1213.50 1235.10 1219.35 1376.50 1182.06
7/96 1137.78 1245.16 1227.06 1250.82 1234.14 1382.09 1163.18
1/97 1208.93 1545.82 1486.14 1552.85 1532.14 1609.50 1220.62
7/97 1354.74 1894.36 1818.87 1902.97 1877.59 1862.24 1288.37
1/98 1503.39 1961.80 1883.63 1970.72 1944.43 1937.84 1351.51
7/98 1566.35 2259.70 2169.65 2269.97 2239.69 2136.26 1389.74
1/99 1726.53 2599.19 2495.61 2611.01 2576.17 2371.80 1460.65
7/99 1536.38 2531.37 2448.79 2555.91 2543.31 2411.78 1424.34
1/00 1528.22 2568.31 2490.92 2610.18 2603.17 2498.60 1433.68
7/00 1715.38 2694.08 2612.77 2729.57 2724.48 2599.06 1509.31
1/01 1864.70 2884.14 2803.19 2910.55 2916.84 2621.32 1631.85
7/01 1915.56 3003.98 2920.14 3030.85 3038.17 2495.37 1700.87
1/02 1960.23 3100.08 3013.55 3127.81 3135.36 2436.33 1755.28
7/02 2068.61 3230.29 3140.12 3259.18 3267.05 2202.77 1829.00
1/03 2291.06 3393.44 3298.72 3423.79 3432.06 2176.37 1921.38
7/03 2180.78 3405.28 3310.23 3435.73 3444.03 2398.13 1928.08
1/04 2400.67 3558.11 3458.80 3589.93 3598.60 2659.32 2014.61
7/04 2392.77 3570.05 3470.40 3601.98 3610.68 2633.80 2021.38

Table 5.6: Dynamic backtesting: Realized liability values and asset wealths for
the optimal allocations with β = 0.80.

Date Cash Bonds Equities Intern. Mortgages Transaction
Equities Costs

(initial) 0 40 60 0 0
7/93 0 89.9043 4.9691 4.5791 0 0.5476
1/94 0 89.7865 0.1678 9.9954 0 0.0503
7/94 0 85.6719 9.9092 4.3211 0 0.0979
1/95 0 89.7313 10.2284 0 0 0.0403
7/95 0 58.9767 40.7269 0 0 0.2964
1/96 0 0 99.4273 0 0 0.5727
7/96 0 0 100 0 0 0
1/97 0 0 100 0 0 0
7/97 0 0 100 0 0 0
1/98 0 0 100 0 0 0
7/98 0 0 100 0 0 0
1/99 0 88.4698 10.6410 0 0 0.8891
7/99 0 82.3947 17.5437 0 0 0.0616
1/00 0 81.7418 18.2582 0 0 0
7/00 0 91.9907 7.9093 0 0 0.1000
1/01 0 99.9294 0 0 0 0.0706
7/01 0 100 0 0 0 0
1/02 0 100 0 0 0 0
7/02 0 100 0 0 0 0
1/03 0 100 0 0 0 0
7/03 0 100 0 0 0 0
1/04 0 100 0 0 0 0

Table 5.7: Dynamic backtesting: Allocations (as a percent of asset wealth) for the
1-stage optimization problem under the normality assumption with β = 0.80.
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Date Cash Bonds Equities Intern. Mortgages Transaction
Equities Costs

(initial) 0 40 60 0 0
7/93 0 93.8328 0.5981 4.9780 0 0.5911
1/94 0 92.7472 0 7.2347 0 0.0181
7/94 0 88.2931 5.1188 6.5367 0 0.0514
1/95 0 94.6421 5.2968 0 0 0.0611
7/95 0 62.4417 37.2428 0 0 0.3155
1/96 0 1.3738 98.0320 0 0 0.5942
7/96 0 14.9073 84.9563 0 0 0.1364
1/97 0 0 99.8715 0 0 0.1285
7/97 0 0 100 0 0 0
1/98 0 0 100 0 0 0
7/98 0 0 100 0 0 0
1/99 0 79.3499 19.8526 0 0 0.7975
7/99 0 78.3104 21.6842 0 0 0.0054
1/00 0 85.5057 14.4138 0 0 0.0806
7/00 0 93.7601 6.1600 0 0 0.0798
1/01 0 99.9451 0 0 0 0.0549
7/01 0 100 0 0 0 0
1/02 0 100 0 0 0 0
7/02 0 100 0 0 0 0
1/03 0 100 0 0 0 0
7/03 0 100 0 0 0 0
1/04 0 100 0 0 0 0

Table 5.8: Dynamic backtesting: Allocations (as a percent of asset wealth) for the
1-stage optimization problem under the stable assumption with β = 0.80.

Date Cash Bonds Equities Intern. Mortgages Transaction
Equities Costs

(initial) 0 40 60 0 0
7/93 0 91.4944 3.7318 4.2140 0 0.5599
1/94 0 90.9029 0 9.0523 0 0.0448
7/94 0 86.5537 9.8023 3.5455 0 0.0985
1/95 0 89.8535 10.1135 0 0 0.0330
7/95 0 50.4015 49.2155 0 0 0.3830
1/96 0 0 99.5129 0 0 0.4871
7/96 0 0 100 0 0 0
1/97 0 0 100 0 0 0
7/97 0 0 100 0 0 0
1/98 0 0 100 0 0 0
7/98 0 0 100 0 0 0
1/99 0 82.2585 16.9148 0 0 0.8267
7/99 0 67.1027 32.7497 0 0 0.1477
1/00 0 66.1382 33.8618 0 0 0
7/00 0 89.5188 10.2507 0 0 0.2305
1/01 0 99.9081 0 0 0 0.0919
7/01 0 100 0 0 0 0
1/02 0 100 0 0 0 0
7/02 0 100 0 0 0 0
1/03 0 100 0 0 0 0
7/03 0 100 0 0 0 0
1/04 0 100 0 0 0 0

Table 5.9: Dynamic backtesting: First stage allocations (as a percent of asset
wealth) for the 2-stage optimization problem under the normality assumption
with β = 0.80.
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Date Cash Bonds Equities Intern. Mortgages Transaction
Equities Costs

(initial) 0 40 60 0 0
7/93 0 94.9591 0 4.4438 0 0.5970
1/94 0 93.0800 0 6.8995 0 0.0205
7/94 0 88.2264 6.2331 5.4779 0 0.0626
1/95 0 93.5050 6.4439 0 0 0.0511
7/95 0 56.2840 43.3517 0 0 0.3643
1/96 0 0 99.4541 0 0 0.5459
7/96 0 0 100 0 0 0
1/97 0 0 100 0 0 0
7/97 0 0 100 0 0 0
1/98 0 0 100 0 0 0
7/98 0 0 100 0 0 0
1/99 0 71.8792 27.3984 0 0 0.7224
7/99 0 64.1376 35.7941 0 0 0.0683
1/00 0 77.5415 22.3131 0 0 0.1454
7/00 0 92.3947 7.4606 0 0 0.1447
1/01 0 99.9334 0 0 0 0.0666
7/01 0 100 0 0 0 0
1/02 0 100 0 0 0 0
7/02 0 100 0 0 0 0
1/03 0 100 0 0 0 0
7/03 0 100 0 0 0 0
1/04 0 100 0 0 0 0

Table 5.10: Dynamic backtesting: First stage allocations (as a percent of asset
wealth) for the 2-stage optimization problem under the stable assumption with
β = 0.80.
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5.3.2 Static Backtesting: Stable versus Normal

By changing the initial conditions and removing the transaction costs, a better

comparison is obtained for the distributional assumptions. To eliminate the dif-

ficulties of the previous subsection in measuring the risk of the realized surplus

wealths, it is assumed that the pension fund is fully funded (sw1 = 0) with an

initial asset wealth and liability value of $1000 for every run of the optimization

problem. Transaction costs are not included because the optimal allocations would

depend on the allocations from the prior 6 month period, which would not have

a total asset wealth of $1000. With these assumptions, one can directly compare

the CVaR of the realized surplus wealths, denoted by ρ̃1, and not use ρ̃.

This static backtesting is carried out under both distributional assumptions

for the minimum risk portfolios. The time series models are again fit to a moving

window of 100 data points that is shifted by 6 points each instance. A confidence

level of 80% is used in ρ1, ρ2, and ρ̃1, and the tail index for the SSEWMA model is

again assumed to be 1.8. The results are found in Table (5.11), and they indicate

that the stable assumption does a slightly better job of minimizing ρ̃1. The opti-

mal allocations and the resulting surplus wealth for each run of the optimization

problem are in Tables (5.12-5.15). In 12 out of the 22 runs of the optimization

problem, the normality and stable assumptions result in the same optimal allo-

cations, which left only 10 points for comparison. While the stable assumption

performs better here, more backtesting should be carried out on additional data

sets to obtain a more reliable comparison.

As observed, one should expect that the 1-stage problem results in a lower value

of ρ̃1 in this round of backtesting. Since the initial conditions of the optimization

problems are reset for every 6 month period, the second stage of the 2-stage

problem no longer matters. The 1-stage problem directly minimizes ρ1, which
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ρ̃1 s̄w
1-stage Normal 69.29 19.16
1-stage Stable 69.03 17.11
2-stage Normal 71.84 21.13
2-stage Stable 70.62 20.25

Table 5.11: Static backtesting results.

is the risk measure that is compared, while the 2-stage problem typically has a

larger first stage CVaR because it also considers the second stage CVaR.

Sim Cash Bonds Equities Intern. Mortgages Surplus
Num Equities Wealth

1 0 94.2996 0 5.7004 0 -27.13
2 0 88.8915 0 11.1085 0 95.28
3 0 77.9172 19.7553 2.3275 0 19.10
4 0 95.3882 4.6118 0 0 -69.11
5 0 41.6561 58.3439 0 0 -52.28
6 0 0 100 0 0 120.04
7 0 15.0808 84.9192 0 0 149.96
8 0 0 100 0 0 104.85
9 0 0 100 0 0 -74.12
10 0 0 100 0 0 109.97
11 0 0 100 0 0 47.97
12 0 86.0574 13.9426 0 0 95.02
13 0 48.3285 51.6715 0 0 37.37
14 0 65.4060 34.5940 0 0 -76.88
15 0 93.0775 6.9225 0 0 -14.22
16 0 100 0 0 0 15.02
17 0 100 0 0 0 8.67
18 0 100 0 0 0 -13.29
19 0 100 0 0 0 -57.03
20 0 100 0 0 0 51.62
21 0 100 0 0 0 -55.95
22 0 100 0 0 0 6.65

Table 5.12: Static backtesting: Allocations for the 1-stage problem, and the sur-
plus wealths resulting from those allocations, under the normality assumption
with β = 0.80.
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Sim Cash Bonds Equities Intern. Mortgages Surplus
Num Equities Wealth

1 0 95.0270 0 4.9730 0 -27.81
2 0 91.5586 0 8.4414 0 94.03
3 0 78.2348 16.6446 5.1206 0 16.29
4 0 96.0098 3.9902 0 0 -69.86
5 0 49.5305 50.4695 0 0 -58.02
6 0 0 100 0 0 120.04
7 0 41.2263 58.7737 0 0 99.74
8 0 0 100 0 0 104.85
9 0 0 100 0 0 -74.12
10 0 0 100 0 0 109.97
11 0 0 100 0 0 47.97
12 0 73.8613 26.1387 0 0 103.55
13 0 40.6498 59.3502 0 0 41.16
14 0 78.6774 21.3226 0 0 -74.14
15 0 94.1093 5.8907 0 0 -12.98
16 0 100 0 0 0 15.02
17 0 100 0 0 0 8.67
18 0 100 0 0 0 -13.29
19 0 100 0 0 0 -57.03
20 0 100 0 0 0 51.62
21 0 100 0 0 0 -55.95
22 0 100 0 0 0 6.65

Table 5.13: Static backtesting: Allocations for the 1-stage problem, and the sur-
plus wealths resulting from those allocations, under the stable assumption with
β = 0.80.

Sim Cash Bonds Equities Intern. Mortgages Surplus
Num Equities Wealth

1 0 95.3620 0 4.6380 0 -28.12
2 0 89.2761 0 10.7239 0 95.10
3 0 78.4857 20.5315 0.9828 0 20.22
4 0 99.5282 0.4718 0 0 -74.09
5 0 32.4868 67.5132 0 0 -45.59
6 0 0 100 0 0 120.04
7 0 0 100 0 0 178.93
8 0 0 100 0 0 104.85
9 0 0 100 0 0 -74.12
10 0 0 100 0 0 109.97
11 0 0 100 0 0 47.97
12 0 78.8588 21.1412 0 0 100.05
13 0 15.3084 84.6916 0 0 53.67
14 0 40.1295 59.8705 0 0 -82.12
15 0 90.2678 9.7322 0 0 -17.62
16 0 100 0 0 0 15.02
17 0 100 0 0 0 8.67
18 0 100 0 0 0 -13.29
19 0 100 0 0 0 -57.03
20 0 100 0 0 0 51.62
21 0 100 0 0 0 -55.95
22 0 100 0 0 0 6.65

Table 5.14: Static backtesting: First stage allocations for the 2-stage problem,
and the surplus wealths resulting from those allocations, under the normality
assumption with β = 0.80.

90



Sim Cash Bonds Equities Intern. Mortgages Surplus
Num Equities Wealth

1 0 95.6634 0 4.3366 0 -28.40
2 0 91.8795 0 8.1205 0 93.88
3 0 78.7285 18.2053 3.0661 0 18.12
4 0 100 0 0 0 -74.66
5 0 42.5472 57.4528 0 0 -52.93
6 0 0 100 0 0 120.04
7 0 16.0125 83.9875 0 0 148.17
8 0 0 100 0 0 104.85
9 0 0 100 0 0 -74.12
10 0 0 100 0 0 109.97
11 0 0 100 0 0 47.97
12 0 63.4409 36.5591 0 0 110.83
13 0 9.6377 90.3623 0 0 56.47
14 0 66.5203 33.4797 0 0 -76.65
15 0 93.4359 6.5641 0 0 -13.79
16 0 100 0 0 0 15.02
17 0 100 0 0 0 8.67
18 0 100 0 0 0 -13.29
19 0 100 0 0 0 -57.03
20 0 100 0 0 0 51.62
21 0 100 0 0 0 -55.95
22 0 100 0 0 0 6.65

Table 5.15: Static backtesting: First stage allocations for the 2-stage problem, and
the surplus wealths resulting from those allocations, under the stable assumption
with β = 0.80.
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Chapter 6

Conclusions and Future Work

An ALM problem for a pension fund is designed to find the optimal allocations

among various asset classes while considering the liability obligation. A multistage

stochastic program with recourse optimizes the tradeoff between the expected

final surplus wealth and a multi-period risk measure. The major advantages

of the recourse program are that it considers portfolio reallocation with linear

transaction costs and models uncertainty through scenarios. A weighted average

of the CVaR of the negative surplus wealth at each stage is used as the risk

measure because it permits a deterministic equivalent form that has a piecewise

linear objective with linear constraints. The scenarios are generated from time

series models calibrated to monthly data representative of a pension fund. Two

different multivariate distributional assumptions are made for the innovations of

a VAR(1) model. Both assumptions use an EWMA process for the innovations

in an attempt to capture the volatility clustering, but the first uses the normal

distribution while the second uses a distribution similar to the sub-Gaussian.

As one would expect, dynamic portfolio backtesting indicates that the 2-stage

recourse problem performs better than the 1-stage problem. The 2-stage problem

considers the loss of wealth when the portfolio is reallocated and results in a higher
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final surplus wealth and smaller realized risk than the 1-stage problem.

The monthly data provides a short time series and fitting a time-varying mul-

tivariate stable distribution proves to be difficult. While the VaR backtesting of

the time series models for the returns favors the stable distribution, it is not clear

which distributional assumption is superior in the portfolio backtesting. In dy-

namic portfolio backtesting, the normality assumption results in a smaller value

of realized risk, but in static backtesting, the stable assumption performs better.

It is desirable to conduct additional backtesting of the ALM program on a more

extensive data set to obtain a better comparison.

The multistage program is much more of a computational challenge than the

more common single-stage programs. Huge numbers of scenarios are generated

to obtain reliable results for the comparisons in the backtesting, and extending

beyond the 2-stage program requires a great reduction in the number of scenarios

to solve the program in any reasonable amount of time. The techniques involving

probability metrics should be examined in more detail as they were found to have

a computational issue of their own for a large number of scenarios.
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[18] Jitka Dupačová, Marida Bertocchi, and Vittorio Moriggia. Postoptimality

for Scenario Based Financial Planning Models with an Application to Bond

Portfolio Management. In John M. Mulvey and William T. Ziemba, editors,

Worldwide Asset and Liability Modeling. Cambridge University Press, 1999.

[19] Jitka Dupačová, Giorgio Consigli, and Stein W. Wallace. Scenarios for Multi-

stage Stochastic Programs. Annals of Operations Research, 100:25–53, 2000.

[20] Jitka Dupačová, Jan Hurt, and Josef Štěpán. Stochastic Modeling in Eco-
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