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Deviation measures and r.d. metrics

If µ is a translation invariant and positively homogeneous of degree 1
probability metric, then the functional Dµ is a symmetric deviation
measure.

If D is a symmetric deviation measure, then the functional µD is a
translation invariant and positively homogeneous of degree 1 probability
semimetric.

Symmetry properties of µ and D influence only the symmetry properties
of Dµ and µD, respectively.

Relaxing the assumption that µ is symmetric (Property 2) results in Dµ

being asymmetric as well.

If µ is a translation invariant and positively homogeneous of degree 1 r.d.
metric, then Dµ is a general deviation measure.

If D is a general deviation measure, then µD is a translation invariant and
positively homogeneous of degree 1 r.d. metric.
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Remarks on the axioms

Recall that a probability semi-metric which does not satisfy the
symmetry axiom SYM is called probability quasi-semi-metric.

How we can modify a probability metric so that it becomes better
suited for the benchmark-tracking problem.

Let us choose two classical examples of compound probability
metrics — the average compound metric

Lp(X , Y ) = (E |X − Y |p)1/p, p ≥ 1

and the Birnbaum-Orlicz compound metric

Θp(X , Y ) =

[∫ ∞

−∞
(τ(t ; X , Y ))pdt

]1/p

, p ≥ 1

where τ(t ; X , Y ) = P(X ≤ t < Y ) + P(Y ≤ t < X ).
Both Lp(X , Y ) and Θp(X , Y ) are ideal because they satisfy the
positive homogeinity property and the weak regularity property.
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Remarks on the axioms

The average compound metric satisfies all properties of relative
deviation metrics but it is symmetric, a property we would like to
break.

One possible way is to replace the absolute value by the max
function, obtaining the asymmetric version

L∗
p(X , Y ) = (E(max(Y − X , 0))p)1/p, p ≥ 1. (1)

In Stoyanov, Rachev, Ortobelli and Fabozzi (2007) we show that
L∗

p(X , Y ) is an ideal quasi-semi-metric; that is, using the max
function instead of the absolute value breaks only the symmetry
axiom SYM.
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Remarks on the axioms

What is the intuition behind removing the absolute value and
considering the max function?

Suppose that the r.v. X stands for the return of the portfolio and Y
denotes the return of the benchmark. The difference Y − X can
be interpreted as the portfolio loss relative to the benchmark, or
the portfolio underperformance.

If in a given state of the world, ω ∈ Ω, the difference is positive,
Y (ω) − X (ω) > 0, then in this state of the world the portfolio is
underperforming the benchmark.
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Remarks on the axioms

The expectation

L∗
1(X , Y ) = E max(Y − X , 0)

measures the average portfolio underperformance. When we
minimize L∗

1 in the optimization problem, we are actually
minimizing the average portfolio underperformance.

The same is idea behind the general case L∗
p(X , Y ). There is

additional flexibility in that the power p ≥ 1 allows increasing the
importance of the larger losses by increasing p.
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Remarks on the axioms

The absolute difference |X − Y | in the classical probability metric
L1(X , Y ) is either underperformance or outperformance of the
benchmark depending on whether the difference Y (ω) − X (ω) is
positive or negative in a given state of the world ω ∈ Ω.

The absolute difference can be decomposed into an
underperformance and an outperformance term

|X (ω) − Y (ω)| = max(X (ω) − Y (ω), 0) + max(Y (ω) − X (ω), 0).

If the first summand is positive, then we have outperformance and
if the second summand is positive we have underperformance in
the corresponding state of the world ω ∈ Ω.

If we minimize L1(X , Y ) in the benchmark tracking problem, then
we minimize simultaneously both the portfolio outperformance
and underperformance.

⇒ A similar conclusion holds for the general case Lp(X , Y ).
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Remarks on the axioms

The same idea, but implemented in a different way, stays behind
the asymmetric version of the Birnbaum-Orlicz metric

Θ
∗
p(X , Y ) =

[∫ ∞

−∞
(τ∗(t ; X , Y ))pdt

]1/p

, p ≥ 1 (2)

where τ∗(t ; X , Y ) = P(X ≤ t < Y ). In Stoyanov, Rachev, Ortobelli
and Fabozzi (2007) we show that (2) is an ideal quasi-semi-metric.

That is, considering only the first summand of the function
τ(t ; X , Y ) from the Birnbaum-Orlics compound metric breaks the
SYM axiom only.
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Remarks on the axioms

Interpreting the integrand — the τ∗(t ; X , Y ) function:

Just as in the case of the asymmetric version of the average
compound metric, suppose that the r.v. X represents the return of
the portfolio and Y represents the benchmark return.

For a fixed value of the argument t , which we interpret as a
threshold, the function τ∗ calculates the probability of the event
that the portfolio return is below the threshold t and,
simultaneously, the benchmark return is above the threshold t ,

τ∗(t ; X , Y ) = P(X ≤ t < Y ) = P({X ≤ t} ∩ {t < Y}).

The function τ∗ calculates the probability that the portfolio return is
below the benchmark return with respect to the threshold t .
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Remarks on the axioms

As a result, we can interpret Θ
∗
p(X , Y ) as a measure of the

probability that portfolio loses more than the benchmark.

In the benchmark-tracking problem, by minimizing Θ
∗
p(X , Y ), we

are indirectly minimizing the probability of the portfolio losing more
than the benchmark.

Interestingly, the special case p = 1,

Θ
∗
1(X , Y ) =

∫ ∞

−∞
τ∗(t ; X , Y )dt

allows for a very concrete interpretation.

Θ
∗
1(X , Y ) is exactly equal to the average underperformance; that

is Θ
∗
1(X , Y ) = L∗

1(X , Y ). This holds because Θ
∗
1(X , Y ) is just an

alternative way of writing down the integral behind the expectation
in L∗

1(X , Y ).
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Minimal r.d. metrics

Any probability metric is defined on a pair of random variables
(X , Y ).
Depending on the implied equivalence in property ID, we
distinguish between three classes of metrics — primary, simple
and compound:

The primary metrics imply the weakest form of sameness, only up
to equality of certain characteristics.
The simple metrics have stronger implications. It is only if the
distribution functions of the random variables agree completely that
the measured distance between them becomes zero.
The compound metrics imply the strongest possible identity — in
almost sure sense.
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Minimal r.d. metrics

There are links between the corresponding classes:

By including more and more characteristics we obtain primary
metrics which essentially require that the distribution functions of
the random variables should coincide; that is, they turn into simple
metrics.

By minimizing any compound metric on all possible dependencies
between the two random variables we obtain a metric which
actually depends only on the distribution functions and is,
therefore, simple. This is the construction of the minimal metric
which is defined by

µ̂(X , Y ) = inf{µ(X̃ , Ỹ ) : X̃ d
= X , Ỹ d

= Y}
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Minimal r.d. metrics

It is possible to construct the minimal r.d. metrics in the same
manner as minimal probability metrics. The approach can be used
to construct nontrivial examples of simple r.d. metrics such as (7)
and (8) from the lecture.

It is possible to show that, if µ is a functional satisfying properties
ID or ĨD, TI or T̃I, then µ̂ also satisfies ID or ĨD, TI or T̃I.

Omitting the symmetry property results only in asymmetry in the
minimal functional µ̂ and influences nothing else. These are,
basically, the results in the proof that µ̂ is a probability
(semi)distance.

It is easy to check that if positive homogeneity holds for µ, then
the same property holds for µ̂ as well. The same holds for the
weak regularity.
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Minimal r.d. metrics

The construction of the minimal r.d. metric, just as the minimal
probability metric, is an important tool because some of the
properties above are easy to check for a compound metric and
difficult to check for a simple metric.

For example, this is the case with the weak regularity property.
Therefore, starting with a compound r.d. metric, we are sure that
the minimal functional corresponding to it is a simple r.d. metric.

Sometimes, it is possible to calculate explicitly the minimal
functional. This can be done either through the
Cambanis-Simons-Stout theorem or through the Frechet-Hoffding
inequality.
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Minimal r.d. metrics

Now we will show how the Cambanis-Simons-Stout result is
applied to the functional

L∗
p(X , Y ) = (E(max(Y − X , 0))p)1/p, p ≥ 1.

It is easy to check that ĨD, TI, R̃E, and Property 4 hold for
L∗

p(X , Y ).
We identify the function φ, φ(x , y) = (max(x − y , 0))p. Clearly
φ(x , x) = 0 and φ is quasi-antitone because
f (x) = (max(x , 0))p, p ≥ 1 is a non-negaive, convex function.
The Cambanis-Simons-Stout theorem applies and, therefore, the
minimal functional is given by

ℓ∗p(X , Y ) = L̂∗
p(X , Y ) =

[∫ 1

0
(max(F−1

Y (t) − F−1
X (t), 0))pdt

]1/p

which is equation (8) in the lecture.
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Minimal r.d. metrics

There is another method of obtaining explicit forms of minimal
functionals via the celebrated Frechet-Hoeffding inequality
between distribution functions defined in (26) in the appendix to
Lecture 3.

We show how this inequality is applied to the problem of finding
the minimal r.d. metric of the Birnbaum-Orlicz quasi-semi-metric
defined in (2) by taking advantage of the upper bound.
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Minimal r.d. metrics

Consider the following representation of the τ∗ function defined in
(2),

τ∗(t ; X , Y ) = P(X ≤ t , Y < t)

= P(X ≤ t) − P(X ≤ t , Y ≤ t).

This representation is correct because by summing
P(X ≤ t , Y > t) and P(X ≤ t , Y ≤ t), the influence of the random
variable Y is cancelled out.

By replacing the joint probability by the upper bound from the
Frechet-Hoeffding inequality, we obtain

τ∗(t ; X , Y ) ≥ FX (t) − min(FX (t), FY (t))

= max(FX (t) − FY (t), 0).
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Minimal r.d. metrics

Raising both sides of the above inequality to the power p ≥ 1 and
integrating over all values of t does not change the inequality.

We obtain
[∫ ∞

−∞
(max(FX (t) − FY (t), 0))pdt

]1/p

≤ Θ
∗
p(X , Y )

which gives, essentially, the corresponding minimal r.d. metric.

The left side of the inequality coincides with (7) from the lecture,
θ
∗
p(X , Y ) = Θ̂

∗
p(X , Y ).
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Limit cases of L∗
p(X , Y ) and Θ

∗
p(X , Y )

There are several limit cases of the two r.d. metrics which help better
understand their behaviour. We will consider the most intuitive ones.

In line with the setting of the benchmark-tracking problem, in the
interpretations we assume that X represents portfolio return and
Y represents the benchmark return.

There are two ways to obtain limit representatives — if we let p
approach infinity, or zero.

We defined both r.d. metrics for p ≥ 1 and we will slightly change
the definitions so that we can see what is going on as p → 0.
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Limit cases of L∗
p(X , Y ) and Θ

∗
p(X , Y )

The slightly extended definitions are,

L∗
p(X , Y ) = (E(max(Y − X , 0))p)1/ min(1,1/p), p ≥ 0 (3)

and

Θ∗
p(X , Y ) =

[∫ ∞

−∞
(τ∗(t ; X , Y ))pdt

]1/ min(1,1/p)

, p ≥ 0. (4)

⇒ The change affects the case p ∈ [0, 1) and if p ≥ 1, then we obtain
the previous definitions.
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Limit cases of L∗
p(X , Y ) and Θ

∗
p(X , Y )

As p → ∞, the r.d. metric L∗
p(X , Y ) approaches L∗

∞(X , Y ) defined
as

L∗
∞(X , Y ) = inf{ǫ > 0 : P(max(Y − X , 0) > ǫ) = 0}

This limit case can be interpreted in the following way.
L∗
∞(X , Y ) calculates the smallest threshold so that the portfolio

loss relative to the benchmark is larger than this threshold with
zero probability.

⇒ Note that this quasi-semi-metric is entirely focused on the very
extreme loss.
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Limit cases of L∗
p(X , Y ) and Θ

∗
p(X , Y )

In the other direction, if p → 0, the r.d. metric L∗
p(X , Y )

approaches L∗
0(X , Y ) where

L∗
0(X , Y ) = EI{ω : max(Y (ω) − X (ω), 0) 6= 0}

= P(Y > X ).

The notation I{ω ∈ A} stands for the indicator function of the event
A, i.e. if ω happens to be in A, then I{ω ∈ A} = 1 and otherwise it
is equal to zero.

This result is self-explanatory, L∗
0(X , Y ) calculates the probability

of the event the portfolio to lose relative to the benchmark.
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Limit cases of L∗
p(X , Y ) and Θ

∗
p(X , Y )

Concerning the Birnbaum-Orlicz quasi-semi-metric given by (4),
there is an interesting limit case as p → ∞,

Θ
∗
∞(X , Y ) = sup

t∈R
P(X ≤ t < Y ).

Let us briefly look at the properties of the function
τ∗(t ; X , Y ) = P(X ≤ t < Y ) in order to see what this limit case
calculates.

As t decreases to −∞, the sets {ω : X (ω) ≤ t} become
progressively smaller and at the limit they approach the empty set,
limt→∞{ω : X (ω) ≤ t} = ∅.

The same conclusion is valid for the sets {ω : Y (ω) > t} as t
increases to infinity.
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Limit cases of L∗
p(X , Y ) and Θ

∗
p(X , Y )

Since the function τ∗(t ; X , Y ) is, essentially, the probability of the
intersection of these two events, it follows that τ∗(t ; X , Y ) decays
to zero as t decreases or increases unboundedly,

lim
t→−∞

τ∗(t ; X , Y ) = 0

lim
t→∞

τ∗(t ; X , Y ) = 0.

As a result, it follows that the maximum of the function τ∗(t ; X , Y )
will not be attained for very small or very large values of the
threshold t .

Therefore, Θ
∗
∞(X , Y ) is not sensitive to the extreme events in the

tail because the threshold t , for which P(X ≤ t < Y ) is maximal, is
near the center of the distributions.
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Limit cases of L∗
p(X , Y ) and Θ

∗
p(X , Y )

⇒ Exactly the same effect is present in the minimal quasi-semi-metric
generated by it, θ

∗
p(X , Y ).

As p increases to infinity, we obtain

θ
∗
∞(X , Y ) = sup

t∈R
[max(FX (t) − FY (t), 0)]

which is an asymmetric version of the celebrated Kolmogorov
metric.

Basically, θ
∗
∞(X , Y ) calculates the maximal difference between

the distribution functions, FX (t) − FY (t).

Therefore, θ
∗
∞(X , Y ) is not sensitive to the deviations between the

two distribution functions in the tails, which describe the
probability of extreme events, because as t approaches either of
the infinities, the difference FX (t) − FY (t) decays to zero.
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Computing r.d. metrics in practice

Here we’ll state a number of closed form expressions for some of
the r.d. metrics considered in the previous sections and we give
examples in the setting of the benchmark-tracking problem.

Generally, it is not possible to arrive at a closed form expression
but under additional assumptions for the joint distribution of the
pair of random variables, explicit representations can be provided.
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Explicit form of L∗

p(X , Y ) when (X , Y ) has joint normal distribution

Suppose that (X , Y ) has a centered, bivariate normal distribution.
In this case, the difference Y − X has a zero-mean, normal
distribution with standard deviation σ(Y − X ),
Y − X ∈ N(0, σ2(Y − X )).

The difference has the same distribution as σ(Y − X )Z , where
Z ∈ N(0, 1). We use this representation only to calculate the
expectation. In effect, we obtain

L∗
p(X , Y ) = Cp.σ(Y − X ), p ≥ 1 (5)

where Cp = (E(max(Z , 0))p)1/p is a positive constant which can
be explicitly computed.
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Explicit form of L∗

p(X , Y ) when (X , Y ) has joint normal distribution

Note that the parameter p influences the constant Cp only and,
therefore, L∗

p(X , Y ) is just a scaled standard deviation of the
difference Y − X .

This is not true only under the hypothesis of joint normal
distribution. If (X , Y ) has a joint elliptical distribution with finite
variance, then L∗

p(X , Y ) has, essentially, the form given by (5).

In the elliptical case, one has to ensure additionally that X and Y
have finite p-th absolute moment, i.e. E |X |p < ∞ and E |Y |p < ∞.
Otherwise, L∗

p(X , Y ) may become infinite.

Prof. Dr. Svetlozar Rachev (University of Karlsruhe)Lecture 9: Benchmark tracking problems 2008 29 / 40



Explicit form of L∗

p(X , Y ) when (X , Y ) has joint normal distribution

Apparently, the closed-form expression (5) can be regarded as
typical of the large class of bivariate elliptical distributions in which
the joint normal distribution is just a special case.

It may seem strange that even though by definition the r.d. metric
L∗

p(X , Y ) is asymmetric, equation (5) is symmetric. The reason is
the elliptical assumption because it implies symmetric distributions
of X , Y , and the difference Y − X and, therefore, L∗

p(X , Y ) cannot
be asymmetric because of this restrictive assumption.
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Explicit form of L∗

p(X , Y ) when (X , Y ) has joint normal distribution

Let us apply equation (5) to the benchmark-tracking problem.

To this end, we interpret the r.v. X as the portfolio return rp and
the random variable Y as the benchmark return rb.

Concerning the random vector of assets returns, we assume that
it follows the multivariate normal, or multivariate elliptical, in order
to make sure that the distribution of the portfolio return rp is
normal, or elliptical, for any choice of portfolio weights.

As a result, the r.d. metric has the form,

L∗
p(rp0, rb0) = Cp.σ(rp − rb), p ≥ 1

which means that L∗
p(rp0, rb0) is just a scaled tracking error.

The tracking error is the building block of the L∗
p(rp0, rb0) r.d.

metric in the multivariate normal, or, more generally, in the
multivariate elliptical case. This will not happen under the
assumption of a multivariate skewed distribution.
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Explicit form of ℓ∗p(X , Y ) when X and Y have normal distribution

The minimal r.d. metric l∗p(X , Y ) is simple and, therefore, we do
not need a distributional assumption for the pair (X , Y ) but only for
the marginal laws of X and Y .

Suppose that both X and Y have the centered normal distribution,
X ∈ N(0, σ2

X ) and Y ∈ N(0, σ2
Y ). Both distributions can be

represented as a scaled N(0, 1) distributions and, as a result, we
obtain

ℓ∗p(X , Y ) = Cp.|σX − σY |, p ≥ 1 (6)

where Cp = (E(max(Z , 0))p)1/p and Z ∈ N(0, 1).
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Explicit form of ℓ∗p(X , Y ) when X and Y have normal distribution

In the setting of the benchmark-tracking problem, assume
additionally that r follows the multiavriate normal distribution with
covariance matrix Σ, r0 ∈ N(0, Σ).

We obtain the explicit formula

ℓ∗p(rb
0 , w ′r0) = Cp.|

√
w ′Σw − σ(rb)|, p ≥ 1.

where w denotes the vector of portfolio weights.

In the lecture, we provided the case p = 1 in which C1 = 1/
√

2π.
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Explicit forms of Θ
∗

p(X , Y ) and θ
∗

p(X , Y )

It is much harder to calculate closed-form expressions for
Θ

∗
p(X , Y ) and θ

∗
p(X , Y ) even under additional assumptions for the

joint distribution of (X , Y ).

Nevertheless, for some choices of p, it is possible to link the two
r.d. metrics to other classes for which the calculation is not so
complicated.

For instance, Θ
∗
1(X , Y ) = L∗

1(X , Y ) and θ
∗
1(X , Y ) = ℓ∗1(X , Y ) and

we can use the already derived explicit forms.
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Estimating r.d. metrics from a sample

How can we calculate the simple r.d. metrics (7) and (8) in the lecture
for a given portfolio with weights w = (w1, . . . , wn) if we have a sample
of daily observations for the equity returns and the benchmark
returns?

Notice that they both involve either the distribution functions of the
portfolios returns or the inverse of the distribution functions and
these functions we do not know in practice.

They have to be estimated either directly from the data making no
distributional hypotheses, or assuming a parametric model and
estimating its parameters from the sample.
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Estimating r.d. metrics from a sample

We may assume that the equity returns and the benchmark returns are
jointly distributed according to the multivariate normal distribution.

It follows that the equity returns also have the multivariate normal
distribution and, consequently, the return rp of any portfolio with
weights w also has the normal distribution, rp ∈ N(0, w ′Σw),
where Σ is the covariance matrix of the equity returns.

As a result, in order to calculate (7) and (8), we have to estimate
the unknown parameters in the first place; that is, the covariance
matrix Σ and the variance of the benchmark returns, σ2(rb).

Once we know the estimates Σ̂ and σ̂2(rb), we can calculate (7) by
plugging in the distribution functions of the centered normal
distribution with variance equal to the corresponding estimates.

The integrals can be calculated numerically using an available
software package such as MATLAB.
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Estimating r.d. metrics from a sample

The r.d. metric (8) can be calculated by by taking advantage of the
closed-form expression (6),

ℓ̂∗p(rp0, rb0) = Cp

∣∣∣(w ′Σ̂w)1/2 − σ(r̂b)
∣∣∣

Note that when p = 1, we have the following special case,

θ̂
∗
1(rp0, rb0) = ℓ̂∗1(rp0, rb0) =

1√
2π

∣∣∣(w ′Σ̂w)1/2 − σ(r̂b)
∣∣∣ .
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Estimating r.d. metrics from a sample

Suppose that we do not want to make any distributional
hypotheses. Then, the r.d. metrics can be computed through the
empirical distribution functions and the empirical inverse
distribution functions.

Thus, in the case of (12) from the lecture, we use

θ̂
∗
p(rp0, rb0) =

[∫ ∞

−∞
(max(F̂rb0(t) − F̂rp0(t), 0))pdt

]1/p

, p ≥ 1

where F̂X (t) = 1
n

∑n
i=1 I{Xi≤t}, denotes the empirical distribution

function and n is the sample size.

The integral can be calculated numerically using an available
software package.
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Estimating r.d. metrics from a sample

The empirical r.d. metric (13) can be easily simplified because the stocks
in our sample and the index have the same number of observations.

In order to give the formula, we introduce additional notation. Let us fix
the portfolio weights w , then denote by r (1)

p0 ≤ r (2)
p0 ≤ . . . ≤ r (n)

p0 the sorted
sample of the corresponding observed centered portfolio returns.
Similarly, let r (1)

b0 ≤ r (2)
b0 ≤ . . . ≤ r (n)

b0 be the sorted sample of the observed
centered benchmark returns. Then

ℓ̂∗p(rp0, rb0) =

[
1
n

n∑

i=1

(max(r (i)
b0 − r (i)

p0 , 0))p

]1/p

, p ≥ 1.

From the point of view of computational burden, minimizing ℓ̂∗p(rp0, rb0) is

a lot easier than θ̂
∗

p(rp0, rb0) because the numerical integration adds
more complexity to the problem.
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