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Characteristics of conditional loss distributions

AVaR represents the average of the losses larger than the VaR at
tail probability ǫ, which is only one characteristic of the distribution
of extreme losses.

If the distribution function is continuous, then AVaR coincides with
ETL which is the mathematical expectation of the conditional loss
distribution.

Moreover, AVaR does not provide any information about how
dispersed the conditional losses are around the AVaR value.
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Characteristics of conditional loss distributions

Consider the following tail moment of order n at tail probability ǫ,

mn
ǫ (X ) =

1
ǫ

∫ ǫ

0
(F−1

X (t))ndt , (1)

where n = 1, 2, . . ., F−1
X (t) is the inverse c.d.f. of the r.v. X .

If the distribution function of X is continuous, then the tail moment
of order n can be represented through the following conditional
expectation,

mn
ǫ (X ) = E(X n|X < VaRǫ(X )), (2)

where n = 1, 2, . . .

In the general case, if the c.d.f. has a jump at VaRǫ(X ), a link
exists between the conditional expectation and equation (1), which
is similar to formula (13) for AVaR. In fact, AVaR appears as the
negative of the tail moment of order one, AVaRǫ(X ) = −m1

ǫ (X ).
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Characteristics of conditional loss distributions

The higher-order tail moments provide additional information
about the conditional distribution of the extreme losses.

In addition to the moments mn
ǫ (X ), we introduce the central tail

moments of order n at tail probability ǫ,

Mn
ǫ (X ) =

1
ǫ

∫ ǫ

0
(F−1

X (t) − m1
ǫ (X ))ndt , (3)

where m1
ǫ (X ) is the tail moment of order one.

If the distribution function is continuous, then the central moments
can be expressed in terms of the conditional expectation,

Mn
ǫ (X ) = E((X − m1

ǫ (X ))n|X < VaRǫ(X )).
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Characteristics of conditional loss distributions

The tail variance of the conditional distribution appears as M2
ǫ (X )

and the tail standard deviation equals

(M2
ǫ (X ))1/2 =

(
1
ǫ

∫ ǫ

0
(F−1

X (t) − m1
ǫ (X ))2dt

)1/2

.

There is a formula expressing the tail variance in terms of the tail
moments introduced in (2),

M2
ǫ (X ) = m2

ǫ (X ) − (m1
ǫ (X ))2

= m2
ǫ (X ) − (AVaRǫ(X ))2.

This formula is similar to the representation of variance in terms of
the first two moments,

σ2
X = EX 2 − (EX )2.
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Characteristics of conditional loss distributions

The tail standard deviation can be used to describe the dispersion
of conditional losses around AVaR as it satisfies the general
properties of dispersion measures.

If there are two portfolios with equal AVaRs of their return
distributions but different tail standard deviations, the portfolio with
the smaller standard deviation is preferable.
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Characteristics of conditional loss distributions

Another central tail moment is M3
ǫ (X ).

After proper normalization, it can be employed to measure the
skewness of the conditional loss distribution. If the tail probability
is sufficiently small, the tail skewness will be quite significant.

By normalizing the central tail moment of order 4, we obtain a
measure of kurtosis of the conditional loss distribution.
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Characteristics of conditional loss distributions

In a similar way, we introduce the absolute central tail moments of
order n at tail probability ǫ,

µn
ǫ (X ) =

1
ǫ

∫ ǫ

0
|F−1

X (t) − m1
ǫ (X )|ndt . (4)

The tail moments µn
ǫ (X ) raised to the power of 1/n, (µn

ǫ (X ))1/n,
can be applied as measures of dispersion of the conditional loss
distribution if the distribution is such that they are finite.
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Characteristics of conditional loss distributions

The tail of the random variable can be so heavy that AVaR
becomes infinite. Even if it is theoretically finite, it can be hard to
estimate because the heavy tail will result in the AVaR estimator
having a large variability.
The median tail loss (MTL) defined as the median of the
conditional loss distribution, is a robust alternative to AVaR. It has
the advantage of always being finite no matter the tail behavior of
the random variable. Formally, it is defined as

MTLǫ(X ) = −F−1
X (1/2|X < −VaRǫ(X )), (5)

where F−1
X (p|X < −VaRǫ(X )) stands for the inverse distribution

function of the c.d.f. of the conditional loss distribution

FX (x |X < −VaRǫ(X )) = P(X ≤ x |X < −VaRǫ(X ))

=

{
P(X ≤ x)/ǫ, x < −VaRǫ(X )
1, x ≥ −VaRǫ(X ).
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Characteristics of conditional loss distributions

MTL, as well as any other quantile of the conditional loss
distribution, can be directly calculated as a quantile of the
distribution of X ,

MTLǫ(X ) = −F−1
X (ǫ/2)

= VaRǫ/2(X ),
(6)

where F−1
X (p) is the inverse c.d.f. of X and ǫ is the tail probability

of the corresponding VaR in equation (5).

MTL shares the properties of VaR. Equation (6) shows that MTL is
not a coherent risk measure even though it is a robust alternative
to AVaR which is a coherent risk measure.
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Higher-order AVaR

AVaR is the average of VaRs larger than the VaR at tail probability ǫ.
What happens if we average all AVaRs larger than the AVaR at tail
probability ǫ?

This quantity is an average of coherent risk measures and,
therefore, is a coherent risk measure itself since it satisfies all
defining properties of coherent risk measures.

We call it AVaR of order one and denote it by AVaR(1)
ǫ (X ) because

it is a derived quantity from AVaR.

We will consider similar derived quantities from AVaR which we
call higher-order AVaRs.

Prof. Dr. Svetlozar Rachev (University of Karlsruhe) Lecture 7: Average value-at-risk 2008 12 / 53



Higher-order AVaR

The AVaR of order one is represented in the following way,

AVaR(1)
ǫ (X ) =

1
ǫ

∫ ǫ

0
AVaRp(X )dp

where AVaRp(X ) is the AVaR at tail probability p.

Replacing AVaR, we obtain

AVaR(1)
ǫ (X ) = −

1
ǫ

∫ ǫ

0

(∫ 1

0
F−1

X (y)gp(y)dy

)
dp

= −
1
ǫ

∫ 1

0
F−1

X (y)

(∫ ǫ

0
gp(y)dp

)
dy

where

gp(y) =

{
1/p, y ∈ [0, p]
0, y > p.
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Higher-order AVaR

After certain algebraic manipulations, we get the expression

AVaR(1)
ǫ (X ) = −

1
ǫ

∫ ǫ

0
F−1

X (y) log
ǫ

y
dy

=

∫ ǫ

0
VaRy (X )φǫ(y)dy .

(7)

The AVaR of order one can be expressed as a weighted average
of VaRs larger than the VaR at tail probability ǫ with a weighting
function φǫ(y) equal to

φǫ(y) =





1
ǫ

log
ǫ

y
, 0 ≤ y ≤ ǫ

0, ǫ < y ≤ 1.

The AVaR of order one can be viewed as a spectral risk measure
with φǫ(y) being the risk aversion function.
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Higher-order AVaR

Similarly, we define the higher-order AVaR through the recursive
equation

AVaR(n)
ǫ (X ) =

1
ǫ

∫ ǫ

0
AVaR(n−1)

p (X )dp (8)

where AVaR(0)
p (X ) = AVaRp(X ) and n = 1, 2 . . .

The AVaR of order two equals the average of AVaRs of order one
which are larger than the AVaR of order one at tail probability ǫ.

The AVaR of order n appears as an average of AVaRs of order
n − 1.
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Higher-order AVaR

The quantity AVaR(n)
ǫ (X ) is a coherent risk measure because it is

an average of coherent risk measures. This is a consequence of
the recursive definition in (8).
AVaR of order n admits the representation

AVaR(n)
ǫ (X ) =

1
ǫ

∫ ǫ

0
VaRy (X )

1
n!

(
log

ǫ

y

)n

dy (9)

and AVaR(n)
ǫ (X ) can be viewed as a spectral risk measure with a

risk aversion function equal to

φ(n)
ǫ (y) =





1
ǫn!

(
log

ǫ

y

)n

, 0 ≤ y ≤ ǫ

0, ǫ < y ≤ 1.

As a simple consequence of the definition, the sequence of
higher-order AVaRs is monotonic,

AVaRǫ(X ) ≤ AVaR(1)
ǫ (X ) ≤ . . . ≤ AVaR(n)

ǫ (X ) ≤ . . .
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Higher-order AVaR

We remarked that if the r.v. X has a finite mean, E |X | < ∞, then
AVaR is also finite.

This is not true for spectral risk measures and the higher-order
AVaR in particular.

AVaR(n)
ǫ (X ) is finite if all moments of X exist. For example, if the

random variable X has an exponential tail, then AVaR(n)
ǫ (X ) < ∞

for any n < ∞.
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The minimization formula for AVaR

We provide a geometric interpretation of the minimization formula (2)
for AVaR.

We restate equation (2) in the following equivalent form,

AVaRǫ(X ) =
1
ǫ

min
θ∈R

(ǫθ + E(−X − θ)+) (10)

where (x)+ = max(x , 0).

Instead of the integral of the quantile function in the definition of
AVaR, a minimization formula appears in (10).
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The minimization formula for AVaR

We interpreted the integral of the inverse c.d.f. as the shaded area
in Figure 4 given in the lecture.

We will find the area corresponding to the objective function in the
minimization formula and we will demonstrate that as θ changes,
there is a minimal area which coincides with the area
corresponding to the shaded area in Figure 4.

Moreover, the minimal area is attained for θ = VaRǫ(X ) when the
c.d.f. of X is continuous at VaRǫ(X ).
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The minimization formula for AVaR

Consider first the expectation in equation (10). Assuming that X
has a continuous c.d.f., we obtain an expression for the
expectation involving the inverse c.d.f.,

E(−X − θ)+ =

∫

R

max(−x − θ, 0)dFX (x)

=

∫ 1

0
max(−F−1

X (t) − θ, 0)dt

= −

∫ 1

0
min(F−1

X (t) + θ, 0)dt .

This representation implies that the expectation E(−X − θ)+
equals the area closed between the graph of the inverse c.d.f. and
a line parallel to the horizontal axis passing through the point
(0,−θ) (See the illustration on the next slide).
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The minimization formula for AVaR

0    

 

0 

 

 

F
X
−1(t)F

X
(x)

−θ

−θ

Figure 1. The shaded area is equal to the expectation E(−X − θ)+ in which X
has a continuous distribution function. The same area is represented in terms
of the c.d.f on the left plot.
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The minimization formula for AVaR

In equation (10), the tail probability ǫ is fixed. The product ǫ × θ
equals the area of a rectangle with sides equal to ǫ and θ. This
area is added to E(−X − θ)+.

Figures 2,3 show the two areas together. Comparing the plot to
Figure 1, we find out that adding the marked area to the shaded
area we obtain the total area corresponding to the objective in the
minimization formula, ǫθ + E(−X − θ)+.

If −θ > −VaRǫ(X ), then we obtain a similar case shown on the
Figure 3. Again, adding the marked area to the shaded area we
obtain the the total area computed by the objective in the
minimization formula.

By varying θ, the total area changes but it always remains larger
than the shaded area unless θ = VaRǫ(X ).
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The minimization formula for AVaR

Figure 2. The marked area is in addition to the shaded one. The marked area
is equal to zero if θ = VaRǫ(X ). The shaded areas equal ǫ × AVaRǫ(X ). This
is the case in which −θ < −VaRǫ(X ).

Prof. Dr. Svetlozar Rachev (University of Karlsruhe) Lecture 7: Average value-at-risk 2008 23 / 53



The minimization formula for AVaR

Figure 3. The marked area is in addition to the shaded one. The marked area
is equal to zero if θ = VaRǫ(X ). The shaded areas equal ǫ × AVaRǫ(X ).

Prof. Dr. Svetlozar Rachev (University of Karlsruhe) Lecture 7: Average value-at-risk 2008 24 / 53



The minimization formula for AVaR

When θ = VaRǫ(X ) the minimum area is attained which equals
exactly ǫ × AVaRǫ(X ).

According to equation (10), we have to divide the minimal area by
ǫ in order to obtain the AVaR.

⇒ We have demonstrated that the minimization formula in equation (2)
given in the lecture calculates the AVaR.
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AVaR for stable distributions

Working with the class of stable distributions in practice is difficult
because there are no closed-form expressions for their densities
and distribution functions.

Stoyanov et al. (2006) give an account of the approaches to
estimating AVaR of stable distributions. There is a formula which
is not exactly a closed-form expressions, but is suitable for
numerical work.

It involves numerical integration but the integrand is nicely
behaved and the integration range is a bounded interval. Since
the formula involves numerical integration, we call it a
semi-analytic expression.
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AVaR for stable distributions

Suppose that the r.v. X has a stable distribution with tail exponent
α, skewness parameter β, scale parameter σ, and location
parameter µ, X ∈ Sα(σ, β, µ).

If α ≤ 1, then AVaRǫ(X ) = ∞. The reason is that stable
distributions with α ≤ 1 have infinite mathematical expectation and
the AVaR is unbounded.

If α > 1 and VaRǫ(X ) 6= 0, then the AVaR can be represented as

AVaRǫ(X ) = σAǫ,α,β − µ (11)

where the term Aǫ,α,β does not depend on the scale and the
location parameters.

The representation (11) is a consequence of the positive
homogeneity and the invariance property of AVaR.
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AVaR for stable distributions

Concerning the term Aǫ,α,β ,

Aǫ,α,β =
α

1 − α

|VaRǫ(X )|

πǫ

∫ π/2

−θ0

g(θ) exp
(
−|VaRǫ(X )|

α

α−1 v(θ)
)

dθ

where

g(θ) =
sin(α(θ0 + θ) − 2θ)

sin α(θ0 + θ)
−

α cos2 θ

sin2 α(θ0 + θ)
,

v(θ) =
(
cos αθ0

) 1
α−1

(
cos θ

sin α(θ0 + θ)

) α

α−1 cos(αθ0 + (α − 1)θ)

cos θ
,

in which θ0 = 1
α arctan

(
β tan πα

2

)
, β = −sign(VaRǫ(X ))β, and

VaRǫ(X ) is the VaR of the stable distribution at tail probability ǫ.
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AVaR for stable distributions

If VaRǫ(X ) = 0, then the AVaR admits a very simple expression,

AVaRǫ(X ) =
2Γ
(

α−1
α

)

(π − 2θ0)

cos θ0

(cos αθ0)1/α
.

in which Γ(x) is the gamma function and θ0 = 1
α arctan(β tan πα

2 ).
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ETL vs AVaR

The expected tail loss and the average value-at-risk are two
related concepts.

We remarked that ETL and AVaR coincide if the portfolio return
distribution is continuous at the corresponding VaR level.

However, if there is a discontinuity, or a point mass, then the two
notions diverge. Still, the AVaR can be expressed through the ETL
and the VaR at the same tail probability.
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ETL vs AVaR

The ETL at tail probability ǫ is defined as the average loss
provided that the loss exceeds the VaR at tail probability ǫ,

ETLǫ(X ) = −E(X |X < −VaRǫ(X )). (12)

As a consequence of the definition, the ETL can be expressed in
terms of the c.d.f. and the inverse c.d.f.

Suppose additionally, that the c.d.f. of X has a jump at −VaRǫ(X ).
Then the loss VaRǫ(X ) occurs with probability equal to the size of
the jump and, because of the strict inequality in (12), it will not be
included in the average.
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ETL vs AVaR

Figure below shows the graphs of the c.d.f. and the inverse c.d.f. of a random
variable with a point mass at −VaRǫ(X ).

0    
0   

 

F
X
(x)

0  

0    

 

 

F
X
−1(t)

ε

ε
0

−VaR
ε
(X)

−VaR
ε
(X)

ε
0

ε

Figure 4. The c.d.f. and the inverse c.d.f. of a random variable X with a point
mass at −VaRǫ(X ). The tail probability ǫ splits the jump of the c.d.f.
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ETL vs AVaR

If ǫ splits the jump of the c.d.f. as on the left plot in Figure 4, then
the ETL at tail probability ǫ equals,

ETLǫ(X ) = −E(X |X < −VaRǫ(X ))

= −E(X |X < −VaRǫ0(X ))

= ETLǫ0(X ).

In terms of the inverse c.d.f., the quantity ETLǫ0(X ) can be
represented as

ETLǫ0(X ) = −
1
ǫ0

∫ ǫ0

0
F−1

X (t)dt .
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ETL vs AVaR

The relationship between AVaR and ETL follows from the definition of AVaR.

Suppose that the c.d.f. of the random variable X is as on the left plot in
Figure 4. Then,

AVaRǫ(X ) = −
1
ǫ

∫ ǫ

0
F−1

X (t)dt

= −
1
ǫ

(∫ ǫ0

0
F−1

X (t)dt +

∫ ǫ

ǫ0

F−1
X (t)dt

)

= −
1
ǫ

∫ ǫ0

0
F−1

X (t)dt +
ǫ − ǫ0

ǫ
VaRǫ(X ).

where the last inequality holds because the inverse c.d.f. is flat in the
interval [ǫ0, ǫ] and the integral is merely the surface of the rectangle
shown on the right plot in Figure 4.

The integral in the first summand can be related to the ETL at tail
probability ǫ and, finally, we arrive at the expression

AVaRǫ(X ) =
ǫ0

ǫ
ETLǫ(X ) +

ǫ − ǫ0

ǫ
VaRǫ(X ). (13)
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ETL vs AVaR

Equation (13) shows that AVaRǫ(X ) can be represented as a
weighted average between the ETL and the VaR at the same tail
probability as the coefficients in front of the two summands are
positive and sum up to one.

In the special case in which there is no jump, or if ǫ = ǫ1, then
AVaR equals ETL.
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ETL vs AVaR

Why is equation (13) important if in all statistical models we assume
that the random variables describing return or payoff distribution have
densities?

Under this assumption, not only are the corresponding c.d.f.s
continuous but they are also smooth.

Equation (13) is important because if the estimate of AVaR is
based on the Monte Carlo method, then we use a sample of
scenarios which approximate the nicely behaved hypothesized
distribution.

Even though we are approximating a smooth distribution function,
the sample c.d.f. of the scenarios is completely discrete, with
jumps at the scenarios the size of which equals the 1/n, where n
stands for the number of scenarios.
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ETL vs AVaR

Equation (6) given in the lecture is actually equation (13) restated
for a discrete random variable.

The outcomes are the available scenarios which are equally
probable.

Consider a sample of observations or scenarios r1, . . . , rn and
denote by r(1) ≤ r(2) ≤ . . . ≤ r(n) the ordered sample.

The natural estimator of the ETL at tail probability ǫ is

ÊTLǫ(r) = −
1

⌈nǫ⌉ − 1

⌈nǫ⌉−1∑

k=1

r(k) (14)

where ⌈x⌉ is the smallest integer larger than x .
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ETL vs AVaR

Formula (14) means that we average ⌈nǫ⌉ − 1 of the ⌈nǫ⌉ smallest
observations which is, in fact, the definition of the conditional
expectation in (12) for a discrete distribution.

The VaR at tail probability ǫ is equal to the negative of the
empirical quantile,

V̂aRǫ(r) = −r(⌈nǫ⌉). (15)

It remains to determine the coefficients in (13). Having in mind
that the observations in the sample are equally probable, we
calculate that

ǫ0 =
⌈nǫ⌉ − 1

n
.

Plugging ǫ0, (15), and (14) into equation (13), we obtain (6) from
the lecture which is the sample AVaR.
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ETL vs AVaR

Similarly, equation (10) from the lecture also arises from (13).

The assumption is that the underlying random variable has a discrete
distribution but the outcomes are not equally probable.

The corresponding equation for the average loss on condition that the
loss is larger than the VaR at tail probability ǫ is given by

ÊTLǫ(r) = −
1
ǫ0

kǫ∑

j=1

pj r(j) (16)

where ǫ0 =
∑kǫ

j=1 pj and kǫ is the integer satisfying the inequalities,

kǫ∑

j=1

pj ≤ ǫ <

kǫ+1∑

j=1

pj .

The sum
∑kǫ

j=1 pj stands for the cumulative probability of the losses
larger than the the VaR at tail probability ǫ.

Note that equation (16) turns into equation (14) when the outcomes are
equally probable.
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ETL vs AVaR
ETL is not a coherent risk measure. The sample ETL in (14) is not a smooth function
of the tail probability while the sample AVaR is smooth. See the illustrations below.
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Figure 5. The graphs of the sample ETL and AVaR with tail probability varying
between 1% and 10%. The plot is produced from a sample of 100 observations.
X ∈ N(0, 1).
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ETL vs AVaR
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Figure 6. The graphs of the sample ETL and AVaR with tail probability varying
between 1% and 10%. The plot is produced from a sample of 250 observations.
X ∈ N(0, 1).
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ETL vs AVaR

Both plots demonstrate that the sample ETL is a step function of
the tail probability while the AVaR is a smooth function of it.

This is not surprising because, as ǫ increases, new observations
appear in the sum in (14) producing the jumps in the graph of the
sample ETL.

In contrast, the AVaR changes gradually as it is a weighted
average of the ETL and the VaR at the same tail probability.

Note that, as the sample size increases, the jumps in the graph of
the sample ETL diminish. In a sample of 5,000 scenarios, both
quantities almost overlap. This is because the standard normal
distribution has a smooth c.d.f. and the sample c.d.f. constructed
from a larger sample better approximates the theoretical c.d.f.

In this case, as the sample size approaches infinity, the AVaR
becomes indistinguishable from the ETL at the same tail
probability.
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Remarks on spectral risk measures

By selecting a particular risk-aversion function, we can obtain an
infinite risk measure for some return distributions.

The AVaR can also become infinite but all distributions for which
this happens are not reasonable as a model for financial assets
returns because they have infinite mathematical expectation.

This is not the case with the spectral risk measures. There are
plausible statistical models which, if combined with an
inappropriate risk-aversion function, result in an infinite spectral
risk measure.
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Remarks on spectral risk measures

We provide conditions which guarantee that if a risk-aversion
function satisfies them, then it generates a finite spectral risk
measure.
These conditions can be divided into two groups depending on
what kind of information about the random variable is used:

1. The first group of conditions is based on information about
existence of certain moments;

2. The second group contains more precise conditions based on the
tail behavior of the random variable.
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Moment-based conditions

Moment-based conditions are related to the existence of a certain
norm of the risk-aversion function.

We take advantage of the norms behind the classical Lebesgue
spaces of functions denoted by

Lp([0, 1]) :=

{
f : ||f ||p =

∫ 1

0
|f (t)|pdt < ∞

}

where || · ||p denotes the corresponding norm. If p = ∞, then the
norm is the essential supremum, ||f ||∞ = ess supt∈[0,1]|f (t)|.

If the function f is continuous and bounded, then ||f ||∞ is simply
the maximum of the absolute value of the function.
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Moment-based conditions

The sufficient conditions for the finiteness of the spectral risk
measure involve the quantity

Iφ(X ) =

∫ 1

0
|F−1

X (p)φ(p)|dp (17)

which is, essentially, the definition of the spectral risk measure but
the integrand is taken in absolute value.

Therefore,
|ρφ(X )| ≤ Iφ(X )

and, as a consequence, if the quantity Iφ(X ) is finite, so is the
spectral risk measure ρφ(X ).

This is a sufficient condition for the absolute convergence of the
integral behind the definition of spectral risk measures.
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Moment-based conditions

Moment-based conditions are summarized by the following
inequalities,

C · E |X | ≤ Iφ(X ) ≤ (E |X |s)
1/s

||φ||r (18)

where 0 ≤ C < ∞ is a constant and 1/s + 1/r = 1 with r , s > 1.

If r = 1 or s = 1, the second inequality in (18) changes to

Iφ(X ) ≤ sup
u∈[0,1]

|F−1
X (u)|, if r = 1

Iφ(X ) ≤ E |X | · ||φ||∞, if s = 1.

(19)
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Moment-based conditions

As a consequence of equation (18), it follows that if the absolute
moment of order s exists, E |X |s < ∞, s > 1, then φ ∈ Lr ([0, 1]) is
a sufficient condition for ρφ(X ) < ∞.

The AVaRǫ(X ) has a special place among ρφ(X ) because if
AVaRǫ(X ) = ∞, then E |X | = ∞ and ρφ(X ) is not absolutely
convergent for any choice of φ.

In the reverse direction, if there exists φ ∈ L1([0, 1]) such that
Iφ(X ) < ∞, then AVaRǫ(X ) < ∞.

The limit cases in inequalities (19) show that if X has a bounded
support, then all possible risk spectra are meaningful.

In addition, if we consider the space of all essentially bounded risk
spectra, then the existence of E |X | is a necessary and sufficient
condition for the absolute convergence of ρφ(X ).
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Conditions based on the tail behavior of X

More precise sufficient conditions can be derived assuming a
particular tail behavior of the distribution function of X .

A fairly general assumption for the tail behavior is regular variation.

A monotonic function f (x) is said to be regularly varying at infinity
with index α, f ∈ RVα, if

lim
x→∞

f (tx)

f (x)
= tα. (20)

Examples of random variables with regularly varying distribution
functions include stable distributions, Student’s t distribution, and
Parreto distribution.

Thus, it is natural to look for sufficient conditions for the
convergence of ρφ(X ) in the general setting of regularly varying
tails. A set of such conditions is provided below.
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Conditions based on the tail behavior of X

Suppose that ρφ(X ) is the spectral measure of risk of a random
variable X such that E |X | < ∞ and P(−X > u) ∈ RV−α.

Let the inverse of the risk spectrum φ−1 ∈ RV−δ, if existing. Then

ρφ(X ) = ∞, if 1 < δ ≤ α/(α − 1)

ρφ(X ) < ∞, if δ > α/(α − 1)

The inverse of the risk-aversion function φ−1 exists if we assume
that φ is smooth because by assumption φ is a monotonic function.
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Conditions based on the tail behavior of X

In some cases, we may not know explicitly the inverse of the
risk-aversion function, or the inverse may not be regularly varying.
Then, the next sufficient condition can be adopted. It is based on
comparing the risk-aversion function to a power function.

Suppose that the same condition as above holds, the random
variable X is such that E |X | < ∞ and P(−X > u) ∈ RV−α. If the
condition

lim
x→0

φ(x)xβ = C

is satisfied with 0 < β < α−1
α and 0 ≤ C < ∞ , then ρφ(X ) < ∞. If

α−1
α ≤ β < 1 and 0 < C < ∞, then ρφ(X ) = ∞.
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Conditions based on the tail behavior of X

This condition emphasizes that it is the behavior of the
risk-aversion function φ(t) close to t = 0 that matters.

In this range, the risk aversion function defines the weights of the
very extreme losses and if the weights increase very quickly as
t → 0, then the risk measure may explode.

These conditions are more specific than assuming that a certain
norm of the risk-aversion function is finite. It is possible to derive
them because of the hypothesized tail behavior of the distribution
function of X which is a stronger assumption than the existence of
certain moments.
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