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Introduction

The average value-at-risk (AVaR) is a risk measure which is a
superior alternative to VaR.

There are convenient ways for computing and estimating AVaR
which allows its application in optimal portfolio problems.

It satisfies all axioms of coherent risk measures and it is
consistent with the preference relations of risk-averse investors.

AVaR is a special case of spectral risk measures.
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Average value-at-risk

A disadvantage of VaR is that it does not give any information about
the severity of losses beyond the VaR level. Consider the example.

Suppose that X and Y describe the random returns of two
financial instruments with densities and distribution functions such
as the ones in Figures 1,2.

The expected returns are 3% and 1%, respectively. The standard
deviations of X and Y are equal to 10%. The cumulative
distribution functions (c.d.f.s) FX (x) and FY (x) cross at x = −0.15
and FX (−0.15) = FY (−0.15) = 0.05.

The 95% VaRs of both X and Y are equal to 15%. That is, the two
financial instruments lose more than 15% of their present values
with probability of 5%.

⇒ We may conclude that their risks are equal because their 95% VaRs
are equal.

Prof. Dr. Svetlozar Rachev (University of Karlsruhe) Lecture 7: Average value-at-risk 2008 4 / 62



Average value-at-risk
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Figure 1. The plot shows the densities of X and Y . The 95% VaRs of X and
Y are equal to 0.15 but X has a thicker tail and is more risky.
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Average value-at-risk
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Figure 2. The bottom plot shows their c.d.f.s. The 95% VaRs of X and Y are
equal to 0.15 but X has a thicker tail and is more risky.
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Average value-at-risk

The conclusion is wrong because we pay no attention to the
losses which are larger than the 95% VaR level.

It is visible in Figure 1 that the left tail of X is heavier than the left
tail of Y . It is more likely that the losses of X will be larger than the
losses of Y , on condition that they are larger than 15%.

Looking only at the losses occurring with probability smaller than
5%, the random return X is riskier than Y .

If we base the analysis on the standard deviation and the
expected return, we would conclude that both X and Y have equal
standard deviations and X is actually preferable because of the
higher expected return.

In fact, we realize that it is exactly the opposite which shows how
important it is to ground the reasoning on a proper risk measure.
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Average value-at-risk

The disadvantage of VaR, that it is not informative about the
magnitude of the losses larger than the VaR level, is not present in
the risk measure known as average value-at-risk.

In the literature, it is also called conditional value-at-risk or
expected shortfall but we will use average value-at-risk (AVaR) as
it best describes the quantity it refers to.

Prof. Dr. Svetlozar Rachev (University of Karlsruhe) Lecture 7: Average value-at-risk 2008 8 / 62



Average value-at-risk

The AVaR at tail probability ǫ is defined as the average of the
VaRs which are larger than the VaR at tail probability ǫ.

The AVaR is focused on the losses in the tail which are larger than
the corresponding VaR level. The average of the VaRs is
computed through the integral

AVaRǫ(X ) :=
1
ǫ

∫ ǫ

0
VaRp(X )dp (1)

where VaRp(X ) is defined in equation (5) of Lecture 6.

The AVaR is well-defined only for random variables with finite
mean; that is AVaRǫ(X ) < ∞ if E |X | < ∞.

For example, random variable, used for a model of stock returns,
is assumed to have finite expected return.

⇒ Random variables with infinite mathematical expectation have
limited application in the field of finance.
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Average value-at-risk

The AVaR satisfies all the axioms of coherent risk measures. It is
convex for all possible portfolios which means that it always
accounts for the diversification effect.

A geometric interpretation of the definition in equation (1) is
provided in Figure 3, where the inverse c.d.f. of a r.v. X is plotted.

The shaded area is closed between the graph of F−1
X (t) and the

horizontal axis for t ∈ [0, ǫ] where ǫ denotes the selected tail
probability.

AVaRǫ(X ) is the value for which the area of the drawn rectangle,
equal to ǫ × AVaRǫ(X ), coincides with the shaded area which is
computed by the integral in equation (1).

The VaRǫ(X ) value is always smaller than AVaRǫ(X ).
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Average value-at-risk
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Figure 3. Geometrically, AVaRǫ(X ) is the height for which the area of the drawn
rectangle equals the shaded area closed between the graph of the inverse c.d.f. and
the horizontal axis for t ∈ [0, ǫ]. The VaRǫ(X ) value is shown by a dash-dotted line.

Prof. Dr. Svetlozar Rachev (University of Karlsruhe) Lecture 7: Average value-at-risk 2008 11 / 62



Average value-at-risk

Recall the example with the VaRs at 5% tail probability, where we
saw that both random variables are equal. X is riskier than Y
because the left tail of X is heavier than the left tail of Y ; that is,
the distribution of X is more likely to produce larger losses than
the distribution of Y on condition that the losses are beyond the
VaR at the 5% tail probability.

We apply the geometric interpretation illustrated in Figure 3 to this
example.

First, notice that the shaded area which concerns the graph of the
inverse of the c.d.f. can also be identified through the graph of the
c.d.f. (See the illustration in Figure 4).
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Average value-at-risk
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Figure 4. The plot shows a magnified section of the left tails of the c.d.f.s
plotted in Figure 1. Even though the 95% VaRs are equal, the AVaRs at 5%
tail probability differ, AVaR0.05(X ) > AVaR0.05(Y ).
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Average value-at-risk

In Figure 4, the shaded area appears as the intersection of the
area closed below the graph of the distribution function and the
horizontal axis, and the area below a horizontal line shifted at the
tail probability above the horizontal axis.

The area for FY (x) at 5% tail probability is smaller because
FY (x) ≤ FX (x) to the left of the crossing point of the two c.d.f.s
which is exactly at 5% tail probability.

The AVaR0.05(X ) is a number, such that if we draw a rectangle
with height 0.05 and width equal to AVaR0.05(X ), the area of the
rectangle (0.05 × AVaR0.05(X )) equals the shaded area.

The same exercise for AVaR0.05(Y ) shows that
AVaR0.05(Y ) < AVaR0.05(X ) because the corresponding shaded
area is smaller and both rectangles share a common height of
0.05

Prof. Dr. Svetlozar Rachev (University of Karlsruhe) Lecture 7: Average value-at-risk 2008 14 / 62



Average value-at-risk

Besides the definition in equation (1), AVaR can be represented
through a minimization formula,

AVaRǫ(X ) = min
θ∈R

(

θ +
1
ǫ

E(−X − θ)+

)

(2)

where (x)+ denotes the maximum between x and zero,
(x)+ = max(x , 0) and X describes the portfolio return distribution.

This formula has an important application in optimal portfolio
problems based on AVaR as a risk measure1.

1See the appendix to the lecture for details
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Average value-at-risk

How can we compute the AVaR for a given return distribution?

We assumed that the return distribution function is a continuous
function, i.e. there are no point masses.

Under this condition, using the fact that VaR is the negative of a certain
quantile, the AVaR can be represented in terms of a conditional
expectation,

AVaRǫ(X ) = −1
ǫ

∫ ǫ

0
F−1

X (t)dt

= −E(X |X < −VaRǫ(X )),

(3)

which is called expected tail loss (ETL), denoted by ETLǫ(X ).

The conditional expectation implies that the AVaR equals the average
loss provided that the loss is larger than the VaR level. In fact, the
average of VaRs in equation (1) equals the average of losses in equation
(3) only if the c.d.f. of X is continuous at x = VaRǫ(X ).
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Average value-at-risk

Equation (3) implies that AVaR is related to the conditional loss
distribution.

If there is a discontinuity, or a point mass, the relationship is more
involved.

Under certain conditions, it is the mathematical expectation of the
conditional loss distribution, which represents only one
characteristic of it.

See the appendix to this lecture for several sets of characteristics
of the conditional loss distribution, which provide a more complete
picture of it.
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Average value-at-risk

For some continuous distributions, it is possible to calculate explicitly
the AVaR through equation (3).

1. The Normal distribution
Suppose that X is distributed according to a normal distribution
with standard deviation σX and mathematical expectation EX . The
AVaR of X at tail probability ǫ equals

AVaRǫ(X ) =
σX

ǫ
√

2π
exp

(

−(VaRǫ(Y ))2

2

)

− EX (4)

where Y has the standard normal distribution, Y ∈ N(0, 1).
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Average value-at-risk

2. The Student’s t distribution
Suppose that X has Student’s t distribution with ν degrees of
freedom, X ∈ t(ν). The AVaR of X at tail probability ǫ equals

AVaRǫ(X ) =











Γ
(

ν+1
2

)

Γ
(

ν
2

)

√
ν

(ν − 1)ǫ
√

π

(

1 +
(VaRǫ(X ))2

ν

)

1−ν

2

, ν > 1

∞ , ν = 1

where the notation Γ(x) stands for the gamma function.

It is not surprising that for ν = 1 the AVaR explodes because the
Student’s t distribution with one degree of freedom, also known as
the Cauchy distribution, has infinite mathematical expectation.
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Average value-at-risk

The equation (4) can be represented in a more compact way,

AVaRǫ(X ) = σX Cǫ − EX , (5)

where Cǫ is a constant which depends only on the tail probability ǫ.

Therefore, the AVaR of the normal distribution has the same
structure as the normal VaR — the difference between the
properly scaled standard deviation and the mathematical
expectation. Also, the normal AVaR properties are dictated by the
standard deviation.

Even though AVaR is focused on the extreme losses only, due to
the limitations of the normal assumption, it is symmetric.

Exactly the same conclusion holds for the AVaR of Student’s t
distribution. The true merits of AVaR become apparent if the
underlying distributional model is skewed.
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AVaR estimation from a sample

Suppose that we have a sample of observed portfolio returns and
we are not aware of their distribution.

Then the AVaR of portfolio return can be estimated from the
sample of observed portfolio returns.

Denote the observed portfolio returns by r1, r2, . . . , rn in order of
observation at time instants t1, t2, . . . , tn. Denote the sorted sample
by r(1) ≤ r(2) ≤, . . . ,≤ r(n). r(1) equals the smallest observed portfolio
return and r(n) is the largest.

The AVaR of portfolio returns at tail probability ǫ is estimated
according to the formula

ÂVaRǫ(r) = −1
ǫ





1
n

⌈nǫ⌉−1
∑

k=1

r(k) +

(

ǫ − ⌈nǫ⌉ − 1
n

)

r(⌈nǫ⌉)



 (6)

where ⌈x⌉ stands for the smallest integer larger than x .
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AVaR estimation from a sample

We demonstrate how equation (6) is applied in the following example.

Suppose that the sorted sample of portfolio returns is -1.37%,
-0.98%, -0.38%, -0.26%, 0.19%, 0.31%, 1.91% and our goal is to
calculate the portfolio AVaR at 30% tail probability.

Here the sample contains 7 observations and
⌈nǫ⌉ = ⌈7 × 0.3⌉ = 3. According to equation (6), we calculate

ÂVaR0.3(r) = − 1
0.3

(

1
7
(−1.37% − 0.98%) + (0.3 − 2/7)(−0.38%)

)

= 1.137%.

We may want to work with a statistical model for which no
closed-form expressions for AVaR are known. Then we can simply
sample from the distribution and apply formula (6) to the
generated simulations.
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AVaR estimation from a sample

Besides formula (6), there is another method for calculation of
AVaR. It is based on the minimization formula (2) in which we
replace the mathematical expectation by the sample average,

ÂVaRǫ(r) = min
θ∈R

(

θ +
1
nǫ

n
∑

i=1

max(−ri − θ, 0)

)

. (7)

Even though it is not obvious, equations (6) and (7) are completely
equivalent.
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AVaR estimation from a sample

The minimization formula in equation (7) is appealing because it
can be calculated through the methods of linear programming.

It can be restated as a linear optimization problem by introducing
auxiliary variables d1, . . . , dn, one for each observation in the
sample,

min
θ,d

θ +
1
nǫ

n
∑

k=1

dk

subject to −rk − θ ≤ dk , k = 1, n
dk ≥ 0, k = 1, n
θ ∈ R.

(8)
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AVaR estimation from a sample

The linear problem (8) is obtained from (7) through standard methods
in mathematical programming:

Let us fix the value of θ to θ∗. Then the following choice of the
auxiliary variables yields the minimum in (8).

If −rk − θ∗ < 0, then dk = 0.

Conversely, if it turns out that −rk − θ∗ ≥ 0, then −rk − θ∗ = dk .

The sum in the objective function becomes equal to the sum of
maxima in equation (7).
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AVaR estimation from a sample

Applying (8) to the sample in the example above, we obtain the
optimization problem,

min
θ,d

θ +
1

7 × 0.3

7
∑

k=1

dk

subject to 0.98% − θ ≤ d1

−0.31% − θ ≤ d2

−1.91% − θ ≤ d3

1.37% − θ ≤ d4

0.38% − θ ≤ d5

0.26% − θ ≤ d6

−0.19% − θ ≤ d7

dk ≥ 0, k = 1, 7
θ ∈ R.
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AVaR estimation from a sample

The solution to this optimization problem is the number 1.137%
which is attained for θ = 0.38%.

This value of θ coincides with the VaR at 30% tail probability and
this is not by chance but a feature of the problem which is
demonstrated in the appendix to this lecture.

Let’s verify that the solution of the problem is indeed the number
1.137% by calculating the objective in equation (7) for θ = 0.38%,

AVaRǫ(r) = 0.38% +
0.98% − 0.38% + 1.37% − 0.38%

7 × 0.3
= 1.137%.

Thus, we obtain the number calculated through equation (6).
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Computing portfolio AVaR in practice

The ideas behind the approaches of VaR estimation can be
applied to AVaR. We revisit the four methods focusing on the
implications for AVaR.

We assume that there are n common stocks with random returns
described by the random variables X1, . . . , Xn.

The portfolio return is represented by

rp = w1X1 + . . . + wnXn

where w1, . . . , wn are the weights of the common stocks in the
portfolio.
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The multivariate normal assumption

If the stock returns are assumed to have a multivariate normal
distribution, then the portfolio return has a normal distribution with
variance w ′Σw , where w is the vector of weights and Σ is the
covariance matrix between stock returns.

The mean of the normal distribution is

Erp =
n
∑

k=1

wkEXk

where E stands for the mathematical expectation.
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The multivariate normal assumption

Under the assumption of normality the AVaR of portfolio return at
tail probability ǫ can be expressed in closed-form through (4),

AVaRǫ(rp) =

√
w ′Σw

ǫ
√

2π
exp

(

−(VaRǫ(Y ))2

2

)

− Erp

= Cǫ

√
w ′Σw − Erp

(9)

where Cǫ is a constant independent of the portfolio composition.

Due to the limitations of the multivariate normal assumption, the
portfolio AVaR appears symmetric and is representable as the
difference between the properly scaled standard deviation of the
random portfolio return and portfolio expected return.
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The Historical Method

The historical method is not related to any distributional
assumptions. We use the historically observed portfolio returns as
a model for the future returns and apply formula (6) or (7).

We emphasize that the historical method is very inaccurate for low
tail probabilities, e.g. 1% or 5%.

Even with one year of daily returns which amounts to 250
observations, in order to estimate the AVaR at 1% probability, we
have to use the 3 smallest observations which is quite insufficient.

What makes the estimation problem even worse is that these
observations are in the tail of the distribution; that is, they are the
smallest ones in the sample.

The implication is that when the sample changes, the estimated
AVaR may change a lot because the smallest observations tend to
fluctuate a lot.
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The Hybrid Method

In the hybrid method, different weights are assigned to the
observations by which the more recent observations get a higher
weight. The observations far back in the past have less impact on
the portfolio risk at the present time.

In AVaR estimation, the weights assigned to the observations are
interpreted as probabilities and the portfolio AVaR can be
estimated from the resulting discrete distribution:

ÂVaRǫ(r) = −1
ǫ





kǫ
∑

j=1

pj r(j) +



ǫ −
kǫ
∑

j=1

pj



 r(k
ǫ+1)



 (10)

where r(1) ≤ r(2) ≤ . . . ≤ r(km) denotes the sorted sample of
portfolio returns or payoffs and p1, p2, . . . , pkm stand for the
probabilities of the sorted observations; that is, p1 is the
probability of r(1).
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The Hybrid Method

The number kǫ in (10) is an integer satisfying the inequalities,

kǫ
∑

j=1

pj ≤ ǫ <

kǫ+1
∑

j=1

pj .

Equation (10) follows directly from the definition of AVaR under the
assumption that the underlying distribution is discrete without the
additional simplification that the outcomes are equally probable.
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The Monte Carlo Method

The basic steps of the Monte Carlo method, given in the previous
lecture, are applied without modification.

We assume and estimate a multivariate statistical model for the
stocks return distribution. Then we sample from it, and we
calculate scenarios for portfolio return.

On the basis of these scenarios, we estimate portfolio AVaR using
equation (6) in which r1, . . . , rn stands for the vector of generated
scenarios.
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The Monte Carlo Method

Similar to the case of VaR, an artifact of the Monte Carlo method
is the variability of the risk estimate.

Since the estimate of portfolio AVaR is obtained from a generated
sample of scenarios, by regenerating the sample, we will obtain a
slightly different value.

We illustrate the variability issue by a simulation example.

Suppose that the portfolio daily return distribution is the standard
normal law, rp ∈ N(0, 1).

By the closed-form expression in equation (4), we calculate that
the AVaR of the portfolio at 1% tail probability equals,

AVaR0.01(rp) =
1

0.01
√

2π
exp

(

−2.3262

2

)

= 2.665.
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The Monte Carlo Method

In order to investigate how the fluctuations of the 99% AVaR
change about the theoretical value, we generate samples of
different sizes: 500, 1,000, 5,000, 10,000, 20,000, and 100,000
scenarios.

The 99% AVaR is computed from these samples using equation
(6) and the numbers are stored.

We repeat the experiment 100 times. In the end, we have 100
AVaR numbers for each sample size. We expect that as the
sample size increases, the AVaR values will fluctuate less about
the theoretical value which is AVaR0.01(X ) = 2.665, X ∈ N(0, 1).
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The Monte Carlo Method

Table below contains the result of the experiment.

Number of Scenarios AVaR at 99% 95% confidence interval
500 2.646 [2.2060, 2.9663]

1,000 2.771 [2.3810, 2.9644]
5,000 2.737 [2.5266, 2.7868]

10,000 2.740 [2.5698, 2.7651]
20,000 2.659 [2.5955, 2.7365]
50,000 2.678 [2.6208, 2.7116]

100,000 2.669 [2.6365, 2.6872]

Table: The 99% AVaR of the standard normal distribution computed from a
sample of scenarios. The 95% confidence interval is calculated from 100
repetitions of the experiment. The confidence intervals cover the theoretical
value AVaR0.01(X ) = 2.665 and also we notice that the length of the
confidence interval decreases as the sample size increases. This effect is
illustrated in the next figure with boxplot diagrams.
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The Monte Carlo Method
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Figure 5. Boxplot diagrams of the fluctuation of the AVaR at 1% tail probability
of the standard normal distribution based on scenarios. The horizontal axis
shows the number of scenarios and the boxplots are computed from 100
independent samples.
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The Monte Carlo Method

A sample of 100,000 scenarios results in AVaR numbers which
are tightly packed around the true value. A sample of only 500
scenarios may give a very inaccurate estimate.

By comparing the given table to table (VaR computation) on the
slide 62 in lecture 6, we notice that the length of the 95%
confidence intervals for AVaR are larger than the corresponding
confidence intervals for VaR.

Given that both quantities are at the same tail probability of 1%,
the AVaR has larger variability than the VaR for a fixed number of
scenarios because the AVaR is the average of terms fluctuating
more than the 1% VaR.

This effect is more pronounced the more heavy-tailed the
distribution is.
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Back-testing of AVaR

How we can verify if the estimates of daily AVaR are realistic?

In the context of VaR, a back-testing was used. It consists of computing
the portfolio VaR for each day back in time using the information
available up to that day only.

On the basis of the VaR numbers back in time and the realized portfolio
returns, we can use statistical methods to assess whether the forecasted
loss at the VaR tail probability is consistent with the observed losses.

If there are too many observed losses larger than the forecasted VaR,
then the model is too optimistic.

If there are too few losses larger than the forecasted VaR, then the
model is too pessimistic.

In this case we are simply counting the cases in which there is an
exceedance.
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Back-testing of AVaR

Back-testing of AVaR is not so straightforward.

By definition, the AVaR at tail probability ǫ is the average of VaRs larger
than the VaR at tail probability ǫ.

The most direct approach to test AVaR would be to perform VaR
back-tests at all tail probabilities smaller than ǫ. If all these VaRs are
correctly modeled, then so is the corresponding AVaR.

⇒ But it is impossible to perform in practice.

Suppose that we consider the AVaR at tail probability of 1%, for
example. Back-testing VaRs deeper in the tail of the distribution can be
infeasible because the back-testing time window is too short.

The lower the tail probability, the larger time window we need in order for
the VaR test to be conclusive.

Even if the VaR back-testing fails at some tail probability ǫ1 below ǫ, this
does not necessarily mean that the AVaR is incorrectly modeled
because the test failure may be due to purely statistical reasons and not
to incorrect modeling.
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Back-testing of AVaR

Why AVaR back-testing is a difficult problem?

We need the information about the entire tail of the return
distribution describing the losses larger than the VaR at tail
probability ǫ and there may be too few observations from the tail
upon which to base the analysis.

For example, in one business year, there are typically 250 trading
days. Therefore, a one-year back-testing results in 250 daily
portfolio returns which means that if ǫ = 1%, then there are only 2
observations available from the losses larger than the VaR at 1%
tail probability.
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Back-testing of AVaR

As a result, in order to be able to back-test AVaR, we can assume a
certain “structure” of the tail of the return distribution which would
compensate for the lack of observations.

There are two general approaches:

1. Use the tails of the Lévy stable distributions as a proxy for the tail
of the loss distribution and take advantage of the practical
semi-analytic formula for the AVaR2.

2. Make the weaker assumption that the loss distribution belongs to
the domain of attraction of a max-stable distribution. Thus, the
behavior of the large losses can be approximately described by
the limit max-stable distribution and a statistical test can be based
on it.

2See the appendix.
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Back-testing of AVaR

The rationale of the first approach:

Generally, the Lévy stable distribution provides a good fit to the stock
returns data and, thus, the stable tail may turn out to be a reasonable
approximation.

From the Generalized central limit theorem we know that stable
distributions have domains of attraction which makes them an appealing
candidate for an approximate model.

The second approach is based on a weaker assumption:

The family of max-stable distributions arises as the limit distribution of
properly scaled and centered maxima of i.i.d. random variables.

If the random variable describes portfolio losses, then the limit
max-stable distribution can be used as a model for the large losses.

But then the estimators of poor quality have to be used to estimate the
parameters of the limit max-stable distribution, such as the Hill estimator
for example. This represents the basic trade-off in this approach.
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Spectral risk measures

By definition, the AVaR at tail probability ǫ is the average of the
VaRs larger than the VaR at tail probability ǫ.

It appears possible to obtain a larger family of coherent risk
measures by considering the weighted average of the VaRs
instead of simple average.

Thus, the AVaR becomes just one representative of this larger
family which is known as spectral risk measures.
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Spectral risk measures

Spectral risk measures are defined as,3

ρφ(X ) =

∫ 1

0
VaRp(X )φ(p)dp (11)

where φ(p), p ∈ [0, 1] is the weighting function also known as risk
spectrum or risk-aversion function.

It has the following interpretation. Consider a small interval [p1, p2]
of tail probabilities with length p2 − p1 = ∆p. The weight
corresponding to this interval is approximately equal to
φ(p1) × ∆p.

Thus, the VaRs at tail probabilities belonging to this interval have
approximately the weight φ(p1) × ∆p.

3See Acerbi(2004) for further details.
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Spectral risk measures

The risk-aversion function should possess some properties in order for
ρφ(X ) to be a coherent risk measure, it should be:

Positive φ(p) ≥ 0, p ∈ [0, 1].

Non-increasing Larger losses are multiplied by larger
weights, φ(p1) ≥ φ(p2), p1 ≤ p2.

Normed All weights should sum up to 1,
∫ 1

0 φ(p)dp = 1.

If we compare equations (11) and (1) we notice that the AVaR at tail
probability ǫ arises from a spectral risk measure with a constant risk
aversion function for all tail probabilities below ǫ.
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Spectral risk measures

The Figure below illustrates a typical risk-aversion functions.

0 0.5 1
0

0.5

1

1.5

2

2.5

3

p

 

 

0 0.5 1
0 

p

 

 

φ(p)φ(p)

ε

1/ε

Figure 6. Examples of risk-aversion functions. The right plot shows the
risk-aversion function yielding the AVaR at tail probability ǫ.
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Spectral risk measures

In the part of AVaR computation we emphasized that if a sample is
used to estimate VaR and AVaR, then there is certain variability of
the estimates. We illustrated it through a Monte Carlo example for
the standard normal distribution.

Comparing the results we concluded that the variability of AVaR is
larger than the VaR at the same tail probability because in the
AVaR, we average terms with larger variability. The heavier the
tail, the more pronounced this effect becomes.
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Spectral risk measures

When spectral risk measures are estimated from a sample, the
variability of the estimate may become a big issue.

Note that due to the non-increasing property of the risk-aversion
function, the larger losses, which are deeper in the tail of the
return distribution, are multiplied by a larger weight.

The larger losses (VaRs at lower tail probability) have higher
variability and the multiplication by a larger weight further
increases the variability of the weighted average.

Therefore, larger number of scenarios may turn out to be
necessary to achieve given stability of the estimate for spectral
risk measures than for AVaR.
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Spectral risk measures

The distributional assumption for the r.v. X is very important
because it may lead to unbounded spectral risk measures for
some choices of the risk-aversion function.

An infinite risk measure is not informative for decision makers and
an unfortunate combination of a distributional model and a
risk-aversion function cannot be identified by looking at the
sample estimate of ρφ(X ).

In practice, when ρφ(X ) is divergent in theory, we will observe high
variability of the risk estimates when regenerating the simulations
and also non-decreasing variability of the risk estimates as we
increase the number of simulations.
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Spectral risk measures

We would like to stress that this problem does not exist for AVaR
because a finite mean of X guarantees that the AVaR is well
defined on all tail probability levels.

The problem for the spectral measures of risk arises from the
non-increasing property of the risk-aversion function. Larger
losses are multiplied by larger weights which may result in an
unbounded weighted average.
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Risk measures and probability metrics

The probability metrics provide the only way of measuring distances
between random quantities.

A small distance between random quantities does not necessarily imply
that selected characteristics of those quantities will be close to each
other.

For example, a probability metric may indicate that two distributions are
close to each other and, still, the standard deviations of the two
distributions may be arbitrarily different.

As a very extreme case, one of the distributions may even have an
infinite standard deviation.

If we want small distances measured by a probability metric to imply
similar characteristics, the probability metric should be carefully chosen.

A small distance between 2 random quantities estimated by an ideal
metric means that the 2 random variables have similar absolute
moments.
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Risk measures and probability metrics

A risk measure can be viewed as calculating a particular characteristic
of a random variable.

There are problems in finance in which the goal is to find a random
variable closest to another random variable. For instance, such is the
benchmark tracking problem which is at the heart of passive portfolio
construction strategies.

Essentially, we are trying to construct a portfolio tracking the
performance a given benchmark; that is finding a portfolio return
distribution which is closest to the return distribution of the benchmark.

Usually, the distance is measured through the tracking error which is the
standard deviation of the active return.
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Risk measures and probability metrics

Suppose that we have found the portfolio tracking the benchmark most
closely with respect to the tracking error.
Can we be sure that the risk of the portfolio is close to the risk of the
benchmark?

Generally, the answer is affirmative only if we use the standard deviation
as a risk measure.

Active return is refined as the difference between the portfolio return rp

and the benchmark return rb, rp − rb. The conclusion that smaller
tracking error implies that the standard deviation of rp is close to the
standard deviation of rb is based on the inequality,

|σ(rp) − σ(rb)| ≤ σ(rp − rb).

The right part corresponds to the tracking error and, therefore, smaller
tracking error results in σ(rp) being closer to σ(rb).
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Risk measures and probability metrics

In order to guarantee that small distance between portfolio return
distributions corresponds to similar risks, we have to find a suitable
probability metric.

Technically, for a given risk measure we need to find a probability metric
with respect to which the risk measure is a continuous functional,

|ρ(X ) − ρ(Y )| ≤ µ(X , Y ),

where ρ is the risk measure and µ stands for the probability metric.

We continue with examples of how this can be done for VaR, AVaR, and
the spectral risk measures.
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Risk measures and probability metrics

1. VaR
Suppose that X and Y describe the return distributions of two portfolios.
The absolute difference between the VaRs of the two portfolios at any
tail probability can be bounded by,

|VaRǫ(X ) − VaRǫ(Y )| ≤ max
p∈(0,1)

|VaRp(X ) − VaRp(Y )|

= max
p∈(0,1)

|F−1
Y (p) − F−1

X (p)|

= W(X , Y )

where W(X , Y ) is the uniform metric between inverse distribution
functions.

If the distance between X and Y is small, as measured by the metric
W(X , Y ), then the VaR of X is close to the VaR of Y at any tail
probability level ǫ.
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Risk measures and probability metrics

2. AVaR
Suppose that X and Y describe the return distributions of two portfolios.
The absolute difference between the AVaRs of the two portfolios at any
tail probability can be bounded by,

|AVaRǫ(X ) − AVaRǫ(Y )| ≤ 1
ǫ

∫ ǫ

0
|F−1

X (p) − F−1
Y (p)|dp

≤
∫ 1

0
|F−1

X (p) − F−1
Y (p)|dp

= κ(X , Y )

where κ(X , Y ) is the Kantorovich metric.

If the distance between X and Y is small, as measured by the metric
κ(X , Y ), then the AVaR of X is close to the AVaR of Y at any tail
probability level ǫ.
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Risk measures and probability metrics

Note that the quantity

κǫ(X , Y ) =
1
ǫ

∫ ǫ

0
|F−1

X (p) − F−1
Y (p)|dp

can also be used to bound the absolute difference between the AVaRs.

It is a probability semi-metric giving the best possible upper bound on the
absolute difference between the AVaRs.
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Risk measures and probability metrics

3. Spectral risk measures
Suppose that X and Y describe the return distributions of two portfolios.
The absolute difference between the spectral risk measures of the two
portfolios for a given risk-aversion function can be bounded by,

|ρφ(X ) − ρφ(Y )| ≤
∫ 1

0
|F−1

X (p) − F−1
Y (p)|φ(p)dp

= κφ(X , Y )

where κφ(X , Y ) is a weighted Kantorovich metric.

If the distance between X and Y is small, as measured by the metric
κφ(X , Y ), then the risk of X is close to the risk of Y as measured by the
spectral risk measure ρφ.
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Summary

We considered in detail the AVaR risk measure. We noted the
advantages of AVaR, described a number of methods for its calculation
and estimation, and remarked some potential pitfalls including estimates
variability and problems on AVaR back-testing. We illustrated
geometrically many of the formulae for AVaR calculation, which makes
them more intuitive and easy to understand.

We also considered a more general family of coherent risk measures —
the spectral risk measures. The AVaR is a spectral risk measure with a
specific risk-aversion function. We emphasized the importance of proper
selection of the risk-aversion function to avoid explosion of the risk
measure.

Finally, we demonstrated a connection between the theory of probability
metrics and risk measures. Basically, by choosing an appropriate
probability metric we can guarantee that if two portfolio return
distributions are close to each other, their risk profiles are also similar.
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