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Introduction

There has been a major debate on the differences and common
features of risk and uncertainty. Both notions are related but they
do not coincide.

Risk is often argued to be a subjective phenomenon involving
exposure and uncertainty. That is, generally, risk may arise
whenever there is uncertainty.

In the context of investment management, exposure is identified
with monetary loss. Thus, investment risk is related to the
uncertain monetary loss to which a manager may expose a client.

Subjectivity appears because two managers may define the same
investment as having different risk.

A major activity in many financial institutions is to recognize the
sources of risk, then manage and control them. This is possible
only if risk is quantified.
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Introduction

If we can measure the risk of a portfolio, then we can identify the
financial assets which constitute the main risk contributors,
reallocate the portfolio, and, in this way, minimize the potential
loss by minimizing the portfolio risk.

Example 1
If an asset will surely lose 30% of its value tomorrow, then it is not risky
even though money will be lost.
Uncertainty alone is not synonymous with risk either.
If the price of an asset will certainly increase between 5% and 10%
tomorrow then there is uncertainty but no risk as there is no monetary
loss.

⇒ Risk is qualified as an asymmetric phenomenon in the sense that it
is related to loss only.
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Introduction

Uncertainty is an intrinsic feature of the future values of traded
assets on the market.

Investment managers do not know exactly the probability
distribution of future prices or returns, but can infer it from the
available data — they approximate the unknown law by assuming
a parametric model and by calibrating its parameters.

Uncertainty relates to the probable deviations from the expected
price or return where the probable deviations are described by the
unknown law.

Therefore, a measure of uncertainty should be capable of
quantifying the probable positive and negative deviations. Among
uncertainty measures there are variance and standard deviation.
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Introduction

Depending on the sources of risk, we can distinguish:

Market risk
It describes the portfolio exposure to the moves of certain market
variables. There are four standard market risk variables — equities,
interest rates, exchange rates, and commodities.

Credit risk
It arises due to a debtor’s failure to satisfy the terms of a borrowing
arrangement.

Operational risk
It is defined as the risk of loss resulting from inadequate or failed internal
processes, people and systems.
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Introduction

Generally, a risk model consists of two parts:
1 Probabilistic models are constructed for the underlying sources of

risk, such as market or credit risk factors, and the portfolio loss
distribution is described by means of the probabilistic models.

2 Risk is quantified by means of a risk measure which associates a
real number to the portfolio loss distribution.

⇒ Both steps are crucial. Non-realistic probabilistic models may
compromise the risk estimate just as an inappropriate choice for the
risk measure may do.
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Introduction

⇒ No perfect risk measure exists.

A risk measure captures only some of the characteristics of risk
and, in this sense, every risk measure is incomplete.

We believe that it is reasonable to search for risk measures which
are ideal for the particular problem under investigation.

We start with several examples of widely used dispersion
measures that quantify the notion of uncertainty.
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Measures of dispersion

Measures of dispersion calculate how observations in a dataset
are distributed, whether there is high or low variability around the
mean of the distribution.

Intuitively, if we consider a non-random quantity, then it is equal to
its mean with probability one and there is no fluctuation
whatsoever around the mean.

In this section, we provide several descriptive statistics widely
used in practice and we give a generalization which axiomatically
describes measures of dispersion.
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Standard deviation

Standard deviation is calculated as the square root of variance.
It is usually denoted by σX , where X stands for the random
variable we consider,

σX =
√

E(X − EX )2 (1)

in which E stands for mathematical expectation.
For a discrete distribution, equation (1) changes to

σX =

(

n
∑

k=1

(xk − EX )2pk

)1/2

,

where xk , k = 1, . . . , n are the outcomes, pk , k = 1, . . . , n are the
probabilities of the outcomes,

EX =
n
∑

k=1

xkpk

is the mathematical expectation.
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Standard deviation

The standard deviation is always a non-negative number.

If it is equal to zero, then the random variable (r.v.) is equal to its
mean with probability one and, therefore, it is non-random. This
conclusion holds for an arbitrary distribution.
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Standard deviation

Why the standard deviation can measure uncertainty?
Suppose that X describes the outcomes in a game in which one
wins $1 or $3 with probabilities equal to 1/2.
The mathematical expectation of X , the expected win, is $2,

EX = 1(1/2) + 3(1/2) = 2.

The standard deviation equals $1,

σX =

(

(1 − 2)2 1
2

+ (3 − 2)2 1
2

)1/2

= 1.

In this equation, both the positive and the negative deviations from
the mean are taken into account. In fact, all possible values of the
r.v. X are within the limits EX ± σX .
That is why it is also said that the standard deviation is a measure
of statistical dispersion, i.e. how widely spread the values in a
dataset are.
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Standard deviation

The interval EX ± σX covers all the possible values of X only in a few
isolated examples.

Example 2
Suppose that X has the normal distribution with mean equal to a,
X ∈ N(a, σX ).

The probability of the interval a ± σX is 0.683. That is, when
sampling from the corresponding distribution, 68.3% of the
simulations will be in the interval (a − σX , a + σX ).

The probabilities of the intervals a ± 2σX and a ± 3σX are 0.955
and 0.997 respectively. (See the illustration on the next slide).
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Standard deviation
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Figure: The standard normal density and the probabilities of the intervals
EX ± σX , EX ± 2σX , and EX ± 3σX , where X ∈ N(0, 1), as a percentage of
the total mass.
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Standard deviation

⇒ The probabilities in the later example are specific for the normal
distribution only.

In the general case when the distribution of the r.v. X is unknown,
we can obtain bounds on the probabilities by means of
Chebyshev’s inequality,

P(|X − EX | > x) ≤ σ2
X

x2 , (2)

provided that the r.v. X has a finite second moment, E |X |2 < ∞.

With the help of Chebyshev’s inequality, we calculate that the
probability of the interval EX ± kσX , k = 1, 2, . . . exceeds 1−1/k2,

P(|X − EX | ≤ kσX ) ≥ 1 − 1/k2.
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Standard deviation

If we choose k = 2, we compute that P(X ∈ EX ± 2σX ) is at least
0.75. Table 1 contains the corresponding bounds on the
probabilities computed for several choices of k .

k 1.4 2 3 4 5 6 7
pk 0.5 0.75 0.889 0.94 0.96 0.97 0.98

Table: The values pk = 1 − 1/k2 provide a lower bound for the probability
P(X ∈ EX ± kσX ) when the distribution of X is unknown.
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Mean absolute deviation

Even though the standard deviation is widely used, there are
important cases where it is inappropriate — there are distributions
for which the standard deviation is infinite.

An example of an uncertainty measure also often used, which
may be finite when the standard deviation does not exist, is the
mean absolute deviation (MAD).
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Mean absolute deviation

MAD is defined as the average deviation in absolute terms around
the mean of the distribution,

MADX = E |X − EX |, (3)

where X is a r.v. with finite mean.

For a discrete distribution, equation (3) becomes

MADX =
n
∑

k=1

|xk − EX |pk ,

where xk , k = 1, . . . , n, are the outcomes and pk , k = 1, . . . , n,
are the corresponding probabilities.
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Mean absolute deviation

It is clear from the definition that both the positive and the negative
deviations are taken into account in the MAD formula.

The MAD is also a non-negative number and if it is equal to zero,
then X is equal to its mean with probability one.

The MAD and the standard deviation are two alternative measures
estimating the uncertainty of a r.v. There are distributions, for
which one of the quantities can be expressed from the other.

Example 3

If X has a normal distribution, X ∈ N(a, σ2
X ), then

MADX = σX

√

2
π

.

⇒ Thus, for the normal distribution case, the MAD is just a scaled
standard deviation.
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Semi-standard deviation

The semi-standard deviation is a measure of dispersion which
differs from the previous in that it takes into account only the
positive or only the negative deviations from the mean. Therefore,
it is not symmetric.
The positive and the negative semi-standard deviations are:

σ+

X = (E(X − EX )2
+)1/2

σ−
X = (E(X − EX )2

−)1/2
(4)

where

(x − EX )2
+ equals the squared difference between the

outcome x and the mean EX if the difference
is positive, (x − EX )2

+ = max(x − EX , 0)2.

(x − EX )2
−

equals the squared difference between the
outcome x and the mean EX if the difference
is negative, (x − EX )2

−

= min(x − EX , 0)2.
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Semi-standard deviation

Thus, σ+

X takes into account only the positive deviations from the
mean and it may be called an upside dispersion measure.

Similarly, σ−
X takes into account only the negative deviations from

the mean and it may be called a downside dispersion measure.

As with the standard deviation, both σ−
X and σ+

X are non-negative
numbers which are equal to zero if and only if the random variable
equals its mean with probability one.
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Semi-standard deviation

⇒ If the random variable is symmetric around the mean, then the
upside and the downside semi-standard deviations are equal.

For example, if X has a normal distribution, X ∈ N(a, σ2
X ), then

both quantities are equal and can be expressed by means of the
standard deviation,

σ−
X = σ+

X =
σX√

2
.

If the distribution of X is skewed, then σ−
X 6= σ+

X .

Positive skewness corresponds to larger positive semi-standard
deviation, σ−

X < σ+

X .

Similarly, negative skewness corresponds to larger negative
semi-standard deviation, σ−

X > σ+

X .
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Axiomatic description

Measures of dispersion also include inter-quartile range and can
be based on central absolute moments.

The inter-quartile range is defined as the difference between the
75% and the 25% quantile.

The central absolute moment of order k is defined as

mk = E |X − EX |k

and an example of a dispersion measure based on it is

(mk )1/k = (E |X − EX |k )1/k .
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Axiomatic description

The common properties of the dispersion measures we have
considered can be synthesized into axioms.

We denote the dispersion measure of a r.v. X by D(X ).

Positive shift D(X + C) ≤ D(X ) for all X and
constants C ≥ 0.

Positive homogeneity D(0) = 0 and D(λX ) = λD(X ) for
all X and all λ > 0.

Positivity D(X ) ≥ 0 for all X , with D(X ) > 0
for non-constant X .

⇒ A dispersion measure is called any functional satisfying the axioms.
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Axiomatic description

According to the positive shift property, adding a positive constant
does not increase the dispersion of a random variable.

According to the positive homogeneity and the positivity
properties, the dispersion measure D is equal to zero only if the
random variable is a constant. Recall that it holds for the standard
deviation, MAD, and semi-standard deviation.

An example of a dispersion measure satisfying these properties is
the colog measure defined by

colog(X ) = E(X log X ) − E(X )E(log X ).

where X is a positive random variable. The colog measure is
sensitive to additive shifts and has applications in finance as it is
consistent with the preference relations of risk-averse investors.
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Deviation measures

Rockafellar et al. (2006) provide an axiomatic description of
dispersion measures. Their axioms define convex dispersion
measures called deviation measures.

Besides the axioms given above, the deviation measures satisfy
the property

Sub-additivity D(X + Y ) ≤ D(X ) + D(Y ) for
all X and Y .

and the positive shift property is replaced by

Translation invariance D(X + C) = D(X ) for all X
and constants C ∈ R.
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Deviation measures

As a consequence of the translation invariance axiom, the
deviation measure is influenced only by the difference X − EX .

If X = EX in all states of the world, then the deviation measure is
a constant and, therefore, it is equal to zero because of the
positivity axiom.

Conversely, if D(X ) = 0, then X = EX in all states of the world.

The positive homegeneity and the sub-additivity axioms establish
the convexity property of D(X ).

Not all deviation measures are symmetric; that is, it is possible to
have D(X ) 6= D(−X ) if the r.v. X is not symmetric. This is an
advantage because an investment manager is more attentive to
the negative deviations from the mean.

Examples of asymmetric deviation measures include the
semi-standard deviation, σ−

X defined in equation (4).
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Deviation measures

Deviation measures which depend only on the negative deviations
from the mean are called downside deviation measures.

The quantity D̃(X ) is a symmetric deviation measure if we define it
as

D̃(X ) :=
1
2
(D(X ) + D(−X )),

where D(X ) is an arbitrary deviation measure.

A downside deviation measure possesses several of the
characteristics of a risk measure but it is not a risk measure.
Consider the following example.
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Deviation measures

Example 4

Suppose that we have initially in our portfolio a common stock, X , with a
current market value of $95 and an expected return of 0.5% in a month.

Let us choose one particular deviation measure, D1, and compute
D1(rX ) = 20%, where rX stands for the portfolio return.

Assume that we add to our portfolio a risk-free government bond, B,
worth $95 with a face value of $100 and a one-month maturity. The
return on the bond equals rB = $5/$95 = 5.26% and is non-random.
The return of our portfolio then equals rp = rX /2 + rB/2.

Using the axioms, D1(rp) = D1(rX )/2 = 10%. The uncertainty of rp

decreases twice since the share of the risky stock decreases twice.
Intuitively, the risk of rp decreases more than twice if compared to rX

because half of the new portfolio earns a sure profit of 5.26%.

This effect is due to the translation invariance which makes the deviation
measure insensitive to non-random profit.
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Probability metrics and dispersion measures

Probability metrics are functionals which are constructed to
measure distances between random quantities. Thus, every
probability metric involves two random variables X and Y , and the
distance between them is denoted by µ(X , Y ) where µ stands for
the probability metric.

Suppose that µ is a compound probability metric. In this case, if
µ(X , Y ) = 0, it follows that the two random variables are
coincident in all states of the world. Therefore, the quantity
µ(X , Y ) can be interpreted as a measure of relative deviation
between X and Y .

A positive distance, µ(X , Y ) > 0, means that the two variables
fluctuate with respect to each other and zero distance,
µ(X , Y ) = 0, implies that there is no deviation of any of them
relative to the other.
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Probability metrics and dispersion measures

The functional µ(X , EX ) (the distance between X and the mean of
X ) provides a very general notion of a dispersion measure as it
arises as a special case from a probability metric which
represents the only general way of measuring distances between
random quantities.
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Measures of risk

A risk measure may share some of the features of a dispersion
measure but is, generally, a different object.

Markowitz (1952) was the first to recognize the relationship
between risk and reward and introduced standard deviation as a
proxy for risk.

The standard deviation is not a good choice for a risk measure
because it penalizes symmetrically both the negative and the
positive deviations from the mean. It is an uncertainty measure
and cannot account for the asymmetric nature of risk, i.e. risk
concerns losses only.

Later, Markowitz (1959) suggested the semi-standard deviation as
a substitute. But, as we’ve already stated, any deviation measure
cannot be a true risk measures.
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Value-at-risk

A risk measure which has been widely accepted since 1990s is
the value-at-risk (VaR).

In the late 1980s, it was integrated by JP Morgan on a firmwide
level into its risk-management system. In this system, they
developed a service called RiskMetrics which was later spun off
into a separate company called RiskMetrics Group.

It is usually thought that JP Morgan invented the VaR measure. In
fact, similar ideas had been used by large financial institutions in
computing their exposure to market risk.
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Value-at-risk

In the mid 1990s, the VaR measure was approved by regulators
as a valid approach to calculating capital reserves needed to
cover market risk.

The Basel Commettee on Banking Supervision released a
package of amendments to the requirements for banking
institutions allowing them to use their own internal systems for risk
estimation.

Capital reserves could be based on the VaR numbers computed
internally by an in-house risk management system. Regulators
demand that the capital reserve equal the VaR number multiplied
by a factor between 3 and 4.

Regulators link the capital reserves for market risk directly to the
risk measure.
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Value-at-risk

VaR is defined as the minimum level of loss at a given, sufficiently
high, confidence level for a predefined time horizon.

The recommended confidence levels are 95% and 99%.

Example 5

Suppose that we hold a portfolio with a 1-day 99% VaR equal to $1
million. This means that over the horizon of 1 day, the portfolio may
lose more than $1 million with probability equal to 1%.

Example 6

Suppose that the present value of a portfolio we hold is $10 million. If
the 1-day 99% VaR of the return distribution is 2%, then over the time
horizon of 1 day, we lose more than 2% ($200,000) of the portfolio
present value with probability equal to 1%.
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Value-at-risk

Denote by (1 − ǫ)100% the confidence level parameter of the VaR.
As we explained, losses larger than the VaR occur with probability
ǫ. The probability ǫ, we call tail probability.

Depending on the interpretation of the random variable, VaR can
be defined in different ways. Formally, the VaR at confidence level
(1 − ǫ)100% (tail probability ǫ) is defined as the negative of the
lower ǫ-quantile of the return distribution,

VaRǫ(X ) = − inf
x
{x |P(X ≤ x) ≥ ǫ} = −F−1

X (ǫ) (5)

where ǫ ∈ (0, 1) and F−1
X (ǫ) is the inverse of the distribution

function.

If the r.v. X describes random returns, then the VaR number is
given in terms of a return figure. (See the illustration on the next
slide).
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Value-at-risk

VaR

VaR

0.05

Density function

Distribution function

Figure: The VaR at 95% confidence level of a random variable X . The top
plot shows the density of X , the marked area equals the tail probability, and
the bottom plot shows the distribution function.
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Value-at-risk

If X describes random payoffs, then VaR is a threshold in dollar
terms below which the portfolio value falls with probability ǫ,

VaRǫ(X ) = inf
x
{x |P(X ≤ x) ≥ ǫ} = F−1

X (ǫ) (6)

where ǫ ∈ (0, 1) and F−1
X (ǫ) is the inverse of the distribution

function of the random payoff.

VaR can also be expressed as a distance to the present value
when considering the profit distribution.
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Value-at-risk

The random profit is defined as X − P0 where X is the payoff and
P0 is the present value.

The VaR of the random profit equals,

VaRǫ(X − P0) = − inf
x
{x |P(X − P0 ≤ x) ≥ ǫ} = P0 − VaRǫ(X )

in which VaRǫ(X ) is defined according to (6) since X is interpreted
as a random payoff. In this case, the definition of VaR is
essentially given by equation (5).

If VaRǫ(X ) in (5) is a negative number, then at tail probability ǫ we
do not observe losses but profits. Losses happen with even
smaller probability than ǫ, so the r.v. X bears no risk.

Prof. Dr. Svetlozar Rachev (University of Karlsruhe) Lecture 6: Risk and uncertainty 2008 39 / 100



Value-at-risk

We illustrate one aspect in which VaR differs from the deviation
measures and all uncertainty measures.

As a consequence of the definition, if we add to the r.v. X a
non-random profit C, the resulting VaR can be expressed by the
VaR of the initial variable in the following way

VaRǫ(X + C) = VaRǫ(X ) − C. (7)

Thus, adding a non-random profit decreases the risk of the
portfolio. Furthermore, scaling the return distribution by a positive
constant λ scales the VaR by the same constant,

VaRǫ(λX ) = λVaRǫ(X ). (8)

It turns out that these properties characterize not only VaR. They
are identified as key features of a risk measure.
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Value-at-risk

Recall the Example 4.

Example 7
Initially, the portfolio we hold consists of a common stock with
random monthly return rX . We rebalance the portfolio so that it
becomes an equally weighted portfolio of the stock and a bond
with a non-random monthly return of 5.26%, rB = 5.26%. Thus,
the portfolio return can be expressed as

rp = rX (1/2) + rB(1/2) = rX /2 + 0.0526/2.

Using equations (7) and (8), we calculate that if VaRǫ(rX ) = 12%,
then VaRǫ(rp) ≈ 3.365% which is by far less than 6% — half of the
initial risk.

Recall that any deviation measure would indicate that the
dispersion (or the uncertainty) of the portfolio return rp would be
twice as smaller than the uncertainty of rX .
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Value-at-risk

The performance of VaR (as well as any other risk measure) is
heavily dependent on the assumed probability distribution of the
variable X .

If we use VaR to build reserves in order to cover losses in times of
crises, then underestimation may be fatal and overestimation may
lead to inefficient use of capital.

An inaccurate model is even more dangerous in an optimal
portfolio problem in which we minimize risk subject to some
constraints, as it may adversely influence the optimal weights and
therefore not reduce the true risk.
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Value-at-risk

Generally, VaR should be abandoned as a risk measure.
The most important drawback is:

In some cases, the reasonable diversification effect that every
portfolio manager should expect to see in a risk measure is not
present; that is, the VaR of a portfolio may be greater than the
sum of the VaRs of the constituents,

VaRǫ(X + Y ) > VaRǫ(X ) + VaRǫ(Y ), (9)

in which X and Y stand for the random payoff of the instruments
in the portfolio.

⇒ This shows that VaR cannot be a true risk measure.
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Value-at-risk

Let’s show that VaR may satisfy (9).

Example 8

Suppose that X denotes a bond which either defaults with probability
4.5% and we lose $50 or it does not default (the loss is zero).

Let Y be the same bond but assume that the defaults of the two bonds
are independent events. The VaR of the two bonds 5% tail probability:

VaR0.05(X ) = VaR0.05(Y ) = 0.

VaR fails to recognize losses occurring with probability smaller than 5%.

A portfolio of the two bonds has the following payoff profile: it loses $100
with probability of about 0.2%, loses $50 with probability of about 8.6%,
and the loss is zero with probability 91.2%. Thus, the corresponding
95% VaR of the portfolio equals $50 and clearly,

$50 = VaR0.05(X + Y ) > VaR0.05(X ) + VaR0.05(Y ) = 0.
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Value-at-risk

What are the consequences of using a risk measure which may satisfy
property (9)?

It is going to mislead portfolio managers that there is no
diversification effect in the portfolio and they may make the
irrational decision to concentrate it only into a few positions. As a
consequence, the portfolio risk actually increases.
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Value-at-risk

Another drawback is that VaR is not very informative about losses
beyond the VaR level. It only reports that losses larger than the
VaR level occur with probability equal to ǫ but it does not provide
any information about the likely magnitude of such losses, for
example.

VaR is not a useless concept to be abandoned altogether. For
example, it can be used in risk-reporting only as a characteristic of
the portfolio return (payoff) distribution since it has a
straightforward interpretation.

The criticism of VaR is focused on its wide application by
practitioners as a true risk measure which, in view of the
deficiencies described above, is not well grounded and should be
reconsidered.
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Computing portfolio VaR in practice

Suppose that a portfolio contains n common stocks and we are
interested in calculating the daily VaR at 99% confidence level.

Denote the random daily returns of the stocks by X1, . . . , Xn and
by w1, . . . , wn the weight of each stock in the portfolio. Thus, the
portfolio return rp can be calculated as

rp = w1X1 + w2X2 + . . . + wnXn.

The portfolio VaR is derived from the distribution of rp. The three
approaches vary in the assumptions they make.
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The approach of RiskMetrics

The approach of RiskMetrics Group is centered on the
assumption that the stock returns have a multivariate normal
distribution. Under this assumption, the distribution of the portfolio
return is also normal.

In order to calculate the portfolio VaR, we only have to calculate
the expected return of rp and the standard deviation of rp.

The 99% VaR will appear as the negative of the 1% quantile of the
N(Erp, σ2

rp
) distribution.

The portfolio expected return can be directly expressed through
the expected returns of the stocks,

Erp = w1EX1 + w2EX2 + . . . + wnEXn =
n
∑

k=1

wkEXk , (10)

where E denotes mathematical expectation.
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The approach of RiskMetrics

Similarly, the variance of the portfolio return σ2
rp

can be computed
through the variances of the stock returns and their covariances,

σ2
rp

= w2
1 σ2

X1
+ w2

2 σ2
X2

+ . . . + w2
n σ2

Xn
+
∑

i 6=j

wiwjcov(Xi , Xj),

in which the last term appears because we have to sum up the
covariances between all pairs of stock returns.

There is a more compact way of writing down the expression for
σ2

rp
using matrix notation,

σ2
rp

= w ′Σw , (11)

in which w = (w1, . . . , wn) is the vector of portfolio weights
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The approach of RiskMetrics

Σ is the covariance matrix of stock returns,

Σ =











σ2
X1

σ12 . . . σ1n

σ21 σ2
X2

. . . σ2n
...

...
. . .

...
σn1 σn2 . . . σ2

Xn











,

in which σij , i 6= j , is the covariance between Xi and Xj ,
σij = cov(Xi , Xj).

As a result, we obtain that the portfolio return has a normal
distribution with mean given by equation (10) and variance given
by equation (11).
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The approach of RiskMetrics

The standard deviation is the scale parameter of the normal
distribution and the mean is the location parameter.

Due to the normal distribution properties, if rp ∈ N(Erp, σ2
rp
), then

rp − Erp

σrp

∈ N(0, 1).

Because of the properties (7) and (8) of the VaR, the 99% portfolio
VaR can be represented as,

VaR0.01(rp) = q0.99σrp − Erp (12)

where the standard deviation of the portfolio return σrp is
computed from equation (11), the expected portfolio return Erp is
given in (10), and q0.99 is the 99% quantile of the standard normal
distribution. Note that q0.99 is a quantity independent of the
portfolio composition
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The approach of RiskMetrics

The parameters which depend on the portfolio weights are the
standard deviation of portfolio returns σrp and the expected
portfolio return.

VaR under the assumption of normality is symmetric even though,
by definition, VaR is centered on the left tail of the distribution; that
is, VaR is asymmetric by construction. This result appears
because the normal distribution is symmetric around the mean.

The approach of RiskMetrics can be extended for other types of
distributions: Student’s t and stable distributions.
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The Historical Method

The historical method does not impose any distributional
assumptions; the distribution of portfolio returns is constructed
from historical data. Hence, sometimes the historical simulation
method is called a non-parametric method.

For example, the 99% daily VaR of the portfolio return is
computed as the negative of the empirical 1% quantile of the
observed daily portfolio returns. The observations are collected
from a predetermined time window such as the most recent
business year.

Prof. Dr. Svetlozar Rachev (University of Karlsruhe) Lecture 6: Risk and uncertainty 2008 53 / 100



The Historical Method

While the historical method seems to be more general as it is free of
any distributional hypotheses, it has a number of major drawbacks:

1 It assumes that the past trends will continue in the future. This is
not a realistic assumption because we may experience extreme
events in the future, which have not happened in the past.

2 It treats the observations as independent and identically
distributed (i.i.d.) which is not realistic. The daily returns data
exhibits clustering of the volatility phenomenon, autocorrelations
and so on, which are sometimes a significant deviation from the
i.i.d. assumption.

3 It is not reliable for estimation of VaR at very high confidence
levels. A sample of one year of daily data contains 250
observations which is a rather small sample for the purpose of the
99% VaR estimation.
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The Hybrid Method

The hybrid method is a modification of the historical method in
which the observations are not regarded as i.i.d. but certain
weights are assigned to them depending on how close they are to
the present.

The weights are determined using the exponential smoothing
algorithm. The exponential smoothing accentuates the most
recent observations and seeks to take into account time-varying
volatility phenomenon.
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The Hybrid Method

The algorithm of the hybrid approach consists of the following steps.
1 Exponentially declining weights are attached to historical returns,

starting from the current time and going back in time. Let
rt−k+1, . . . , rt−1, rt be a sequence of k observed returns on a given
asset, where t is the current time. The i-th observation is assigned
a weight

θi = c∗λt−i ,

where 0 < λ < 1, and c = 1−λ
1−λk is a constant chosen such that the

sum of all weights is equal to one,
∑

θi = 1.
2 Similarly to the historical simulation method, the hypothetical

future returns are obtained from the past returns and sorted in
increasing order.

3 The VaR measure is computed from the empirical c.d.f. in which
each observation has probability equal to the weight θi .
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The Hybrid Method

Generally, the hybrid approach is appropriate for VaR estimation
of heavy-tailed time series.

It overcomes, to some degree, the first and the second deficiency
of the historical method but it is also not reliable for VaR
estimation of very high confidence levels.
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The Monte Carlo Method

The Monte Carlo method requires specification of a statistical
model for the stocks returns. The statistical model is multivariate,
hypothesizing both the behavior of the stock returns on a
stand-alone basis and their dependence.

For instance, the multivariate normal distribution assumes normal
distributions for the stock returns viewed on a stand-alone basis
and describes the dependencies by means of the covariance
matrix.

The multivariate model can also be constructed by specifying
explicitly the one-dimensional distributions of the stock returns,
and their dependence through a copula function.
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The Monte Carlo Method

The Monte Carlo method consists of the following basic steps:

Step 1. Selection of a statistical model. The statistical model should
be capable of explaining a number of observed phenomena
in the data, e.g. heavy-tails, clustering of the volatility, etc.,
which we think influence the portfolio risk.

Step 2. Estimation of the statistical model parameters. A sample of
observed stocks returns is used from a predetermined time
window, for instance the most recent 250 daily returns.

Step 3. Generation of scenarios from the fitted model. Independent
scenarios are drawn from the fitted statistical model. Each
scenario is a vector of stock returns.

Step 4. Calculation of portfolio risk. Compute portfolio risk on the ba-
sis of the portfolio return scenarios obtained from the previous
step.
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The Monte Carlo Method

The advantage of Monte Carlo method:

It does not require any closed-form expressions and, by choosing
a flexible statistical model, accurate risk numbers can be obtained.

The disadvantage of Monte Carlo method:

The computed portfolio VaR is dependent on the generated
sample of scenarios and will fluctuate a little if we regenerate the
sample. This side effect can be reduced by generating a larger
sample. An illustration is provided in the following example.
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The Monte Carlo Method

Suppose that the daily portfolio return distribution is standard normal
and, therefore, at Step 4 of the algorithm we have scenarios from the
standard normal distribution. So that, we can compute the 99% daily
VaR directly from formula (12).

Nevertheless, we will use the Monte Carlo method to gain more insight
into the deviations of the VaR based on scenarios from the VaR
computed according to formula (12).

In order to investigate how the fluctuations of the 99% VaR change
about the theoretical value, we generate samples of different sizes: 500,
1,000, 5,000, 10,000, 20,000, and 100,000 scenarios.

The 99% VaR is computed from these samples and the numbers are
stored. We repeat the experiment 100 times. In the end, we have 100
VaR numbers for each sample size.

We expect that as the sample size increases, the VaR values will
fluctuate less about the theoretical value which is VaR0.01(X ) = 2.326,
X ∈ N(0, 1).

Prof. Dr. Svetlozar Rachev (University of Karlsruhe) Lecture 6: Risk and uncertainty 2008 61 / 100



The Monte Carlo Method

Table below contains the result of the experiment.

Number of Scenarios 99% VaR 95% confidence interval
500 2.067 [1.7515, 2.3825]

1,000 2.406 [2.1455, 2.6665]
5,000 2.286 [2.1875, 2.3845]

10,000 2.297 [2.2261, 2.3682]
20,000 2.282 [2.2305, 2.3335]
50,000 2.342 [2.3085, 2.3755]

100,000 2.314 [2.2925, 2.3355]

Table: The 99% VaR of the standard normal distribution computed from a
sample of scenarios. The 95% confidence interval is calculated from 100
repetitions of the experiment. The true value is VaR0.01(X ) = 2.326.
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The Monte Carlo Method

From the 100 VaR numbers, we calculate the 95% confidence
interval for the true value given in the third column.

The confidence intervals cover the theoretical value 2.326 and
also we notice that the length of the confidence interval decreases
as the sample size increases. This effect is best illustrated with
the help of the boxplot diagrams1 shown on the next slide.

A sample of 100,000 scenarios results in VaR numbers which are
tightly packed around the true value while a sample of only 500
scenarios may give a very inaccurate estimate.

1A boxplot, or a box-and-whiskers diagram, is a convenient way of depicting
several statistical characteristics of the sample. The size of the box equals the
difference between the third and the first quartile (75% quantile – 25% quantile), also
known as the interquartile range. The line in the box corresponds to the median of the
data (50% quantile). The lines extending out of the box are called whiskers and each
of them is long up to 1.5 times the interquartile range. All observations outside the
whiskers are labeled outliers and are depicted by a plus sign.

Prof. Dr. Svetlozar Rachev (University of Karlsruhe) Lecture 6: Risk and uncertainty 2008 63 / 100



The Monte Carlo Method
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Figure: Boxplot diagrams of the fluctuation of the 99% VaR of the standard normal
distribution based on scenarios. The horizontal axis shows the number of scenarios
and the boxplots are computed from 100 independent samples.
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The Monte Carlo Method

This simple experiment shows that the number of scenarios in the
Monte Carlo method has to be carefully chosen.

The approach we used to determine the fluctuations of the VaR
based on scenarios is a statistical method called parametric
bootstrap.

The bootstrap methods in general are powerful statistical methods
which are used to compute confidence intervals when the problem
is not analytically tractable but the calculations may be quite
computationally intensive.

When the portfolio contains complicated instruments such as
derivatives, it is no longer possible to use a closed-form
expression for the portfolio VaR (and any risk measure in general)
because the distribution of portfolio return (or payoff) becomes
quite arbitrary.
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The Monte Carlo Method

The practical implementation of Monte Carlo method is a very
challenging endeavor from both software development and
financial modeling point of view.

The portfolios of big financial institutions often contain products
which require yield curve modeling, development of fundamental
and statistical factor models, and, on top of that, a probabilistic
model capable of describing the heavy tails of the risk-driving
factor returns, the autocorrelation, clustering of the volatility, and
the dependence between these factors.

Processing large portfolios is related to manipulation of colossal
data structures which requires excellent skills of software
developers in order to be efficiently performed.
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Back-testing of VaR

Suppose that we calculate the 99% daily portfolio VaR. This
means that according to our assumption for the portfolio return
(payoff) distribution, the portfolio loses more than the 99% daily
VaR with 1% probability.

The question is whether this estimate is correct; that is, does the
portfolio really lose more than this amount with 1% probability?

This question can be answered by back-testing of VaR.
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Back-testing of VaR

Generally, the procedure consists of the following steps:

Step 1. Choose a time window for the back-testing. Usually the
time window is the most recent one or two years.

Step 2. For each day in the time window, calculate the VaR num-
ber.

Step 3. Check if the loss on a given day is below or above the VaR
number computed the day before. If the observed loss is
larger, then we say that there is a case of an exceedance.
(See the illustration on the next slide).

Step 4. Count the number of exceedances. Check if there are too
many or too few of them by verifying if the number of ex-
ceedances belong to the corresponding 95% confidence
interval.
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Back-testing of VaR
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Figure: The observed daily returns of S&P 500 index between December 31,
2002 and December 31, 2003 and the negative of VaR. The marked
observation is an example of an exceedance.
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Back-testing of VaR

If in Step 4 we find out that there are too many number of
exceedances, so that losses exceeding the corresponding VaR
happen too frequently. If capital reserves are determined on the
basis of VaR, then there is a risk of being incapable of covering
large losses.

Conversely, if the we find out that there are too few number of
exceedances, then the VaR numbers are too pessimistic. This is
also an undesirable situation. Note that the actual size of the
exceedances is immaterial, we only count them.
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Back-testing of VaR

The confidence interval for the number of exceedances is
constructed using the indicator-type events “we observe an
exceedance”, “we do not observe an exceedance” on a given day.

Let us associate a number with each of the events similar to a coin
tossing experiment. If we observe an exceedance on a given day,
then we say that the number 1 has occurred, otherwise 0 has
occurred.

If the back-testing time window is two years, then we have a
sequence of 500 zeros and ones and the expected number of
exceedances is 5. Thus, finding the 95% confidence interval for
the number of exceedances reduces to finding an interval around
5 such that the probability of the number of ones belonging to this
interval is 95%.
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Back-testing of VaR

If we assume that the corresponding events are independent, then there
is a complete analogue of this problem in terms of coin tossing.

We toss independently 500 times an unfair coin with probability of
success equal to 1%. What is the range of the number of success
events with 95% probability?

In order to find the 95% confidence interval, we can resort to the normal
approximation to the binomial distribution. The formula is,

left bound = Nǫ − F−1(1 − 0.05/2)
√

Nǫ(1 − ǫ)

right bound = Nǫ + F−1(1 − 0.05/2)
√

Nǫ(1 − ǫ)

where N is the number of indicator-type events, ǫ is the tail probability of
the VaR, and F−1(t) is the inverse distribution function of the standard
normal distribution.

In the example, N = 500, ǫ = 0.01, and the 95% confidence interval for
the number of exceedances is [0, 9]. If we are back-testing the 95%
VaR, under the same circumstances the confidence interval is [15, 34].
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Back-testing of VaR

Note that the statistical test based on the back-testing of VaR at a
certain tail probability cannot answer the question if the
distributional assumptions for the risk-driving factors are correct in
general.

For instance, if the portfolio contains only common stocks, then
we presume a probabilistic model for stocks returns.

By back-testing the 99% daily VaR of portfolio return, we verify if
the probabilistic model is adequate for the 1% quantile of the
portfolio return distribution; that is, we are back-testing if a certain
point in the left tail of the portfolio return distribution is sufficiently
accurately modeled.
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Coherent risk measures

Can we find a set of desirable properties that a risk measure should
satisfy?

An answer is given by Artzner et. al. (1998). They provide an
axiomatic definition of a functional which they call a coherent risk
measure.

We denote the risk measure by the functional ρ(X ) assigning a
real-valued number to a random variable. Usually, the r.v. X is
interpreted as a random payoff.

In the remarks below each axiom, we provide an alternative
interpretation which holds if X is interpreted as random return.
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Coherent risk measures
The monotonicity property

Monotonicity
ρ(Y ) ≤ ρ(X ), if Y ≥ X in almost sure sense.

Monotonicity states that if investment A has random return (payoff) Y
which is not less than the return (payoff) X of investment B at a given
horizon in all states of the world, then the risk of A is not greater than
the risk of B.

This is quite intuitive but it really does matter whether the random
variables represent random return or profit because an inequality in
almost sure sense between random returns may not translate into the
same inequality between the corresponding random profits and vice
versa.
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Coherent risk measures
The monotonicity property

Suppose that X and Y describe the random percentage returns
on two investments A and B and let Y = X + 3%. Apparently,
Y > X in all states of the world. The corresponding payoffs are
obtained according to the equations

Payoff(X ) = IA(1 + X )

Payoff(Y ) = IB(1 + Y ) = IB(1 + X + 3%)

where IA is the initial investment in opportunity A and IB is the
initial investment in opportunity B.

If the initial investment IA is much larger than IB, then
Payoff(X ) > Payoff(Y ) irrespective of the inequality Y > X .

In effect, investment A may seem less risky than investment B it
terms of payoff but in terms of return, the converse may hold.
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Coherent risk measures
The positive homogeneity property

Positive Homogeneity
ρ(0) = 0, ρ(λX ) = λρ(X ), for all X and
all λ > 0.

The positive homogeneity property states that scaling the return
(payoff) of the portfolio by a positive factor scales the risk by the same
factor.

The interpretation for payoffs is obvious — if the investment in a
position doubles, so does the risk of the position. We give a simple
example illustrating this property when X stands for a random
percentage return.
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Coherent risk measures
The positive homogeneity property

Suppose that today the value of a portfolio is I0 and we add a
certain amount of cash C. Then the value of our portfolio is I0 + C.

The value tomorrow is random and equals I1 + C in which I1 is the
random payoff. The return of the portfolio equals

X =
I1 + C − I0 − C

I0 + C
=

I1 − I0
I0

(

I0
I0 + C

)

= h
I1 − I0

I0
= hY

where h = I0/(I0 + C) is a positive constant.

The axiom positive homogeneity property implies that
ρ(X ) = hρ(Y ); that is, the risk of the new portfolio will be the risk
of the portfolio without the cash but scaled by h.
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Coherent risk measures
The sub-additivity property

Sub-additivity
ρ(X + Y ) ≤ ρ(X ) + ρ(Y ), for all X and Y .

If X and Y describe random payoffs, then the sub-additivity property
states that the risk of the portfolio is not greater than the sum of the
risks of the two random payoffs.
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Coherent risk measures
The sub-additivity property

The positive homogeneity property and the sub-additivity property
imply that the functional is convex

ρ(λX + (1 − λ)Y ) ≤ ρ(λX ) + ρ((1 − λ)Y )

= λρ(X ) + (1 − λ)ρ(Y )

where λ ∈ [0, 1].

If X and Y describe random returns, then the random quantity
λX + (1 − λ)Y stands for the return of a portfolio composed of two
financial instruments with returns X and Y having weights λ and
1 − λ respectively.

The convexity property states that the risk of a portfolio is not
greater than the sum of the risks of its constituents, meaning that
it is the convexity property which is behind the diversification effect
that we expect in the case of X and Y denoting random returns.
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Coherent risk measures
The invariance property

Invariance
ρ(X + C) = ρ(X ) − C, for all X and C ∈ R.

The invariance property has various labels. Originally, it was called
translation invariance while in other texts it is called cash invariance.
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Coherent risk measures
The invariance property

If X describes a random payoff, then the invariance property
suggests that adding cash to a position reduces its risk by the
amount of cash added.

This is motivated by the idea that the risk measure can be used to
determine capital requirements.

As a consequence, the risk measure ρ(X ) can be interpreted as
the minimal amount of cash necessary to make the position free
of any capital requirements,

ρ(X + ρ(X )) = 0.
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Coherent risk measures
The invariance property

The invariance property has a different interpretation when X describes
random return.

Suppose that the r.v. X describes the return of a common stock and we
build a long-only portfolio by adding a government bond yielding a
risk-free rate rB.

The portfolio return equals wX + (1 − w)rB, where w ∈ [0, 1] is the
weight of the common stock in the portfolio. Note that the quantity
(1 − w)rB is non-random by assumption.

The invariance property states that the risk of the portfolio can be
decomposed as

ρ(wX + (1 − w)rB) = ρ(wX ) − (1 − w)rB

= wρ(X ) − (1 − w)rB
(13)

where the second equality appears because of the positive homogeneity
property.
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Coherent risk measures
The invariance property

The risk measure admits the following interpretation:

Assume that the constructed portfolio is equally weighted, i.e.
w = 1/2, then the risk measure equals the level of the risk-free
rate such that the risk of the equally weighted portfolio consisting
of the risky asset and the risk-free asset is zero.

The investment in the risk-free asset will be, effectively, the
reserve investment.
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Coherent risk measures
The invariance property

Alternative interpretations are also possible.

Suppose that the present value of the position with random
percentage return X is I0. Assume that we can find a government
security earning return r∗B at the horizon of interest.
How much should we reallocate from I0 and invest in the
government security in order to hedge the risk ρ(X )?
The needed capital C should satisfy the equation

I0 − C
I0

ρ(X ) − C
I0

r∗B = 0

which is merely a re-statement of equation (13) with the additional
requirement that the risk of the resulting portfolio should be zero.
The solution is

C = I0
ρ(X )

ρ(X ) + r∗B
.
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Coherent risk measures
The invariance property

Note that if in the invariance property the constant is non-negative,
C ≥ 0, then it follows that ρ(X + C) ≤ ρ(X ). This result is in
agreement with the monotonicity property as X + C ≥ X .

The invariance property can be regarded as an extension of the
monotonicity property when the only difference between X and Y
is in their means.

According to the discussion in the previous section, VaR is not a
coherent risk measure because it may violate the sub-additivity
property.
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Coherent risk measures
The invariance property

An example of a coherent risk measure is the AVaR defined as the
average of the VaRs which are larger than the VaR at a given tail
probability ǫ.

The accepted notation is AVaRǫ(X ) in which ǫ stands for the tail
probability level.

A larger family of coherent risk measures is the family of spectral
risk measures which includes the AVaR as a representative.

The spectral risk measures are defined as weighted averages of
VaRs.
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Risk measures and dispersion measures

Both classes, the deviation measures and the coherent risk
measures, are not the only classes capable of quantifying
statistical dispersion and risk respectively.2

They describe basic features of uncertainty and risk and, in effect,
we may expect that a relationship between them exists.

2See the appendix to the lecture, describing the convex risk measures.
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Risk measures and dispersion measures

The common properties are the sub-additivity property and the
positive homogeneity property.

The specific features are the monotonicity property and the
invariance property of the coherent risk measures and the
translation invariance and positivity of deviation measures.

The link between them concerns a sub-class of the coherent risk
measures called strictly expectation bounded risk measures and a
sub-class of the deviation measures called lower range dominated
deviation measures.

This link has an interesting implication for constructing optimal
portfolios3.

3Will be discussed in Lecture 8
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Risk measures and dispersion measures

A coherent risk measure ρ(X ) is called strictly expectation
bounded if it satisfies the condition

ρ(X ) > −EX (14)

for all non-constant X , in which EX is the mathematical
expectation of X .

If X describes the portfolio return distribution, then the inequality
in (14) means that the risk of the portfolio is always greater than
the negative of the expected portfolio return.

A coherent risk measure satisfying this condition is the AVaR, for
example.
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Risk measures and dispersion measures

A deviation measure D(X ) is called lower-range dominated if it
satisfies the condition

D(X ) ≤ EX (15)

for all non-negative random variables, X ≥ 0.

A deviation measure which is lower range dominated is, for
example, the downside semi-standard deviation σ−

X defined in (4).
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Risk measures and dispersion measures

The relationship between the two sub-classes is a one-to-one
correspondence between them established through the equations

D(X ) = ρ(X − EX ) (16)

and
ρ(X ) = D(X ) − E(X ). (17)

That is, if ρ(X ) is a strictly expectation bounded coherent risk
measure, then through the formula in (16) we obtain the
corresponding lower range dominated deviation measure and,
conversely, through the formula in (17), we obtain the
corresponding strictly expectation bounded coherent risk
measure.
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Risk measures and dispersion measures

There is a deviation measure behind each strictly expectation
bounded coherent risk measure.

Consider the AVaR for instance. Since it satisfies the property in
(14), according to the relationship discussed above, the quantity

Dǫ(X ) = AVaRǫ(X − EX )

represents the deviation measure underlying the AVaR risk
measure at tail probability ǫ.

The quantity Dǫ(X ), as well as any other lower range dominated
deviation measure, is obtained by computing the risk of the
centered random variable.
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Risk measures and stochastic orders

Suppose that we estimate the risk of X and Y through a risk
measure ρ.

If all risk-averse investors prefer X to Y , then does it follow that
ρ(X ) ≤ ρ(Y )?

This question describes the issue of consistency of a risk
measure with the SSD order.

Intuitively, a realistic risk measure should be consistent with the
SSD order since there is no reason to assume that an investment
with higher risk as estimated by the risk measure will be preferred
by all risk-averse investors.
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Risk measures and stochastic orders

The monotonicity property of the coherent risk measures implies
consistency with first-order stochastic dominance (FSD).

The condition that X ≥ Y in all states of the world translates into
the following inequality in terms of the c.d.f.s,

FX (x) ≤ FY (x), ∀x ∈ R,

which, in fact, characterizes the FSD order.

If all non-satiable investors prefer X to Y , then any coherent risk
measure will indicate that the risk of X is below the risk of Y .
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Risk measures and stochastic orders

The defining axioms of the coherent risk measures cannot
guarantee consistency with the SSD order. Therefore, if we want
to use a coherent risk measure in practice, we have to verify
separately the consistency with the SSD order.

DeGiorgi(2005) shows that the AVaR, and spectral risk measures
in general, are consistent with the SSD order.

Note that if the AVaR, for example, is used to measure the risk of
portfolio return distributions, then the corresponding SSD order
concerns random variables describing returns.

Similarly, if the AVaR is applied to random variables describing
payoff, then the SSD order concerns random payoffs.

⇒ SSD orders involving returns do not coincide with SSD orders
involving payoffs.
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Summary

We discussed in detail the following dispersion measures:
1 the standard deviation
2 the mean absolute deviation
3 the upside and downside semi-standard deviations
4 an axiomatic description of dispersion measures
5 the family of deviation measures

We also discussed in detail the following risk measures:

1 the value-at-risk
2 the family of coherent risk measures
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Summary

We emphasized that a realistic statistical model for risk estimation
includes two essential components:

a realistic statistical model for the financial assets return
distributions and their dependence, capable of accounting for
empirical phenomena, and

a true risk measure capable of describing the essential
characteristics of risk.
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Summary

We explored a link between risk measures and dispersion
measures through two sub-classes of coherent risk measures and
deviation measures.

Behind every such coherent risk measure, we can find a
corresponding deviation measure and vice versa. The intuitive
connection between risk and uncertainty materializes
quantitatively in a particular form.

Finally, we emphasized the importance of consistency of risk
measures with the SSD order.
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