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Types of constraints

The kinds of constraints defining the set of feasible portfolios do not
depend on whether we consider M-V analysis, M-R analysis, or a more
general framework, and are determined by exogenous factors.

A risk-averse portfolio manager would not want to see a high
concentration of a particular, or any, asset in the portfolio.

For some of the assets a minimal holding may be required.

These two conditions can be implemented by means of box-type
constraints,

ai ≤ wi ≤ bi , i = 1, 2, . . . , n,

where ai is a lower bound and bi is an upper bound on the weight
of the i-th asset.
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Types of constraints

For some assets, the lower bound can simply be zero, ai = 0.

For example, suppose there are 3 assets in the investment
universe and we want to invest no more than 60% of the capital in
any of them and in asset number 3 to invest at least 10%.

This is modeled by the constraints,

0 ≤w1 ≤ 0.6

0 ≤w2 ≤ 0.6

0.1 ≤w3 ≤ 0.6.
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Types of constraints

In defining box-type constraints, we have to be careful not to end up
with an overly stringent set of constraints.

For example, this happens in the above illustration if the upper
bound is 20% instead of 60%.

Since all weights have to sum up to one, the sum of lower bounds
should not be above 1,

∑n
i=1 ai ≤ 1, and the sum of upper bound

should not be below 1,
∑n

i=1 bi ≥ 1.
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Types of constraints

In a similar manner, the portfolio manager may want to impose
constraints on certain groupings of assets.

Suppose that the investment universe consists of common stocks.
Depending on the strategy type, a reasonable condition is a lower
and an upper bound on the exposure in a given industry.

This is a constraint on the sum of the weights corresponding to all
stocks from the investment universe belonging to that industry,

a ≤
∑

i∈I

wi ≤ b,

in which I denotes the indices of the common stocks from the
given industry.
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Types of constraints

The general rule which is followed when building constraints is
that the resulting set of feasible portfolios should be convex.

This is guaranteed if each of the inequalities or equalities building
up the constraints define a convex set. Then, the set of feasible
portfolios is the intersection of these convex sets, which in turn is
a convex set.
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Types of constraints

If the set of feasible portfolios is not convex, then the optimization
problem may become hard to solve numerically.

An example of a type of constraint which does not lead to a
convex set of feasible portfolios is the following.

In the example above, suppose that if an asset is to be included in
the portfolio, then it should have at least 10% of the capital
allocated to it. This is modeled by the constraints

w1 = 0 or 0.1 ≤w1 ≤ 0.6

w2 = 0 or 0.1 ≤w2 ≤ 0.6

w3 = 0 or 0.1 ≤w3 ≤ 0.6

which do not result in a convex set.

⇒ Problems of this type can be solved by the more general methods of
mixed-integer programming and can be very computationally intensive.

Prof. Dr. Svetlozar Rachev (University of Karlsruhe) Lecture 8: Optimal portfolios 2008 8 / 44



Types of constraints

The set of feasible portfolios has a simpler structure if it contains
only linear inequalities or equalities.

In this case, it is said to be polyhedral. Every polyhedral set is
convex since any linear inequality or equality defines a convex set.

A polyhedral set has a simpler structure because its borders are
described by hyperplanes, which is a consequence of the fact that
the set is composed of linear inequalities or equalities.
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Quadratic approximations to utility functions

We remarked that M-V analysis is, generally, inconsistent with
SSD.

It is consistent with the order implied by investors with quadratic
utility functions. The assumption that investors have quadratic
utility functions is a significant limitation.

Under certain conditions, quadratic utility functions may represent
a reasonable approximation of more general types of utility
functions.

Therefore, there are cases in which the decisions made by
investors with quadratic utilities are consistent with the decisions
made by larger classes of investors depending on the accuracy of
the approximation.
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Quadratic approximations to utility functions

Consider a utility function u(x) and its Taylor series approximation in a
neighborhood of the point EX where X is a random variable,

u(x) = u(EX ) + u′(EX )(x − EX ) +
1
2

u′′(EX )(x − EX )2

+
1
n!

∞
∑

k=3

u(k)(EX )(x − EX )k ,
(1)

where u(k)(x) denotes the k-th derivative of u(x) and x is in a
neighborhood of the point EX .
We assume that the infinite series expansion is valid for any x ∈ R; that
is, the infinite power series converges to the value u(x) for any real x .
This condition is already a limitation on the possible utility functions that
we consider.
Not only do we require that the utility function is infinitely many times
differentiable but we also assume that the corresponding Taylor
expansion is convergent for any real x . Functions satisfying these
conditions are called analytic functions.
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Quadratic approximations to utility functions

We can calculate the expected utility taking advantage of the expansion
in (1) which we integrate term by term,

Eu(X ) = u(EX ) +
1
2

u′′(EX )E(X − EX )2

+
1
n!

∞
∑

k=3

u(k)(EX )E(X − EX )k .
(2)

The second term vanishes because E(X − EX ) = 0.

We obtain that the expected utility can be expressed in terms of the
derivatives of the utility function evaluated at EX and all moments
mk = E(X − EX )k , k = 1, 2, . . .

Even for analytic utilities u(x), expression (2) may not hold.

If the r.v. X has infinite moments, then (2) does not hold. Therefore, a
critical assumption is that the r.v. X has finite moments of any order.
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Quadratic approximations to utility functions

If u(x) is analytic and the r.v. X is such that mk < ∞, k = 1, 2, . . ., then
we may choose the first three terms as a reasonable approximation,

Eu(X ) ≈ u(EX ) +
1
2

u′′(EX )E(X − EX )2

= u(EX ) +
1
2

u′′(EX )σ2
X ,

(3)

for the expected utility function.

We recognize the moment σ2
X = E(X − EX )2 as the variance of X .

The expected utility is approximated by the mean and the variance of X .

If we consider risk-averse investors, then the utility function u(x) is
concave and, therefore, it has a negative second derivative. As a result,
the expected utility maximization problem can be linked to M-V analysis.
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Quadratic approximations to utility functions

Samuelson (1970) shows that under certain conditions, the
approximation in (3) is reasonable.

If the choice under uncertainty concerns a very short interval of
time and the random variable describes the payoff of a venture at
the end of the time period, then under a few regularity conditions
the approximation in (3) holds.

Ohlson (1975) considers weaker conditions under which (3) is
reasonable.
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Solving mean-variance problems in practice

The main optimization problems behind M-V analysis are (4), (5), and
(8), given in the lecture.

In problem (4), the portfolio variance is minimized with a constraint
on the expected return.

The objective function of this problem is quadratic and if the set of
feasible portfolios is polyhedral, then the optimization problem is
said to be a quadratic programming problem.
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Solving mean-variance problems in practice

Problem (5) has a more simple objective as we maximize the
expected portfolio return which is a linear function of portfolio
weights.

In the set of feasible portfolios, we include an upper bound on the
portfolio variance which results in a quadratic constraint.

If all the other constraints are linear, the optimization problems
can be formulated as second order cone programming problems.
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Solving mean-variance problems in practice

Finally, problem (8) of the lecture is very similar in structure to (4).

The objective function is also quadratic, the difference from (4) is
that it has a linear part represented by the expected portfolio
return.

(8) is a quadratic programming problem.

As far as the computational complexity is concerned, the quadratic
and, more generally, the conic programming problems are
between the linear optimization problems and the convex
optimization problems with non-linear constraints.
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Solving mean-variance problems in practice

Under certain conditions with no inequality constraints, it is possible to obtain
a closed-form solution to mean-variance optimization problems.

For example, the optimization problem

min
w

w ′Σw

subject to w ′e = 1
w ′µ = R∗,

(4)

which is a simplified analogue of (4) given in the lecture, allows for a
closed-form solution. We have replaced the inequality constraint on the
expected portfolio return by an equality constraint and we have removed
the requirement that the weights should be non-negative.

As a result, closed-form solution to mean-variance optimization
problems allows for taking a short position in an asset, which is indicated
by a negative weight in the optimal solution.
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Solving mean-variance problems in practice

The closed-form solution is obtained by applying the method of
Lagrange multipliers which is as follows.

First, we build the corresponding Lagrangian represented by the
function

L(w , λ) = w ′Σw + λ1(1 − w ′e) + λ2(R∗ − w ′µ)

in which λ1 and λ2 are the Lagrange multipliers.

Second, we solve for w the system of equations resulting from
the first-order optimality conditions of the Lagrangian,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂L(w , λ)

∂w
= 0

∂L(w , λ)

∂λ
= 0.
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Solving mean-variance problems in practice

Since the Lagrangian is a quadratic function of w , the resulting
system of equations is composed of linear equations which can be
solved for w .

Then we obtain that the optimal solution can be computed
according to the formula in matrix form

w =
(CΣ−1µ − BΣ−1e)m + AΣ−1e − BΣ−1µ

AC − B2

where Σ−1 stands for the inverse of the covariance matrix Σ,
A = µ′Σ−1µ, B = e′Σ−1µ, and C = e′Σ−1e.
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Solving mean-variance problems in practice

If there are inequality constraints, this Lagrange multipliers
approach is not applicable.

In this case, the optimization problem is more general and the
Karush-Kuhn-Tucker conditions, which generalize the method of
Lagrange multipliers, can be applied but they rarely lead to nice
closed-form expressions as the resulting system of equations is
much more involved.
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Solving mean-risk problems in practice

The optimization problems arising from M-R analysis have a
different structure than the quadratic problems of M-V analysis
which depends on the assumed properties of the risk measure.

In Lecture 5, we considered two classes of risk measures
introduced axiomatically.

Generally, the most important property which determines to a
large extent the structure of the optimization problem is the
convexity property. It guarantees the diversification effect; that is,
the risk of a portfolio of assets is smaller than the corresponding
weighted average of the individual risks.
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Solving mean-risk problems in practice

Under the general assumption of convexity, problems (12), (13),
and (18) in the lecture are convex programming problems.

In (12) and (18), the objective functions are convex functions and
in (13), there is a convex function in the constraint set.

The three problems can be solved in practice using the general
methods of convex programming.

There are commercial solvers (MATLAB, for example) in which
such algorithms are implemented.
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Solving mean-risk problems in practice

Under certain conditions, simplification of the optimization
problem structure is possible for some risk measures.

If we choose AVaR as a risk measure, then the three problems
can be reduced to linear optimization problems provided that
future scenarios are available.

In the lecture, we demonstrated that (16) and (17) correspond to
(12) and (13) and both (16) and (17) have linear objective
functions and the set of feasible portfolios is defined through linear
inequalities and equalities.

Both problems are linear programming problems which are
significantly simpler than a convex optimization problem.
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Solving mean-risk problems in practice

However, reducing the convex problem to a linear problem comes at
the cost of increasing the problem dimension.

For instance, problem (12) in the lecture has n variables and n + 2
linear constraints, where n denotes the number of assets in the
portfolio.

In contrast, the corresponding linear problem (16) in the lecture
has n + k + 1 variables and 2k + n + 2 linear constraints, in which
k denotes the number of scenarios.

⇒ The dimension of the linear problem increases with the number of
scenarios because we introduce one auxiliary variable and two
constraints for each scenario.
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Solving mean-risk problems in practice

Adding more scenarios makes the matrix defining the linear
constraints in the linear programming problem become more
non-sparse.

A matrix is called sparse if most of the numbers in it are zeros and
the numerical methods for linear programming are more efficient if
the matrix is more sparse.

⇒ We are simplifying the problem structure but we are increasing the
problem dimension.
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Solving mean-risk problems in practice

When increasing the number of scenarios there will be a point at
which the two effects will balance off and there will not be an
advantage in solving the linear problem.

In this case, one may consider directly

min
w

ÂVaRǫ(Hw)

subject to w ′e = 1
w ′µ ≥ R∗

w ≥ 0.

(5)

in which ÂVaRǫ(Hw) is the sample AVaR and H is the matrix with
scenarios defined in (14) in the lecture.

Problem (5) can be solved as a convex programming problem.
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Solving mean-risk problems in practice

There is another way of viewing problems (5) and (12) ((12) is given in the
lecture) with ρ(rp) = AVaRǫ(rp).

Suppose that we know exactly the multivariate distribution of the assets
returns but we cannot obtain explicitly the AVaR risk measure as a
function of portfolio weights.

However, we have a random number generator constructed that we can
use to draw independent scenarios from the multivariate law. Then we
cannot solve (12) because we cannot evaluate the objective function for
a given vector of portfolio weights.

Nevertheless, we can draw a matrix of independent simulations from the
multivariate law and compute approximately the AVaR for any vector of
portfolio weights through the formula of the sample AVaR.

Thus, we can solve problem (5), or (16), which can be viewed as an
approximation to (12) obtained through the Monte Carlo method. The
larger the number of scenarios, the more accurate the approximation.
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Solving mean-risk problems in practice

Also, the larger the portfolio, the more simulations we need to
achieve a given level of accuracy since the generated vectors are
supposed to approximate a distribution in a higher dimensional
space.

Therefore, the linear problem (16) in the lecture may not be
advantageous if higher accuracy is needed or, alternatively, if the
portfolio is sufficiently large and there is a target accuracy.

One can use (5) in which directly the sample AVaR is getting
minimized without increasing the problem dimension by including
additional variables and constraints.
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Reward-risk analysis

In M-R analysis we consider two criteria as a major determinant of
efficient portfolios:

expected portfolio return, being a measure of the expected
performance,
a risk measure estimating portfolio risk.

Instead of the expected portfolio return, we can include a more
general functional ν(X ) estimating expected performance.

We can generalize M-R analysis by considering ν(X ) and the risk
measure ρ(X ) as criteria for obtaining efficient portfolios.

M-R analysis appears as a special case when ν(X ) = EX . The
functional ν(X ) we call a reward measure and the resulting more
general analysis is called reward-risk analysis (R-R analysis).
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Reward-risk analysis

We impose several properties on the functional ν(X ) and explore the
resulting optimization problems. Consider the following properties.

1. Monotonicity. Suppose that X ≤ Y in almost sure sense. It is
reasonable to expect that the expected reward of Y will be larger
than that of X , ν(X ) ≤ ν(Y ).

2. Superadditivity. We assume that for any X and Y , the following
inequality holds,

ν(X + Y ) ≥ ν(X ) + ν(Y ).

That is, the reward of a portfolio is not smaller than the sum of the
portfolio constituents rewards. There is an additional stimulus in
holding a portfolio.
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Reward-risk analysis

3. Positive homogeneity. The rationale of this assumption is the
same as in the case of risk measures.

ν(hX ) = hν(X ), h ≥ 0.

4. Invariance property. Adding a non-random term to the portfolio
increases the reward by the non-random quantity,

ν(X + C) = ν(X ) + C,

and ν(0) = 0.
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Reward-risk analysis

These axioms suggest that the negative of a coherent risk
measure is in fact a reward measure; that is, if ν(X ) = −ρ(X )
where ρ(X ) is a coherent risk measure, then the above properties
hold.

If ν(X ) satisfies the properties above, we call it a coherent reward
measure.

The superadditivity and the positive homogeneity properties
guarantee that any coherent reward measure is a concave
function,

ν(aX + (1 − a)Y ) ≥ aν(X ) + (1 − a)ν(Y ),

where a ∈ [0, 1].

This property, along with the convexity of the risk measure,
guarantees nice properties of the resulting optimization problems.
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Reward-risk analysis

The main principles of R-R analysis can be formulated in the same
way as for M-R analysis.

1. From all feasible portfolios with a given lower bound on the reward
measure, find the portfolios that have minimum risk.

2. From all feasible portfolios with a given upper bound on risk, find
the portfolios that provide maximum reward.
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Reward-risk analysis

The corresponding optimal portfolio problems are the following

min
w

ρ(rp)

subject to w ′e = 1
ν(rp) ≥ R∗

w ≥ 0,

(6)

where R∗ is the lower bound on the portfolio reward.

The the optimization problem behind the second formulation is

max
w

ν(rp)

subject to w ′e = 1
ρ(rp) ≤ R∗

w ≥ 0,

(7)

where R∗ is the upper bound on portfolio risk.
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Reward-risk analysis

Problem (6) is a convex optimization problem and (7) is reducible
to a convex problem by flipping the sign of the objective function
and considering minimization.

Convex optimization problems are appealing because a local
minimum is necessarily the global one. The necessary and
sufficient conditions are given by the Karush-Kuhn-Tucker
theorem.
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Reward-risk analysis

The optimal solutions obtained from the two problems by varying the
limits on the portfolio reward or risk respectively are called reward-risk
efficient portfolios.

The coordinates of the reward-risk efficient portfolios in the reward-risk
plane form the reward-risk efficient frontier. It is a concave,
monotonically increasing function if the reward measure is a concave
function, and the risk measure is a convex function.

The general shape of the reward-risk efficient frontier is the same as the
one plotted in Figures 4,5 in the lecture.

As a consequence of the Karush-Kuhn-Tucker conditions, the efficient
frontier can also be generated by the problem

max
w

ν(rp) − λρ(rp)

subject to w ′e = 1
w ≥ 0,

(8)

where λ ≥ 0 is the risk-aversion parameter, or the Lagrange multiplier.
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Reward-risk analysis

We will demonstrate that the reward-risk efficient portfolios can be
derived from a reward-dispersion optimal portfolio problem.

Consider the optimization problem (8).

The objective function is transformed in the following way,

ν(rp) − λρ(rp) = ν(rp) − λρ(rp − ν(rp) + ν(rp))

= (λ + 1)ν(rp) − λρ(rp − ν(rp))

= (λ + 1)

(

ν(rp) −
λ

(λ + 1)
ρ(rp − ν(rp))

)

.

The positive multiplier λ + 1 does not change the optimal solutions
and we can safely ignore it.
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Reward-risk analysis

As a result, we obtain the equivalent optimization problem

max
w

ν(rp) −
λ

(λ + 1)
ρ(rp − ν(rp))

subject to w ′e = 1
w ≥ 0,

(9)

where λ ≥ 0 and, as a result, the multiplier λ/(λ + 1) ∈ [0, 1).

The functional G(X ) = ρ(X − ν(X )) is a dispersion measure under
the additional condition ρ(X ) ≥ −ν(X ), as it satisfies the general
properties outlined, which we illustrate below.
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Reward-risk analysis

Positive shift
G(X + C) = ρ(X + C − ν(X + C)) = G(X ) for all X and constants
C ∈ R

Positive homogeneity
G(0) = ρ(0 − ν(0)) = 0 and G(hX ) = ρ(hX − ν(hX )) = hG(X ) for
all X and all h > 0

Positivity
Under the additional condition ρ(X ) ≥ −ν(X ), it follows directly
that G(X ) is positive, G(X ) ≥ 0 for all X , with G(X ) > 0 for
non-constant X , from the representation

G(X ) = ρ(X − ν(X )) = ρ(X ) + ν(X ).
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Reward-risk analysis

As a result, we can consider the more general reward-dispersion
optimal portfolio problem

max
w

ν(rp) − aG(rp)

subject to w ′e = 1
w ≥ 0,

(10)

where a ≥ 0 and G(X ) = ρ(X − ν(X )).

The reward-risk efficient portfolios are obtained from (10) with
a ∈ [0, 1].

The optimal portfolios obtained with a > 1 are in addition to the
mean-risk efficient portfolios and are sub-optimal according to
R-R analysis.

Prof. Dr. Svetlozar Rachev (University of Karlsruhe) Lecture 8: Optimal portfolios 2008 41 / 44



Reward-risk analysis

Note that problem (10) may not be a convex optimization problem
for all values of a because the functional G is, generally, arbitrary
as it equals a sum of a convex and a concave functional.

However, if a ∈ [0, 1] then (10) is a convex optimization problem
because it is equivalent to (9).

As the dispersion measures can be derived from probability
metrics, the set of efficient portfolios can be related to the theory
of probability metrics through the reward-dispersion optimization
problem.
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Reward-risk analysis

In the lecture, we showed a special case of this relationship in
which the reward measure equals the expected portfolio return
and the ρ(X ) is a coherent risk measure satisfying ρ(X ) ≥ −EX .

Under these conditions, the functional G(X ) turns into a deviation
measure, which is an example of a dispersion measure, and the
corresponding problem (10) has better optimal properties.
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