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Introduction

A portfolio is a collection of investments held by an institution or a
private individual.

Portfolios are constructed and held as a part of an investment
strategy and for the purpose of diversification. The concept of
diversification: Including a number of assets in a portfolio may
greatly reduce portfolio risk while not necessarily reducing
performance.

The problem of choosing a portfolio is a problem of choice under
uncertainty because the payoffs of financial instruments are
uncertain.

An optimal portfolio is a portfolio which is most preferred in a given
set of feasible portfolios by an investor or a certain category of
investors.

Prof. Dr. Svetlozar Rachev (University of Karlsruhe) Lecture 8: Optimal portfolios 2008 3 / 97



Introduction

Investors’ preferences are characterized by utility functions and
they choose the venture yielding maximum expected utility.

As a consequence of the theory, stochastic dominance relations
arise, describing the choice of groups of investors, such as the
risk-averse investors.

While the foundations of expected utility theory as a normative
theory are solid, its practical application is limited as the resulting
optimization problems are very difficult to solve.

For example, given a set of feasible portfolios, it is hard to find the
ones which will be preferred by all risk-averse investors by
applying directly the characterization in terms of the cumulative
distribution functions (c.d.f.s).
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Introduction

A different approach towards the problem of optimal portfolio
choice was introduced by Harry Markowitz in the 1950,
mean-variance analysis (M-V analysis) and popularly referred to
as modern portfolio theory.

He suggested that the portfolio choice be made with respect to
two criteria: the expected portfolio return and the variance of the
portfolio return, the latter used as a proxy for risk.

A portfolio is preferred to other portfolio one if it has higher
expected return and lower variance.

M-V analysis is easy to apply in practice. There are convenient
computational recipes for the resulting optimization problems and
geometric interpretations of the trade-off between the expected
return and variance.
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Introduction

If all risk-verse investors identify a given portfolio as most preferred,
then is the same portfolio identified by M-V analysis also optimal?

Basically, the answer to this question is negative.

M-V analysis is not consistent with second-order stochastic
dominance (SSD) unless the joint distribution of investment
returns is multivariate normal, which is a very restrictive
assumption.

Alternatively, M-V analysis describes correctly the choices made
by investors with quadratic utility functions.

Again, the assumption of quadratic utility functions is very
restrictive even though we can extend it and consider all utility
functions which can be sufficiently well approximated by quadratic
utilities.
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Introduction

Another well-known drawback is that in M-V analysis, variance is
used as a proxy for risk. In Lecture 5, we demonstrated that
variance is not a risk measure but a measure of uncertainty.

This deficiency was recognized by Markowitz (1959) and he
suggested the downside semi-standard deviation as a proxy for
risk. In contrast to variance, the downside semi-standard deviation
is consistent with SSD.

If the risk measure is consistent with SSD, so is the optimal
solution to the optimization problem.

the optimization problem is appealing from a practical viewpoint
because it is computationally feasible and there are similar
geometric interpretations as in M-V analysis. We call this
generalization mean-risk analysis (M-R analysis).
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Mean-variance analysis

The classical mean-variance framework is the first proposed
model of the reward-risk type. The expected portfolio return is
used as a measure of reward and the variance of portfolio return
indicates how well-diversified the portfolio is. Lower variance
means higher diversification level.

⇒ The portfolio choice problem is typically treated as a one-period
problem.

Suppose that at time t0 = 0 we have an investor who can choose
to invest among a universe of n assets.

Having made the decision, he keeps the allocation unchanged
until the moment t1 when he can make another investment
decision based on the new information accumulated up to t1. In
this sense, it is also said that the problem is static, as opposed to
a dynamic problem in which investment decisions are made for
several time periods ahead.
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Mean-variance analysis

The main principle behind M-V analysis can be summarized in two
ways:

1 From all feasible portfolios with a given lower bound on the
expected performance, find the ones that have the minimum
variance (i.e., the maximally diversified ones).

2 From all feasible portfolios with a given upper bound on the
variance of portfolio return (i.e., with an upper bound on the
diversification level), find the ones that have maximum expected
performance.
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Mean-variance analysis

There could be certain limitations for the feasible portfolio, these
limitations can be strategy specific.

For example, there may be constraints on the maximum capital
allocation to a given industry, or a constraint on the correlation
with a given market segment.

The limitations can also be dictated by liquidity considerations, for
instance a maximum allocation to a given position, constraints on
transaction cost or turnover.
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Mean-variance optimization problems

We can find two optimization problems behind the formulations of the main
principle of M-V analysis.

We will use matrix notation to make the problem formulations concise.

Suppose that the investment universe consists of n financial assets.
Denote the assets returns by the vector X ′ = (X1, . . . , Xn) in which Xi

stands for the return on the i-th asset.

The returns are random and their mean is denoted by µ′ = (µ1, . . . , µn)
where µi = EXi . The returns are also dependent on each other in a
certain way.

The dependence will be described by the covariances. Between the i-th
and the j-th return it is denoted by

σij = cov(Xi , Xj) = E(Xi − µi)(Xj − µj).

σii stands for the variance of the return of the i-th asset,

σii = E(Xi − µi)
2.
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Mean-variance optimization problems

The result of an investment decision is a portfolio, the composition
of which is denoted by w ′ = (w1, . . . , wn), where wi is the portfolio
weight corresponding to the i-th instrument.

We will consider long-only strategies which means that all weights
should be non-negative, wi ≥ 0, and should sum up to one,

w1 + w2 + . . . + wn = w ′e = 1.

where e′ = (1, 1, . . . , 1). These conditions will be set as
constraints in the optimization problem.
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Mean-variance optimization problems

The return of a portfolio rp can be expressed by means of the weights
and the returns of the assets,

rp = w1X1 + w2X2 + . . . + wnXn =
n∑

i=1

wiXi = w ′X . (1)

Similarly, the expected portfolio return can be expressed by the vector of
weights and expected assets returns,

Erp = w1µ1 + w2µ2 + . . . + wnµn =

n∑

i=1

wiµi = w ′µ. (2)

Finally, the variance of portfolio returns σ2
p can be expressed by means

of portfolio weights and the covariances σij between the assets returns,

σ2
rp

= E(rp − Erp)
2

=
n∑

i=1

n∑

j=1

wiwjσij .
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Mean-variance optimization problems

The covariances of all asset returns can be arranged in a matrix
and σ2

rp
can be expressed as

σ2
rp

= w ′Σw (3)

where Σ is a n × n matrix of covariances,

Σ =




σ11 σ12 . . . σ1n

σ21 σ22 . . . σ2n
...

...
. . .

...
σn1 σn2 . . . σnn


 .
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Mean-variance optimization problems

The optimization problem behind the first formulation of the main
principle of M-V analysis is

min
w

w ′Σw

subject to w ′e = 1
w ′µ ≥ R∗

w ≥ 0,

(4)

where w ≥ 0 means that all components of the vector are
non-negative, wi ≥ 0, i = 1, n.

The objective function of (4) is the variance of portfolio returns and
R∗ is the lower bound on the expected performance.
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Mean-variance optimization problems

Similarly, the optimization problem behind the second formulation
of the principle is

max
w

w ′µ

subject to w ′e = 1
w ′Σw ≤ R∗

w ≥ 0,

(5)

in which R∗ is the upper bound on the variance of the portfolio
return σ2

rp
.
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Mean-variance optimization problems

We illustrate the two optimization problems with the following example.

Consider three common stocks with expected returns
µ′ = (1.8%, 2.5%, 1%) and covariance matrix,

Σ =




1.68 0.34 0.38
0.34 3.09 −1.59
0.38 −1.59 1.54


 .

The variance of portfolio return equals

σrp = (w1, w2, w3)




1.68 0.34 0.38
0.34 3.09 −1.59
0.38 −1.59 1.54







w1

w2

w3




= 1.08w2
1 + 3.09w2

2 + 1.54w2
3 + 2 × 0.34w1w2

− 2 × 1.59w2w3 + 2 × 0.38w1w3

and the expected portfolio return is given by

w ′µ = 0.018w1 + 0.025w2 + 0.01w3.
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Mean-variance optimization problems

Correlations, which are essentially scaled covariances, are a more
useful concept to see the dependence between the stocks.

The correlation ρij between the random return of the i-th and the j-th
asset are computed by dividing the corresponding covariance by the
product of the standard deviations of the two random returns,

ρij =
σij√
σiiσjj

.

The correlation is always bounded in the interval [−1, 1].

The closer it is to the boundaries, the stronger the dependence between
the two random variables.

If ρij = 1, then the random variables are positively linearly dependent
(i.e., Xi = aXj + b, a > 0); if ρij = −1, they are negatively linearly
dependent (i.e., Xi = aXj + b, a < 0).

If the two random variables are independent, then the covariance
between them is zero and so is the correlation.
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Mean-variance optimization problems

The correlation matrix ρ corresponding to the covariance matrix in
this example is

ρ =




1 0.15 0.23
0.15 1 −0.72
0.23 −0.72 1


 .

The correlation between the third and the second stock return
(ρ32) is -0.72, which is a strong negative correlation.

If we observe a positive return on the second stock, it is very likely
that the return on the third stock will be negative.

We can expect that an investment split between the second and
the third stock will result in a diversified portfolio.
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Mean-variance optimization problems

Suppose that we choose the expected return of the first stock
(µ1 = 0.018) for the lower bound R∗.

Optimization problem (4) has the following form,

min
w1,w2,w3

(
1.08w2

1 + 3.09w2
2 + 1.54w2

3 + 2 × 0.34w1w2

−2 × 1.59w2w3 + 2 × 0.38w1w3

)

subject to w1 + w2 + w3 = 1
0.018w1 + 0.025w2 + 0.01w3 ≥ 0.018
w1, w2, w3 ≥ 0.

(6)
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Mean-variance optimization problems

Solving this problem, we obtain the optimal solution
w̃1 = 0.046, w̃2 = 0.509, and w̃3 = 0.445.

The expected return of the optimal portfolio equals w̃ ′µ = 0.018 and the
variance of the optimal portfolio return equals w̃ ′Σw̃ = 0.422.

There is another feasible portfolio with the same expected return and
this is the portfolio composed of only the first stock.

The variance of the return of the first stock is represented by the first
element of the covariance matrix, σ11 = 1.68.

If we compare the optimal portfolio w̃ and the portfolio composed of the
first stock only, we notice that the variance of the return of w̃ is about
four times below σ11 which means that the optimal portfolio w̃ is much
more diversified.
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Mean-variance optimization problems

In a similar way, we consider problem (5). Suppose that we choose the
variance of the return of the first stock σ11 = 1.68 for the upper bound
R∗. Then, the optimization problem becomes

max
w1,w2,w3

0.018w1 + 0.025w2 + 0.01w3

subject to w1 + w2 + w3 = 1
1.08w2

1 + 3.09w2
2 + 1.54w2

3 + 2 × 0.34w1w2

−2 × 1.59w2w3 + 2 × 0.38w1w3 ≤ 1.68
w1, w2, w3 ≥ 0.

(7)

The solution to this problem is the portfolio with weights
w̃1 = 0.282, w̃2 = 0.69, and w̃3 = 0.028.

The expected return of the optimal portfolio equals w̃ ′µ = 0.0226 and
the variance of the optimal portfolio return equals w̃ ′Σw̃ = 1.68.

Therefore, the optimal portfolio has the same diversification level, as
indicated by variance, but it has a higher expected performance.
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The mean-variance efficient frontier

We continue the analysis by describing the set of all optimal
portfolios known as the mean-variance efficient portfolios.

Consider problem (4) and suppose that we solve it without any
constraint on the expected performance.

Then we obtain the global minimum variance portfolio. It will be
the most diversified portfolio but it will have the lowest expected
performance.

The portfolio with the highest expected performance also has the
highest concentration. It is composed of only one asset and this is
the asset with the highest expected performance.
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The mean-variance efficient frontier

By varying the constraint on the expected return and solving
problem (4), we obtain the mean-variance efficient portfolios.

Then we can easily determine the trade-off, known as the efficient
frontier, between variance and expected performance of the
optimal portfolios. This trade-off

The efficient frontier can be obtained not only from problem (4) but
also from problem (5). The difference is that we vary the upper
bound on the variance and maximize the expected performance.
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The mean-variance efficient frontier
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Figure 1. The plot shows the efficient frontier corresponding to the example in the
previous section in the mean-variance plane. The dot indicates the position of a
sub-optimal initial portfolio and the arrows indicate the position of the optimal
portfolios obtained by minimizing variance or maximizing expected return.
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The mean-variance efficient frontier

In Figure 1, the dot indicates the position of the portfolio with
composition w1 = 0.8, w2 = 0.1, and w3 = 0.1 in the
mean-variance plane.

It is sub-optimal as it does not belong to the mean-variance
efficient portfolios. We will consider this portfolio as the initial
portfolio.
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The mean-variance efficient frontier

The part of the efficient frontier which contains the set of all portfolios more
efficient than the initial portfolio can be obtained in the following way.

First, we solve problem (4) setting the lower bound R∗ equal to the
expected return of the initial portfolio. The corresponding optimal
solution can be found on the efficient frontier by following the horizontal
arrow in Figure 1.

Second, we solve problem (5) setting the upper bound R∗ equal to the
variance of the initial portfolio. The corresponding optimal solution can
be found on the efficient frontier by following the vertical arrow in Figure
1.

The arc on the efficient frontier closed between the two arrows corresponds
to the portfolios which are more efficient than the initial portfolio according to
the criteria of M-V analysis — these portfolios have lower variance and higher
expected performance.
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The mean-variance efficient frontier
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Figure 2. The plot shows the compositions of the optimal portfolios along the efficient
frontier. The black rectangle indicates the portfolios more efficient than the initial
portfolio.
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The mean-variance efficient frontier

In Figure 2, for each point on the efficient frontier, it shows the
corresponding optimal allocation.

For example, the optimal solution corresponding to the maximum
performance portfolio consists of the second stock only. This
portfolio is at the highest point of the efficient frontier and its
composition is the first bar looking from right to left.

The black rectangle shows the compositions of the more efficient
portfolios than the initial portfolio. We find these by projecting the
arc closed between the two arrows on the horizontal axis and then
choosing the bars below it.
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The mean-variance efficient frontier

Sometimes, the efficient frontier is shown with standard deviation
instead of variance on the horizontal axis.

The set of mean-variance efficient portfolios remains unchanged
because it does not matter whether we minimize the variance or
the standard deviation of portfolio return as any of the two can be
derived from the other by means of a monotonic function.

Only the shape of the efficient frontier changes since we plot the
expected return against a different quantity. In fact, in illustrating
notions such as the capital market line or the Sharpe ratio, it is
better if standard deviation is employed.
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Mean-variance analysis and SSD

A venture dominates another venture according to second order
stochastic dominance (SSD) if all non-satiable, risk-averse
investors prefer it.

Suppose that a portfolio with composition w = (w1, . . . , wn)
dominates another portfolio v = (v1, . . . , vn) according to SSD on
the space of returns.

Is it true that M-V analysis will identify the portfolio v as not more
efficient than w?

It seems reasonable to expect that such a consistency should
hold,

w ′X �SSD v ′X =⇒
{

v ′µ ≤ w ′µ
v ′Σv ≥ w ′Σw .
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Mean-variance analysis and SSD

However, the consistency question has, generally, a negative
answer.

It is only under specific conditions concerning the multivariate
distribution of the random returns X that such a consistency exits.

Thus, the behavior of an investor making decisions according to
M-V analysis is not in keeping with the class of non-satiable,
risk-averse investors.

It is possible to identify a group of investors the behavior of which
is consistent with M-V analysis. This is the class of investors with
quadratic utility functions,

u(x) = ax2 + bx + c, x ∈ R.
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Mean-variance analysis and SSD

Denote the set of quadratic utility functions by Q.

If a portfolio is not preferred to another portfolio by all investors
with quadratic utility functions, then M-V analysis is capable of
identifying the more efficient portfolio,

Eu(w ′X ) ≥ Eu(v ′X ), ∀u ∈ Q =⇒
{

v ′µ ≤ w ′µ
v ′Σv ≥ w ′Σw .
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Mean-variance analysis and SSD

The consistency with investors having utility functions in Q arises
from the fact that, besides the basic principle in M-V analysis,
there is another way to arrive at the mean-variance efficient
portfolios.

There is an optimization problem which is equivalent to problems
(4) and (5). This problem is

max
w

w ′µ − λw ′Σw

subject to w ′e = 1
w ≥ 0,

(8)

where λ ≥ 0 is a parameter called the risk aversion parameter.
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Mean-variance analysis and SSD

By varying the risk aversion parameter and solving the
optimization problem, we obtain the mean-variance efficient
portfolios.

For example, if λ = 0, then we obtain the portfolio with maximum
expected performance.

If the risk aversion parameter is a very large positive number, then
the relative importance of the variance w ′Σw in the objective
function becomes much greater than the expected return.

As a result, it becomes much more significant to minimize the
variance than to maximize return and we obtain a portfolio which
is very close to the global minimum variance portfolio.
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Mean-variance analysis and SSD

The objective function in problem (8) with λ fixed is in fact the
expected utility of an investor with a quadratic utility function,

w ′µ − λw ′Σw = E(w ′X ) − λE(w ′X − E(w ′X ))2

= −λE(w ′X )2 + E(w ′X ) + λ(E(w ′X ))2

= E(−λ(w ′X )2 + w ′X + λ(E(w ′X ))2)

= Eg(w ′X )

where the utility function g(x) = −λx2 + x + λb with b equal to the
squared expected portfolio return, b = (E(w ′X ))2.

Since the mean-variance efficient portfolios can be obtained
through maximizing quadratic expected utilities, it follows that
none of these efficient portfolios can be dominated with respect to
the stochastic order of quadratic utility functions.
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Mean-variance analysis and SSD

The fact that M-V analysis is consistent with the stochastic order
arising from quadratic utilities, or, alternatively, it is consistent with
SSD under restrictions on the multivariate distribution, means that
the practical application of problems (4), (5), and (8) is limited.

Nevertheless, sometimes quadratic approximations to more
general utility functions may be sufficiently accurate, or under
certain conditions the multivariate normal distribution may be a
good approximation for the multivariate distribution of asset
returns.

Prof. Dr. Svetlozar Rachev (University of Karlsruhe) Lecture 8: Optimal portfolios 2008 37 / 97



Adding a risk-free asset

If we add a risk-free asset to the investment universe, the efficient
frontier changes, the efficient portfolios becomes superior.

The efficient portfolios essentially consist of a combination of a
particular portfolio of the risky assets called the market portfolio
and the risk-free asset.
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Adding a risk-free asset

Suppose that in addition to the risky assets in the investment
universe, there is a risk-free asset with return rf . The investor can
choose between the n risky asset and the risk-free one.
The weight corresponding to the risk-free asset we denote by wf
which can be positive or negative if we allow for borrowing or
lending at the risk-free rate.
We keep the notation w = (w1, . . . , wn) for the vector of weights
corresponding to the risky assets. If we include the risk-free asset
in the portfolio, the expected portfolio return equals

Erp = w ′µ + wf rf

and the expression for portfolio variance remains unchanged
because the risk-free asset has zero variance and therefore does
not appear in the expression,

σ2
rp

= w ′Σw .
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Adding a risk-free asset

As a result, problem (4) transforms into

min
w ,wf

w ′Σw

subject to w ′e + wf = 1
w ′µ + wf rf ≥ R∗

w ≥ 0, wf ≤ 1

(9)

and the equivalent problems 5) and (8) change accordingly.

The new set of mean-variance efficient portfolios is obtained by
varying the lower bound on the expected performance R∗.

The optimal portfolios of problem (9) are always a combination of
one portfolio of the risky assets and the risk-free asset.

Changing the lower bound R∗ results in different relative
proportions of the two.
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Adding a risk-free asset

The portfolio of the risky assets is known as the market portfolio
and is denoted by wM = (wM1, . . . , wMn), the weights sum up to 1.

All efficient portfolios can be represented as

rp = (awM)′X + (1 − (awM)′e)rf

= (awM)′X + (1 − a)rf
(10)

where awM denotes the scaled weights of the market portfolio, a is
the scaling coefficient, 1 − a = rf is the weight of the risk-free
asset, and we have used that w ′

Me = 1.

The market portfolio is located on the efficient frontier, where a
straight line passing through the location of the risk-free asset is
tangent to the efficient frontier. The straight line is known as the
capital market line and the market portfolio is also known as the
tangency portfolio.
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Adding a risk-free asset
Figure below shows the efficient frontier of the example in the previous section but
with standard deviation instead of variance on the horizontal axis.
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Figure 3. The dot indicates the position of the market portfolio, where the capital
market line is tangent to the efficient frontier. The risk-free rate rf is shown on the
vertical axis and the straight line is the capital market line.

Prof. Dr. Svetlozar Rachev (University of Karlsruhe) Lecture 8: Optimal portfolios 2008 42 / 97



Adding a risk-free asset

It is possible to derive the equation of the capital market line.

Using equation (10), the expected return of an efficient portfolio
set equals,

E(rp) = aE(rM) + (1 − a)rf

= rf + a(E(rM) − rf ),

where rM = w ′

MX equals the return of the market portfolio.

The scaling coefficient a can be expressed by means of the
standard deviation.
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Adding a risk-free asset

The second term in equation (10) is not random and therefore the
standard deviation σrp equals

σrp = aσrM .

As a result, we derive the capital market line equation

E(rp) = rf +

(
E(rM) − rf

σrM

)
σrp (11)

which describes the efficient frontier with the risk-free asset added
to the investment universe.
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Adding a risk-free asset

Since any efficient portfolio is a combination of two portfolios,
equation (10) is sometimes referred to as two-fund separation.

We remark that a fund separation result such as (10) may not hold
in general.

It holds under the constraints in problem (9) but may fail if
additional constraints on the portfolio weights are added.
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Mean-risk analysis

The key concept behind M-V analysis is diversification and in
order to measure the degree of diversification variance, or
standard deviation, is employed.

The main idea of Markowitz is that the optimal trade-off between
risk and return should be the basis of financial decision-making.
The standard deviation of portfolio returns can only be used as a
proxy for risk as it is not a true risk measure but a measure of
dispersion.

If we employ a true risk measure and then study the optimal
trade-off between risk and return, we obtain an extension of the
framework of M-V analysis which we call mean-risk analysis (M-R
analysis).
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Mean-risk analysis

The main principle of M-R analysis can be formulated in a similar way
to M-V analysis:

1 From all feasible portfolios with a given lower bound on the
expected performance, find the ones that have minimum risk.

2 From all feasible portfolios with a given upper bound on risk, find
the ones that have maximum expected performance.

A key input to M-R analysis is the particular risk measure we would like
to employ. The risk measure is denoted by ρ(X ) where X is a random
variable describing portfolio return.
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Mean-risk optimization problems

We can formulate two optimization problems on the basis of the main
principle of M-R analysis.

The optimization problem behind the first formulation of the
principle is

min
w

ρ(rp)

subject to w ′e = 1
w ′µ ≥ R∗

w ≥ 0,

(12)

The objective function of (4) is the risk of portfolio return rp = w ′X
as computed by the selected risk measure ρ and R∗ is the lower
bound on the expected portfolio return.
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Mean-risk optimization problems

Similarly, the the optimization problem behind the second
formulation of the principle is

max
w

w ′µ

subject to w ′e = 1
ρ(rp) ≤ R∗

w ≥ 0,

(13)

where R∗ is the upper bound on portfolio risk.
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Mean-risk optimization problems

Mean-risk optimization problems are different from their counterparts
in M-V analysis.

In order to calculate the risk of the portfolio return ρ(rp), we need
to know the multivariate distribution of the asset returns.

Otherwise, it will not be possible to calculate the distribution of the
portfolio return and, as a result, portfolio risk will be unknown.

This requirement is not so obvious in the mean-variance
optimization problems where we only need the covariance matrix
as input. M-V analysis leads to reasonable decision-making only
under certain distributional hypotheses such as the multivariate
normal distribution.
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Mean-risk optimization problems

The principal difference between mean-risk and mean-variance
optimization problems is that the risk measure ρ may capture
completely different characteristics of the portfolio return
distribution.

We illustrate problems (12) and (13) when the average
value-at-risk (AVaR) is selected as a risk measure.

By definition, AVaR at tail probability ǫ, AVaRǫ(X ), is the average
of the value-at-risk (VaR) numbers larger than the VaR at tail
probability ǫ.

Substituting AVaRǫ(X ) for ρ(X ) in (12) and (13), we obtain the
corresponding AVaR optimization problems.
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Mean-risk optimization problems

The choice of AVaR as a risk measure allows certain
simplifications of the optimization problems.

If there are available scenarios for assets returns, we can use the
equivalent AVaR definition in equation (2) and construct problem
(8) in Lecture 7 and substitute problem (8) for the risk measure ρ.
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Mean-risk optimization problems

Denote the scenarios for the assets returns by r1, r2, . . . , r k where
r j is a vector of observations,

r j = (r j
1, r j

2, . . . , r j
n),

which contains the returns of all assets observed in a given time
instant denoted by the index j.
All observations can be arranged in a k × n matrix,

H =




r1
1 r1

2 . . . r1
n

r2
1 r2

2 . . . r2
n

...
...

. . .
...

r k
1 r k

2 . . . r k
n


 , (14)

in which the rows contain assets returns observed in a given
moment and the columns contain all observations for one asset in
the entire time period.
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Mean-risk optimization problems

The notation r1, r2, . . . , r k stands for the corresponding rows of the
matrix of observations H.

We remark that the matrix H may not only be a matrix of observed
returns.

For example, it can be a matrix of independent and identically
distributed scenarios produced by a multivariate model.

In this case, k denotes the number of multivariate scenarios
produced by the model and n denotes the dimension of the
random vector. In contrast, if H contains historical data, then k is
the number of time instants observed and n is the number of
assets observed.
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Mean-risk optimization problems

Problem (8) contains one-dimensional observations on a random
variable which, in our case, describes the return of a given portfolio.

Therefore, the observed returns of a portfolio with composition w are
r1w , r2w , . . . , r k w , or simply as the product Hw of the historical data
matrix H and the vector-column of portfolio weights w .

We restate problem (8) employing matrix notation,

AVaRǫ(Hw) = min
θ,d

θ +
1
kǫ

d ′e

subject to −Hw − θe ≤ d
d ≥ 0, θ ∈ R

(15)

where d ′ = (d1, . . . , dk ) is a vector of auxiliary variables, e = (1, . . . , 1),
e ∈ R

k is a vector of ones, and θ ∈ R is the additional parameter coming
from the minimization formula given in equation (2) from Lecture 7.
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Mean-risk optimization problems

The first inequality in (15) concerns vectors and is to be
interpreted in a component-by-component manner,

−Hw − θe ≤ d ⇐⇒

∣∣∣∣∣∣∣∣

−r1w − θ ≤ d1

−r2w − θ ≤ d2

. . .

−r kw − θ ≤ dk
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Mean-risk optimization problems

There are very efficient algorithms for solving problems of type (12)
called linear programming problems.

Our goal is to obtain a more simplified version of problem (12) in which
we minimize portfolio AVaR by changing the portfolio composition w .

Employing (15) to calculate AVaR, we have to perform an additional
minimization with respect to w and add all constraints existing in
problem (12). The resulting optimization problem is

min
w,θ,d

θ +
1
kǫ

d ′e

subject to −Hw − θe ≤ d
w ′e = 1
w ′µ ≥ R∗

w ≥ 0, d ≥ 0, θ ∈ R.

(16)
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Mean-risk optimization problems

As a result, problem (16) has a more simple structure than (12)
since the objective function is linear and all constraints are linear
equalities or inequalities.

There is a similar analogue to problem (13). It is constructed in
the same way, the difference is that AVaR is in the constraint set
and not in the objective function.

For this reason, we include the objective function of (15) in the
constraint set,

max
w ,θ,d

w ′µ

subject to −Hw − θe ≤ d
w ′e = 1
θ + 1

kǫ
d ′e ≤ R∗

w ≥ 0, d ≥ 0, θ ∈ R.

(17)
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Mean-risk optimization problems

The structure of the resulting problem (17) is more simple than the
one of (13) and is a linear programming problem.

The method of combining (15) with (12) and (13) may seem
artificial and not quite convincing that, for example, the solution of
(17) and (13) with ρ(rp) = AVaRǫ(Hw) will coincide.

However, it can be formally proved that the solutions coincide.
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The mean-risk efficient frontier

Problems (12) and (13) are the main problems illustrating the
principle behind M-R analysis.

Varying the lower bound on expected return R∗ in (12) or the
upper bound on portfolio risk R∗ in (13), we obtain the set of
efficient portfolios.

In a similar way to M-V analysis, plotting the expected return and
the risk of the efficient portfolios in the mean-risk plane, we arrive
at the mean-risk efficient frontier. It shows the trade-off between
risk and expected return of the mean-risk efficient portfolios.
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The mean-risk efficient frontier

We illustrate the mean-risk efficient frontier with the following example.
Suppose that we choose AVaR as a risk measure and the
investment universe consists of three stocks in the S&P 500 index:

❏ Sun Microsystems Inc with weight w1,
❏ Oracle Corp with weight w2,
❏ Microsoft Corp with weight w3.

We use the observed daily returns in the period from December
31, 2002 to December 31, 2003.

The historical data matrix H in equation (14) has three columns
and 250 rows.
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The mean-risk efficient frontier

Since there are only 250 observations, we choose 40% for the tail
probability ǫ in order to have a higher stability of the AVaR
estimate from the sample.

This means that the risk measure equals the average of the VaRs
larger than the VaR at 40% tail probability which approximately
equals the average loss provided that the loss is larger than the
VaR at 40% tail probability.

The expected daily returns are computed as the sample average
and equal µ1 = 0.17%, µ2 = 0.09%, and µ2 = 0.03% where the
indexing is consistent with the weight indexes.
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The mean-risk efficient frontier
The efficient frontier is shown below.
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Figure 4. The plot shows the efficient frontier in the mean-risk plane. The horizontal
axis ranges from about 1.5% to about 2.8%. Thus, the AVaR at 40% tail probability is
about 1.5% for the global minimum risk portfolio and about 2.8% for the maximum
expected return portfolio.
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The mean-risk efficient frontier
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Figure 5. The plot shows the compositions of the optimal portfolios along the efficient
frontier. The weight of Sun Microsystems Inc gradually increases as we move from the
global minimum risk portfolio to the maximum expected return portfolio, because this
stock has the highest expected daily return, µ1 = 0.17%.
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The mean-risk efficient frontier

The plot below shows the same efficient frontier as in Figure 4 and dots
indicate the positions of the three portfolios in the mean-risk plane.
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Figure 6. The plot shows the efficient frontier with three portfolios selected.
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The mean-risk efficient frontier
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Figure 7. The plot shows the densities of the three portfolios computed from the
empirical data.
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The mean-risk efficient frontier

Portfolio 1 is the global minimum risk portfolio and its density is
very concentrated about the portfolio expected return.

Portfolio 2 is in the middle part of the efficient frontier. Its density
is more dispersed and slightly skewed to the right.

The density of Portfolio 3, which is close to the maximum
expected return portfolio, is much more dispersed.
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The mean-risk efficient frontier

Besides problems (12) and (13), there exists another, equivalent
way to obtain the mean-risk efficient frontier. This approach is
based on the optimization problem

max
w

w ′µ − λρ(rp)

subject to w ′e = 1
w ≥ 0,

(18)

where λ ≥ 0 is a risk-aversion parameter.

By varying λ and solving problem (18), we derive a set of efficient
portfolios which is obtained either through (12) or (13).
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The mean-risk efficient frontier

Note that the general shape of the mean-risk efficient frontier in Figure
4 is very similar to the shape of the mean-variance efficient frontier in
Figure 1.

Both are increasing functions; that is, the more risk we are ready
to undertake, the higher the expected portfolio return.

Both efficient frontiers have a concave shape; that is, the expected
portfolio return gained by undertaking one additional unit of risk
decreases.

The efficient frontiers are very steep at the global minimum risk
portfolio and become more flat close to the maximum expected
return portfolio.
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The mean-risk efficient frontier

The common properties of the frontiers on Figure 1 and Figure 4
are not accidental.

They are governed by the properties of the risk measure ρ(X ), or
the standard deviation in the case of M-V analysis.

If ρ(X ) is convex, then the efficient frontier generated by problems
(12), (13), or (18) is a concave, monotonically increasing function.

If ρ(X ) belongs to the class of coherent risk measures, for
example, then it is convex and, therefore, the corresponding
efficient frontier has a general shape such as the one in Figure 4.
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Mean-risk analysis and SSD

The question of consistency with SSD arises for M-R analysis as well.

Suppose that non-satiable, risk-averse investors do not prefer a
portfolio with composition v = (v1, . . . , vn) to another portfolio with
composition w = (w1, . . . , wn).

If X is a random vector describing the returns of the assets in the
two portfolios, then is M-R analysis capable of indicating that the
portfolio with return v ′X is not less efficient than w ′X?

A reasonable consistency condition is the following one

w ′X �SSD v ′X =⇒
{

v ′µ ≤ w ′µ
ρ(v ′X ) ≥ ρ(w ′X ).

(19)

It is the risk measure ρ(X ) which should be endowed with certain
properties in order for (19) to hold true.
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Mean-risk analysis and SSD

If ρ(X ) is a coherent risk measure, then it does not necessarily
follow that (19) will hold.

For some particular representatives, the consistency condition is
true. For instance, if ρ(X ) is AVaR or, more generally, a spectral
risk measure, then it is consistent with SSD.

Since AVaR is consistent with SSD, the set of efficient portfolios,
generated for instance by problem (12) with ρ(X ) = AVaRǫ(X ),
does not contain a pair of two portfolios w and v such that all
non-satiable, risk-averse investors prefer strictly one to the other,
w ′X ≻SSD v ′X .
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Mean-risk analysis and SSD

To verify the previous statement, assume the converse.

If w ′X dominates strictly v ′X according to SSD, then one of the
inequalities in (19) is strict.

The portfolio v cannot be a solution to the optimization problems
generating the efficient frontier, which results in a contradiction to
the initial assumption.

The conclusion is that none of the efficient portfolios can dominate
strictly another efficient portfolio with respect to SSD.

Therefore, which portfolio on the efficient frontier an investor
would choose depends entirely on the particular functional form of
the investor’s utility function.

If the investor is very risk-averse, then the optimal choice will be a
portfolio close to the globally minimum risk portfolio and if the
investor is risk-loving, then a portfolio close to the other end of the
efficient frontier may be preferred.
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Risk versus dispersion measures

The global minimum risk portfolio can be calculated from problem
(12) by removing the lower bound on the expected portfolio return.

In this way, we solve a problem without any requirements on the
expected performance. Even though we remove the constraint,
the expected portfolio return may still influence the optimal
solution.

Suppose that ρ(X ) is a coherent risk measure. Then, changing
only the expectation of the portfolio return distribution by adding a
positive constant results in a decrease of risk,

ρ(X + C) = ρ(X ) − C

where C is a positive constant.

Then any coherent risk measure can be represented as

ρ(X ) = ρ(X − EX ) − EX . (20)
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Risk versus dispersion measures

The first term in the difference is completely independent of the
expected value of X .

As a result of this decomposition, problem (12) can be restated
without the expected return constraint in the following way,

max
w

w ′µ − ρ(rp − w ′µ)

subject to w ′e = 1
w ≥ 0,

(21)

where we have changed the minimization to maximization and
have flipped the sign of the objective function.

The solution to problem (21) is the global minimum risk portfolio
and the expected portfolio return w ′µ has a certain impact on the
solution as it appears in the objective function.
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Risk versus dispersion measures

In contrast, the global minimum variance portfolio in M-V analysis
does not share this property.

It is completely invariant of the expected returns of the assets in
the investment universe.

This difference between M-R analysis and M-V analysis is not to
be regarded as a drawback of one or the other. It is one
consequence of employing a risk measure in the optimization
problem.

In spite of the differences between the two, under certain
conditions it appears possible to extend the mean-risk efficient
frontier by substituting the risk measure for a suitable dispersion
measure so that the mean-risk efficient frontier properties become
more similar to the properties of the mean-variance efficient
frontier.
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Risk versus dispersion measures

There exists a connection between a sub-family of the coherent risk
measures and a family of dispersion measures.

Suppose that ρ(X ) is a coherent risk measure and, additionally, it
satisfies the property ρ(X ) > −EX .

Suppose that D(X ) is a deviation measure and, additionally, it
satisfies the property D(X ) ≤ EX for all non-negative random
variables, X ≥ 0.

Under these assumptions, any of the two functionals can be
expressed from the other in the following way,

D(X ) = ρ(X − EX )

ρ(X ) = D(X ) − EX .

⇒ Here we’ll always assume that D(X ) and ρ(X ) are such that the
relationship above holds.
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Risk versus dispersion measures

Consider the objective function of problem (18). Applying the
decomposition in equation (20), we obtain

w ′µ − λρ(rp) = w ′µ − λρ(rp − w ′µ) + λw ′µ

= (1 + λ)w ′µ − λρ(rp − w ′µ)

= (1 + λ)

(
w ′µ − λ

1 + λ
ρ(rp − w ′µ)

)
.

Since λ ≥ 0, we can safely ignore the positive factor 1 + λ in the
objective function because it does not change the optimal solution.
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Risk versus dispersion measures

In effect, we obtain the following optimization problem, which is
equivalent to (18),

max
w

w ′µ − λ

1 + λ
ρ(rp − w ′µ)

subject to w ′e = 1
w ≥ 0.

(22)
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Risk versus dispersion measures

We recognize the deviation measure D(rp) = ρ(rp − w ′µ) in the
objective function.

Note that the aversion coefficient is not an arbitrary positive
number, λ/(1 + λ) ∈ [0, 1], because of the assumption that the
risk-aversion coefficient is non-negative.

As a result, we can see the parallel between (22) and the
corresponding problem with a deviation measure,

max
w

w ′µ − cD(rp)

subject to w ′e = 1
w ≥ 0,

(23)

where c ≥ 0 is the corresponding aversion coefficient.
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Risk versus dispersion measures

The set of optimal portfolios obtained from (23) by varying the parameter
c contains the set of mean-risk efficient portfolios of (22).

The efficient frontier corresponding to (23) has properties similar to the
mean-variance efficient frontier since D(rp) does not depend on the
expected portfolio return.

The optimal portfolios, which appear in addition to the mean-risk efficient
portfolios, are obtained with c > 1.

If c < 1, then there is an equivalent λ = c/(1 − c) such that the optimal
portfolios of (22) coincide with the optimal solutions of (23).

Increasing c, we obtain more and more diversified portfolios. In effect,
the left part of the mean-risk efficient frontier gets extended by problem
(23).
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Risk versus dispersion measures

Actually, in the mean-risk plane, the extended part curves back
because these portfolios are sub-optimal according to M-R
analysis while in mean-deviation plane, the efficient frontier is a
concave, monotonically increasing function.

The difference between the mean-risk and the mean-deviation
planes is merely a change in coordinates given by equation (20).
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Risk versus dispersion measures

The set of optimal portfolios additional to the mean-risk efficient
portfolios can be large or small depending on the magnitude of the
expected returns of the assets.

If the expected returns are close to zero, the set is small and it
completely disappears if the expected returns are exactly equal to
zero.

In practice, if we use daily returns, the efficient portfolios
generated by (22) and (23) almost coincide. Larger discrepancies
may appear with weekly or monthly data.
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Risk versus dispersion measures

In order to see the usual magnitude of the extension of the
mean-risk efficient portfolios by (23), we increase five times the
expected returns of the common stocks in the example developed
in Section "The mean-risk efficient frontier" keeping everything
else unchanged.

The increase roughly corresponds to the magnitude of weekly
expected returns.

The resulting mean-risk efficient frontier and set of efficient
portfolios is given in Figures 8,9.
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Risk versus dispersion measures
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Figure 8. The plot shows the efficient frontier in the mean-risk plane.
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Risk versus dispersion measures
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Figure 9. The plot shows the compositions of the optimal portfolios along the efficient
frontier.

Prof. Dr. Svetlozar Rachev (University of Karlsruhe) Lecture 8: Optimal portfolios 2008 86 / 97



Risk versus dispersion measures
The efficient portfolios generated by problem (23) with D(X ) = AVaR0.4(X − EX ) are
shown in Figures 10,11.
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Figure 10. The plot shows the efficient portfolios coordinates of (23) in the
mean-deviation plane. The rectangle indicates the portfolios additional to the
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Risk versus dispersion measures
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Figure 11. The plot shows the compositions of the optimal portfolios. The rectangle
indicates the optimal portfolios which are additional to the mean-risk efficient
portfolios.

Note the difference between the horizontal axes in Figures 8,9 and
10,11.
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As a next step, we plot the coordinates of the additional portfolios
in the mean-risk plane.

These portfolios are sub-optimal according to M-R analysis and,
therefore, the extension of the mean-risk efficient frontier will
curve backwards. This is illustrated in Figure 12.

Sub-optimal has an easy geometric illustration. For any of these
portfolios, we can find an equally risky portfolio with a higher
expected return, which is on the mean-risk efficient frontier.
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Figure 12. The mean-risk efficient frontier with the coordinates of the additional
optimal portfolios plotted with a dashed line. The portfolios which are indicated by the

rectangle in Figure 11 are shown with a dashed line in the mean-risk plane here.
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If M-R analysis leads to the conclusion that these portfolios are
sub-optimal, why do we consider them at all?

Suppose that we are uncertain about the reliability of the expected
return estimates and we want to minimize the impact of this
uncertainty on the optimal solution.

Since the means affect the global minimum risk portfolio, we may
want to reduce further the effect of the means by moving to the
extension of the efficient frontier given by the mean-deviation
optimization problem (23).

The portfolio which appears at the very end of the dashed line in
Figure 12 is the minimum dispersion portfolio, the composition of
which is not influenced by the means at all.

In effect, even though the mean-deviation optimal portfolios are
sub-optimal, under certain circumstances they may still be of
practical interest.
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We can classify all optimal portfolios obtained from the mean-risk
optimization problem of the following type

min
w

ρ(rp)

subject to w ′e = 1
w ′µ = R∗

w ≥ 0.

(24)

The expected return constraint in (12) is an inequality and in (24) it
is an equality.

This may seem to be an insignificant modification of the initial
problem but it results in problem (24) being more general than
(12) in the following sense.
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The optimal portfolios obtained by varying the bound R∗ in (24)
contain the mean-risk efficient portfolios and, more generally, the
mean-deviation efficient portfolios.

By fixing the expected portfolio return to be equal to R∗, we are
essentially minimizing portfolio dispersion.

By equation (20), the objective function of problem (24) can be
written as

ρ(rp) = D(rp) − w ′µ = D(rp) − R∗

in which R∗ is a constant and, therefore, it cannot change the
optimal solution. In practice, we are minimizing the dispersion
D(rp).
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The optimal portfolios generated by problem (24) by varying R∗ can be
classified into three groups. Figure 13 illustrates the groups.

The dark gray group contains the mean-risk efficient portfolios
generated by (12), obtained from (24) with high values of R∗.

The gray group contains the mean-deviation efficient portfolios
produced by problem (23) which are not mean-risk efficient. They
are obtained from (24) with medium values of R∗.

Finally, the white set consists of optimal portfolios which are not
mean-deviation efficient but solve (24). They are obtained with
small values of R∗. This set has no practical significance since the
portfolios belonging to it have small expected returns and high
dispersions.
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Figure 13. Classification of the optimal portfolios generated by problem (24) by
varying the expected return bound R∗.

Prof. Dr. Svetlozar Rachev (University of Karlsruhe) Lecture 8: Optimal portfolios 2008 95 / 97



Summary

We described M-V analysis and the associated optimal portfolio
problems.

We discussed the mean-variance efficient frontier and consistency of
M-V analysis with the stochastic dominance order of the class of
non-satiable, risk-averse investors.

Considering a true risk measure instead of standard deviation leads to
M-R analysis. The same reasoning leads to the mean-risk efficient
frontier which, under certain conditions, is related to a mean-dispersion
efficient frontier.

As a result of this relationship, we demonstrated that all optimal
portfolios can be classified into three groups — mean-risk efficient
portfolios, mean-dispersion efficient portfolios which are not mean-risk
efficient, and optimal portfolios which are not mean-dispersion efficient.

In the appendix to this lecture, we remark on the numerical difficulties in
solving the optimal portfolio problems when AVaR is selected as a risk
measure.
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