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Introduction

An important problem for fund managers is comparing the performance of
their portfolios to a benchmark. The benchmark could be:

a market index or

any other portfolio or

liability measure in the case of defined benefit pension plans.

There are two types of strategies that managers follow: active or passive.

An active portfolio strategy uses available information and forecasting
techniques to seek a better performance. It is an expectation about the
factors that could influence the performance of an asset class. The goal
of an active strategy is to outperform the benchmark after management
fees by a given number of basis points.

A passive portfolio strategy involves minimal expectational input and
instead relies on diversification to match the performance of some
benchmark. A passive strategy, commonly referred to as indexing,
assumes that the marketplace will reflect all available information in the
price paid for securities.
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Introduction

There are various strategies for constructing a portfolio to
replicate the index but the key in these strategies is designing a
portfolio whose tracking error relative to the benchmark is as small
as possible.

Tracking error is the standard deviation of the difference between
the return on the replicating portfolio and the return on the
benchmark.

⇒ The benchmark tracking problem can be formulated as an
optimization problem.
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Introduction

We’ll consider the benchmark tracking problem from a very
general viewpoint, replacing the traditional tracking error
measures by a general functional satisfying a number of axioms.

We call this functional a metric of relative deviation because it
calculates the relative performance of the portfolio to the
benchmark.

Our approach is based on the universal methods of the theory of
probability metrics. As a result, the optimization problems which
arise are a significant generalization of the currently existing
approaches to benchmark tracking.
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The tracking error problem

In lecture 8, the optimal portfolio problems have one feature in
common in that the risk measure, or the dispersion measure,
concerns the distribution of portfolio returns without any reference
to another portfolio.

In contrast, benchmark-tracking problems include a benchmark
portfolio against which the performance of the managed portfolio
will be compared.

The arising optimization problems include the distribution of the
active portfolio return defined as the difference rp − rb in which rp

denotes the return of the portfolio and rb denotes the return of the
benchmark.

If the active return is positive, this means that the portfolio
outperformed the benchmark and, if the active return is negative,
then the portfolio underperformed the benchmark.
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The tracking error problem

In the ex-post analysis, we observe a specified historical period in
time and try to evaluate how successful the portfolio manager was
relative to the benchmark.

In this case, there are two time series corresponding to the
observed portfolio returns and the observed benchmark returns.

A measure of the performance of the portfolio relative to the
benchmark is the average active return, also known as the
portfolio alpha and denoted by αp.
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The tracking error problem

Alpha is calculated as the difference between the average of the
observed portfolio returns and the average of the observed
benchmark returns,

α̂p = r̄p − r̄b,

where

α̂p denotes the estimated alpha
r̄p = 1

k

∑k
i=1 rpi denotes the average of the observed

portfolio returns rp1, rp2, . . . , rpk

r̄b = 1
k

∑k
i=1 rbi denotes the average of the observed

benchmark returns rb1, rb2, . . . , rbk
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The tracking error problem

A widely used measure of how close the portfolio returns are to
the benchmark returns is the standard deviation of the active
return, also known as tracking error.

When it is calculated using historical observations, it is referred to
as the ex-post or backward-looking tracking error.

If the portfolio returns are equal to the benchmark returns in the
specified historical period, rpi = rbi for all i , then the observed
active return is equal to zero and, therefore, the tracking error will
be equal to zero.

⇒ The closer the tracking error to zero, the closer the risk profile of the
portfolio matches the risk profile of the benchmark.
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The tracking error problem

In the ex-ante analysis, portfolio alpha equals the mathematical
expectation of the active return,

αp = E(rp − rb)

= w ′µ − Erb,
(1)

where rp = w ′X in which w denotes the vector of portfolio weights,
X is a random vector describing the future assets returns, and
µ = EX is a vector of the expected assets returns.

The tracking error equals the standard deviation of the active
return,

TE(w) = σ(rp − rb),

where σ(Y ) denotes the standard deviation of the r.v. Y .

⇒ Tracking error in this case is referred to as ex-ante or
forward-looking tracking error.
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The tracking error problem

If the strategy followed is active, then the goal of the portfolio
manager is to gain a higher alpha at the cost of deviating from the
risk profile of the benchmark portfolio; that is, the manager will
accept higher forward-looking tracking error.

⇒ Active strategies are characterized by high alphas and high
forward-looking tracking errors.

If the strategy is passive, then the general goal is to construct a
portfolio so as to have a forward-looking tracking error as small as
possible in order to match the risk profile of the benchmark. As a
consequence, the alpha gained is slightly different from zero.

⇒ Passive strategies are characterized by very small alphas and very
small forward-looking tracking errors.
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The tracking error problem

Strategies which are in the middle between the active and the
passive ones are called enhanced indexing.1

In following such a strategy, the portfolio manager constructs a
portfolio with a risk profile close to the risk profile of the
benchmark but not identical to it.

Enhanced indexing strategies are characterized by small to
medium-sized forward-looking tracking errors and small to
medium-sized alphas.

The optimal portfolio problem originating from this framework is
the minimal tracking error problem.

1Loftus (2000) classifies the three strategies for equity portfolio strategies as
follows: indexing, 0 to 20 basis points; 50 to 200 basis points; and, active
management, 400 basis points and greater.
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The tracking error problem

The minimal tracking error problem has the following form

min
w

σ(rp − rb)

subject to w ′e = 1
w ′µ − Erb ≥ R∗

w ≥ 0,

(2)

where R∗ denotes the lower bound of the expected alpha.

Its structure is very similar to the mean-variance optimization
problems. The difference is that the active portfolio return rp − rb is
used instead of the absolute portfolio return rp.

The goal is to find a portfolio which is closest to the benchmark in
a certain sense, while setting a threshold on the expected alpha.
In this case, the “closeness” is determined by the standard
deviation.
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The tracking error problem

By varying the limit R∗, we obtain the entire spectrum from
passive strategies (R∗ close to zero), through enhanced indexing
(R∗ taking medium-sized values), to active strategies (R∗ taking
from medium-sized to large values).

The set of the optimal portfolios generated by problem (2) is the
set of efficient portfolios which, if plotted in the plane of expected
alpha versus tracking-error, form the corresponding efficient
frontier. (See Figure 1 for illustration.)
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The tracking error problem
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Figure 1. The efficient frontier generated from the minimal tracking
error problem. The passive strategies are positioned to the left of
enhanced indexing strategies.
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The tracking error problem

If the investment universe is the same as or larger than the
universe of the benchmark portfolio, then the global minimum
tracking error is equal to zero. Then the optimal portfolio coincides
with the benchmark portfolio.

The global minimum tracking error portfolio represents a typical
passive strategy.

Increasing the lower bound on the expected alpha we enter the
domain of enhanced indexing.

Increasing further R∗ leads to portfolios which can be
characterized as active strategies.
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The tracking error problem

Recall that a serious disadvantage of the standard deviation is
that it penalizes in the same way the positive and the negative
deviations from the mean of the r.v.

Then the tracking error treats in the same fashion the
underperformance and the outperformance, while our attitude
towards them is asymmetric.

We are inclined to pay more attention to the underperformance.

⇒ From an asset management perspective, a more realistic measure
of “closeness” should be asymmetric.

Prof. Dr. Svetlozar Rachev (University of Karlsruhe)Lecture 9: Benchmark tracking problems 2008 17 / 62



The tracking error problem

Our aim is to restate the minimal tracking error problem in the
more general form

min
w

µ(rp, rb)

subject to w ′e = 1
w ′µ − Erb ≥ R∗

w ≥ 0,

(3)

where µ(X , Y ) is a measure of the deviation of X relative to Y .

Due to this interpretation, we regard µ as a functional which
metrizes relative deviation and we call it a relative deviation metric
or simply, r.d. metric.
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The tracking error problem

If the portfolio rp is an exact copy of the benchmark, i.e. it contains
exactly the same stocks in the same amounts, then the relative
deviation of rp to rb should be close to zero.2

The converse should also hold but, generally, could be in a somewhat
weaker sense.

If the deviation of rp relative to rb is zero, then the portfolio and the
benchmark are indistinguishable but only in the sense implied by
µ. They may, or may not, coincide with probability 1.

2It would not be equal to zero due to transaction costs.
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Relation to probability metrics

The benchmark-tracking problem given by (3) belongs to a class
of problems in which distance between random quantities is
measured.

In order to gain more insight into the properties that µ should
satisfy, we relate the benchmark-tracking problem to the theory of
probability metrics, explained in Lecture 3.
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Relation to probability metrics

A functional which measures the distance between random
quantities is called a probability metric.

These random quantities can be random variables (such as the
daily returns of equities, the daily change of an exchange rate,
etc.) or stochastic processes (such as a price evolution in a given
period), or much more complex objects (such as the daily
movement of the shape of the yield curve).

The probability metric is defined through a set of axioms, given in
Lecture 3; that is, any functional which satisfies these axioms is
called a probability metric.
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Relation to probability metrics

From the standpoint of the theory of probability metrics, the
benchmark-tracking problem given by (3) can be viewed as an
approximation problem.

So that we are trying to find a r.v. rb in the set of feasible portfolios
which is closest to the r.v. rb and the distance is measured by the
functional µ.

This functional should satisfy the properties stated in Lecture 3, or
some versions of them, in order for the problem to give meaningful
results.

Let us reexamine the set of properties Property 1 - Property 3 to
verify if some of them can be relaxed while application to a
specific problem.
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Relation to probability metrics

Property 1 and Property 3, we leave intact. The reason is that
anything other than Property 1 is just nonsensical and Property 1
together with Property 3 guarantee nice mathematical properties,
such as continuity of µ. Property 3 alone makes sense because of
the interpretation that we are measuring distance.

Property 2 can be dropped. The rationale is that, in problem (3)
the assumption of asymmetry is a reasonable property because of
our natural tendency to be more sensitive to underperformance
than to outperformance relative to the benchmark portfolio.
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Relation to probability metrics

The nature of the problem may require the additional properties.

Let us consider two equity portfolios with returns X and Y .

Suppose that we convert proportionally into cash 100 a % in total
of both portfolios where 0 ≤ a ≤ 1 stands for the weight of the
cash amount.

As a result, the two portfolios returns scale down to (1 − a)X and
(1 − a)Y respectively.

Since both random quantities get scaled down by the same factor,
we may assume that the distance between them scales down
proportionally. Actually, we assume that the distance scales down
by the same factor raised by some fixed power s,

ν(aX , aY ) = asν(X , Y ) for any X , Y and a,≥ 0.

If s = 1, then the scaling is proportional.
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Relation to probability metrics

The reason we are presuming a more general property is that
different classes of r.d. metrics will originate and depending on s
they may have different robustness in the approximation problem.

This property we call positive homogeneity of degree s. It is
similar to the homogeneity property of ideal probability metrics.
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Relation to probability metrics

As a next step, consider an equity with return Z which is
independent of the two portfolios returns X and Y .

Suppose that we invest the cash amounts into equity Z . The
returns of the two portfolios change to (1 − a)X + aZ and
(1 − a)Y + aZ , respectively, where 0 ≤ a ≤ 1 denotes the weight
of equity Z in the portfolio.

How does the distance change?

Certainly, there is no reason to expect that the distance should
increase. It either remains unchanged or decreases.
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Relation to probability metrics

In terms of the functional, we assume the property

ν(X + Z , Y + Z ) ≤ ν(X , Y )

for all Z independent of X , Y .

Any functional ν satisfying this property, we call weakly regular, a
label we borrow from the probability metrics theory. In fact, this is
the weak regularity property of ideal probability metrics.

If the distance between the two new portfolios remains unchanged
for any Z irrespective of the independence hypothesis, then we
say that ν is translation invariant.
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Relation to probability metrics

Note that if the positive homogeneity property and the weak
regularity property hold, then the inequality

ν((1 − a)X + aZ , (1 − a)Y + aZ ) ≤ ν(X , Y ), a ∈ (0, 1) (4)

holds as well and this is exactly the mathematical expression
behind the conclusion in the example.

While the weak regularity property may seem more confined than
postulating directly (4), we assume it as an axiom because (4) is
tied to the interpretation of the random variables as return on
investment.

Suppose that this is not the case and X , Y denote the random
wealth of the two portfolios under consideration and Z denotes
random stock price.
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Relation to probability metrics

Furthermore, assume that the present value of both portfolios are
equal and that we change both portfolios by buying one share of
stock Z .

Then the random wealth of both portfolios becomes X + Z and
Y + Z , respectively, and, because of the common stochastic factor
Z , we expect the relative deviation to decrease; that is
ν(X + Z , Y + Z ) ≤ ν(X , Y ).

⇒ The weak regularity property is the fundamental property we would
like to impose.
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Relation to probability metrics

In order to state the last axiom, suppose that we add to the two
initial portfolios other equities, such that returns of the portfolios
become X + c1 and Y + c2, where c1 and c2 are some constants.

We assume that the distance between the portfolios remains
unchanged because it is only the location of X and Y that
changes. That is,

ν(X + c1, Y + c2) = ν(X , Y )

for all X , Y and constants c1, c2. We call this property location
invariance.

As a corollary, this property allows measuring the distance only
between the centered portfolios returns.
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Relation to probability metrics

We demonstrate how such a functional ν can be constructed, for
example, from a given probability metric.

Suppose that µ(X , Y ) is a given probability metric and denote by
g the mapping

g : X → X − EX .

The mapping takes as an argument a random variable with a finite
mean and returns as output the random variable with its mean
subtracted, g(X ) = X − EX .

The mapping g has the property that shifting the random variable
X does not change the output of the mapping,

g(X + a) = X − EX = g(X ).
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Relation to probability metrics

Let us define the functional ν as

ν(X , Y ) = µ(g(X ), g(Y )). (5)

Thus, ν calculates the distance between the centered random variables
X − EX and Y − EY by means of the probability metric µ.

As a consequence, the functional ν defined in (5) is location invariant,

ν(X + c1, Y + c2) = µ(g(X + c1), g(Y + c2))

= µ(g(X ), g(Y ))

= ν(X , Y ).

The definition in equation (5) can be written in a more compact form
without introducing an additional notation for the mapping,

ν(X , Y ) = µ(X − EX , Y − EY ).
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Relation to probability metrics

The expected return of the portfolio and some other
characteristics can be incorporated into the constraint set of the
benchmark-tracking problem (3).

For example, the expected alpha constraint imposes a lower
bound on the expected alpha, or the expected outperformance
relative to the benchmark.
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Relation to probability metrics

Let’s finally define the r.d. metrics.

Any functional µ which is weakly regular, location invariant, positively
homogeneous of degree s, and satisfies Property 1 and Property 3.

The structural classification of probability metrics holds for r.d. metrics
as well. We distinguish between compound, simple, and primary r.d.
metrics depending on the degree of sameness implied by the r.d.
metric.
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Relation to probability metrics

Now let us revisit the classical tracking error and try to classify it.

First, it is a special case of the average compound metric with
p = 2 and therefore it satisfies Property 1 - Property 3. Of course,
this also means it is a compound metric, hence it implies the
strongest form of sameness — in almost sure sense.

Second, concerning the group of the additional axioms, it is
positively homogeneous of degree 1, translation invariant, and
satisfies the location invariance property.

Further, our goal is to give other examples of r.d. metrics, which are
substantially different from classical tracking error, and to see their
properties in a practical setting.
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Examples of r.d. metrics

A deviation measure D(X ) can generate a functional which is a
reasonable candidate for a measure of distance in the
optimization problem (3).

For example,
µD(X , Y ) = D(X − Y ) (6)

is a translation invariant probability semimetric, homogeneous of
degree 1 on condition that D is a symmetric deviation measure.

A converse relation holds as well. That is,

Dµ(X ) = µ(X − EX , 0) (7)

is a symmetric deviation measure, where µ is a translation
invariant probability metric, homogeneous of degree 1.
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Examples of r.d. metrics

If D is general deviation measure, then µD is a r.d. metric. In a
similar way, if µ is a r.d. metric, then Dµ is a general deviation
measure3.

⇒ All deviation measures turn out to be spawned from the class of
translation invariant r.d. metrics with degree of homogeneity s = 1.

This relationship already almost completely classifies the
functional µD arising from the deviation measure D.

Note that µD is a compound metric and therefore it implies the
strongest, almost sure sense of similarity. This can be seen by
considering an example in which X and Y are independent and
identically distributed. Then the difference X − Y is a r.v. with
non-zero uncertainty, hence D(X − Y ) > 0.

3See the appendix of this lecture for the details
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Examples of r.d. metrics

We proceed by providing two r.d. metrics belonging to a completely
different category - they both are simple and therefore the sense of
similarity they imply is only up to equality of distribution functions.

These functionals are defined through the equations

θ
∗

p(X , Y ) =

[
∫

∞

−∞

(max(FX (t) − FY (t), 0))pdt
]1/p

, p ≥ 1 (8)

and

ℓ∗p(X , Y ) =

[

∫ 1

0
(max(F−1

Y (t) − F−1
X (t), 0))pdt

]1/p

, p ≥ 1 (9)

where

X and Y are zero-mean random variables,
FX (t) = P(X < t) is the distribution function of X and
F−1

X (t) = inf{x : FX (x) ≥ t} is the generalized inverse of the distribution
function.
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Examples of r.d. metrics

The intuition behind (9) and (8) is the following.

Suppose that X and Y represent the centered random return of
two portfolios and that their distribution functions are as shown in
Figure 2.

Both functionals measure the relative deviation of X and Y using
only the part of the distribution functions, or the inverse
distribution functions, which describes losses.
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Examples of r.d. metrics
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Figure 2. The distribution functions (left) and the inverse distribution
functions (right) of X and Y .
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Examples of r.d. metrics

A closer look at the left plot in the figure reveals that the difference
FX (t) − FY (t) is non-negative only for negative values of t and
therefore θ

∗

p(X , Y ) essentially uses the information about losses
contained in the distribution function. The same holds for the other
functional.

In the case where p = 1, then θ
∗

p(X , Y ) calculates the area
between the two distribution functions to the left of the origin,
which is exactly the same area between the inverse distribution
functions to the left of t = 1/2.

It is easy to notice that θ
∗

1(X , Y ) = ℓ∗1(X , Y ) but this is, generally,
not true if p 6= 1.
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Examples of r.d. metrics

A remark for (8) and (9) on Property 1 follows as there is a subtle
nuance which has to be explained.

If the two distribution functions coincide, then both (9) and (8)
become equal to zero.

The converse statement holds as well. Suppose that the two r.d.
metrics are equal to zero. Then, the distribution functions of the
random variables may diverge but only in a very special way,

θ
∗

p(X , Y ) = 0 =⇒ FX (t) ≤ FY (t), ∀t ∈ R.

See the illustration on the next slide.
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Examples of r.d. metrics
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Figure 3. The distribution functions (left) and the inverse distribution
functions (right) of X and Y .
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Examples of r.d. metrics

However, the inequality is impossible to hold for r.d. metrics
because of the location invariance property; that is, we consider
only zero-mean random variables and the inequality between the
distribution functions above implies that EX ≤ EY , hence one of
the random variables may have a non-zero mean.

As a result, if θ∗p(X , Y ) = 0, then it follows that the c.d.f.s coincide
for all values of the argument, FY (t) = FX (t), ∀t ∈ R and,
therefore, the two random variables have identical probabilistic
properties.

Exactly the same argument applies to ℓ∗p(X , Y ).
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Examples of r.d. metrics

In summary, we showed that Property 1 holds in a stronger sense
for (9) and (8).

Not only does the distance between X and X equal zero,
µ(X , X ) = 0, but if µ(X , Y ) = 0, then for these two cases, because
of the location invariance property, it follows that X is equivalent to
Y to the extent that their distribution functions coincide.

However, there are examples of r.d. metrics for which the location
invariance property is insufficient to guarantee this stronger
identity property.
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Examples of r.d. metrics

Is is possible to calculate explicitly the r.d. metrics (9) and (8)?

The answer is negative but in some special cases, this can be done.

Suppose that p = 1 and that both random variables have the normal
distribution, X ∈ N(0, σ2

X ) and Y ∈ N(0, σ2
Y ).

Due to the equality θ
∗

1(X , Y ) = ℓ∗1(X , Y ), it makes no difference which
r.d. metric we choose for this calculation. Then, under these
assumptions,

ℓ1(X , Y ) =

∫ 1

0
(max(F−1

Y (t) − F−1
X (t), 0))dt

=
1√
2π

|σX − σY | .
(10)

In this special case, (10) is actually a primary metric because it
measures the distance between the standard deviations of the portfolio
return and the benchmark return. It is because we have restricted our
reasoning to the normal distribution only that the simple metric ℓ1 takes
this special form. Otherwise, it is a simple r.d. metric.
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Examples of r.d. metrics

Looking more carefully at (10), we notice that the symmetry
property holds due to the absolute value; that is, in this special
case, ℓ1(X , Y ) = ℓ1(Y , X ).

This may appear striking because equation (9) is asymmetric by
construction, or so it may seem.

The symmetry property appears, again, because of the normality
assumption — the left and the right tails of the distributions
disagree symmetrically in this case.

In other words, the particular form of (9) allows for asymmetry if
the corresponding distributions are skewed. If X and Y are
symmetric, then this is a fundamental limitation and the potential
for asymmetry, granted by the r.d. metric, cannot be exploited.
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Examples of r.d. metrics

We can use equation (10) to illustrate a point about the relationship
between the compound r.d. metrics and the minimal r.d. metrics
corresponding to them.

Using very general arguments, only the triangle inequality, we can show
that equation (10) is related to the tracking error through the inequality

|σX − σY | ≤ σ(X − Y ). (11)

It is true not only when X and Y are normal but in general.

Equation (11) shows that if the tracking error is zero, then |σX − σY | = 0
which, in the normal distribution case, means that ℓ1(X , Y ) = 0.

Conversely, in the normal distribution case one can find two random
variables X and Y with σX = σY and, yet, the tracking error can be
non-zero, σ(X − Y ) 6= 0, because of the dependence between the two
random variables.
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Examples of r.d. metrics

Example
If X and Y are independent, then X − Y is a r.v. with the normal
distribution and its standard deviation is strictly positive.

ℓ1(X , Y ) = 0 = |σX − σY | means that X and Y have the same
probabilistic properties and, nevertheless, the tracking error may
be strictly positive.

Similar conclusion holds in general, when we consider compound
versus simple metrics but an inequality such as (11) is guaranteed
to hold between compound metrics and the minimal metrics
corresponding to them.

It is in the normal distribution case that the left side of (11)
coincides with the minimal metric of the tracking error.
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Numerical example

We showed that both functionals (9) and (8) are meaningful
objectives in the benchmark-tracking problem. They are very
different from the classical tracking error as they are simple
metrics and imply a weaker form of sameness.

Even if they are both simple, the optimal solutions corresponding
to (9) and (8) will, generally, not be the same if p 6= 1. This is
understandable as the functionals are not identical.

There is one important difference between them concerning
Property 4. The functional θ

∗

p(X , Y ) is positively homogeneous of
degree 1/p while ℓ∗p(X , Y ) is positively homogeneous of degree 1
irrespective of the value of p.
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Numerical example

We’ll provide a numerical example. Our goals are:
1 Observe the difference between the optimal solutions of the

classical tracking error on the one hand and (9) and (8) on the
other. In this example, the optimal solution is represented by a
portfolio, the empirical c.d.f. of which is closest to the empirical
c.d.f. of the benchmark as measured by the corresponding r.d.
metric.

2 Examine the effect of the degree of homogeneity in the case of
θ
∗

p(X , Y ), our expectation being that the higher the degree of
homogeneity, the more sensitive θ

∗

p(X , Y ) is.

Our dataset includes 10 randomly selected equities from the S&P 500
universe and the benchmark is the S&P 500 index. The data cover the
one-year period from December 31, 2002 to December 31, 2003.
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Numerical example

The optimization problem we solve is the benchmark-tracking
problem given by (3) in which R∗ = 0 and the objective function
µ(rp, rb) is represented by the corresponding empirical
counterpart,

σ̂(rp − rb) (12)

θ̂
∗

p(rp0, rb0) (13)

ℓ̂∗p(rp0, rb0) (14)

where the index 0 signifies that the corresponding returns are
centered.

In the case of tracking error, the sample counterpart σ̂ is the
sample standard deviation.
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Numerical example

In the three problems, we start from an equally weighted portfolio
and then solve the optimization problems.

Therefore, in all cases, our initial portfolio is an equally weighted
portfolio of the 10 randomly selected stocks.

The constraint set guarantees that the expected return of the
optimal portfolio will not be worse than that of the benchmark.

We compare the inverse distribution functions of the centered
returns of the optimal portfolios in order to assess which problem
better tracks the benchmark in terms of the distribution function.

Note that it makes no difference whether we compare the
distribution functions or the inverse distribution functions, the
conclusion will not change.
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Numerical example
Figure below compares the inverse distribution functions of the centered returns of the
initial portfolio, the optimal portfolio of the classical tracking error problem and the
optimal portfolio obtained with objective (14) in which p = 1.
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Figure 4. The inverse distribution functions of the S&P 500 index (the benchmark),
equally weighted portfolio (initial portfolio) and the two optimal portfolios.
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Numerical example
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Figure 4 (cont.). The inverse distribution functions of the S&P 500
index (the benchmark), equally weighted portfolio (initial portfolio) and
the two optimal portfolios.
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Numerical example

It is obvious that both optimization problems provide solutions that better
track the benchmark than the trivial strategy of holding an equally
weighted portfolio.

The functional (14) does a better job at approximating the distribution
function of the benchmark returns, allowing for asymmetries in the loss
versus the profit part.

The part of the inverse distribution function of the optimal solution
describing losses, the one closer to t = 0 is closer to the corresponding
part of the inverse distribution function of the benchmark returns, while
this is not true for the profit part closer to t = 1.

Actually, the fact that the inverse distribution function of the optimal
solution is above the inverse distribution function of the benchmark
returns close to t = 1 means that the probability of a large positive return
of the optimal portfolio is larger than that of the benchmark.
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Numerical example

In order to explore the question of how the degree of homogeneity
might influence the solution, we solve the tracking problem with
objective (13) in which we choose p = 1 and p = 10.

The degree of homogeneity is equal to 1 and 1/10 respectively.

We noted already that θ
∗

1(rp0, rb0) = ℓ∗1(rp0, rb0) and therefore the
optimal solutions will coincide.

The inverse distribution functions of the returns of the optimal
portfolios are shown on Figure 5.
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Numerical example
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Figure 5. The inverse distribution functions of the SP500 index (the
benchmark), and the optimal portfolios obtained with (13) as objective
with p = 10.
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Numerical example

Apparently, the degree of sensitivity of the objective is directly
influenced by the parameter p in line with our expectations.

The integrand in the functional (13) measures the differences of
the two distribution functions and therefore its functional values
are small numbers, converging to zero in the tails.

Holding other things equal, raising the integrand to a higher power
deteriorates the sensitivity of the functional with respect to
deviations in the tails of the two distribution functions.

This observation becomes obvious when we compare the bottom
plot of Figure 4 to Figure 5.
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Numerical example

Generally, the optimization problems involving simple r.d. metrics
may not belong to the family of convex problems because the
simple r.d. metric may not appear to be a convex function of
portfolio weights.

Stoyanov, Rachev and Fabozzi (2007) show that, in particular, this
holds for the minimal r.d. metrics.
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Summary

We considered the problem of benchmark-tracking.

The classical problem relies on the tracking error to measure the
degree of similarity between the portfolio and the benchmark.

Making use of the approach of the theory of probability metrics,
we extended significantly the framework by introducing
axiomatically relative deviation metrics replacing the tracking error
in the objective function of the optimization problem.

We provided two examples of relative deviation metrics and a
numerical illustration of the corresponding optimization problems.
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