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The CLT conditions

The two sets of conditions mentioned in the lecture are sufficient
conditions. That is, if any of them holds, then the CLT is valid.

In the literature, usually the condition of Lindeberg-Feller is given
as a general sufficient condition for the CLT. However, the
Lindeberg-Feller condition is equivalent to the asymptotic
negligibility condition.

We explained that asymptotic negligibility holds if the summands
become negligible with respect to the total sum as their number
increases. That is, none of the summands dominates and dictates
the behavior of the total sum. We give a more precise formulation
of this statement below.
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The asymptotic negligibility condition

Consider a sequence of independent random variables
X1, X2, . . . , Xn, . . . and denote by Sn the sum

Sn = X1 + . . . + Xn.

We do not assume that the distribution of the random variables is
the same, meaning that the means and the variances of the
random variables may differ. Denote by µn the mean of the sum
Sn and by σ2

n the variance of the sum,

ESn = EX1 + . . . + EXn = µn

DSn = DX1 + . . . + DXn = σ2
n.

The asymptotic negligibility condition holds if

max
1≤j≤n

P
( |Xj − µn|

σn
> δ

)
−→ 0, n → ∞ for each δ > 0. (1)
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The asymptotic negligibility condition

The asymptotic relation (1) can be interpreted in the following way.

The standard deviation σn describes the variability of the total
sum. The ratio |Xj − µn|/σn compares each of the terms in Sn to
the variability of the total sum and, thus, the probability in (1)
measures the variability of each summand relative to the
variability of the sum.

Therefore, the asymptotic negligibility condition states that as the
number of summands increases indefinitely, the most variable
term in Sn is responsible for a negligible amount of the variability
of the total sum.
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The asymptotic negligibility condition

In the Generalized CLT, the condition (1) does not hold. In fact, the
Lévy stable distributions, which are the limit distributions in the
Generalized CLT, satisfy a property which is converse to the
asymptotic negligibility condition.

It states that the large deviations of a sum of i.i.d. Lévy stable
random variables are due to, basically, one summand,

P(Y1 + . . . + Yn > x) ∼ P
(

max
1≤k≤n

Yk > x
)

where Y1, . . . , Yn are i.i.d. Lévy stable random variables.

That is, the probability that the sum is large is approximately equal
to the probability that one of the summands is large. This fact is a
manifestation of the fundamental difference between the Lévy
stable distributions and the normal distribution.
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The necessary and sufficient condition

While the asymptotic negligibility condition is very general, it is not a
necessary and sufficient condition. The CLT may hold even if it is
violated. Next, we formulate the necessary and sufficient condition.

Denote by S̃n the centered and normalized sum,

S̃n = Y1 + . . . + Yn =
Sn − µn

σn

where the summands Yj = (Xj − EXj)/σn.
The CLT holds for the centered and normalized sum,
S̃n

d→ Z ∈ N(0, 1), if and only if for every ǫ > 0,
n∑

j=1

∫

|x |>ǫ

|FYj (x) − FZj (x)||x |dx −→ 0, n → ∞ (2)

where Zj has a normal distribution with variance equal to the
variance of Yj ,

Zj = σYj Z , Zj ∈ N
(

0, σ2
Yj

)
.
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The necessary and sufficient condition

Thus, the absolute difference |FYj (x) − FZj (x)| is between two
distribution functions of random variables with equal scales. The
expression in (2) sums up the deviations between the c.d.f.s of the
summands Yj and the scaled normal distributions FZj (x).

The necessary and sufficient condition (2) has a more simple form
if the random variables X1, . . . , Xn, . . . have equal distribution.
Under this assumption, their means and variances are the same,
EXj = µ and DXj = σ2. Then the sum in (2) disappears and we
obtain that for every ǫ > 0,

∫

|x |>ǫ
√

n
|FX̃1

(x) − FZ (x)||x |dx → 0, n → ∞ (3)

in which X̃1 = (X1 − µ)/σ. Note that as n increases, it is only the
integration range that changes in (3).
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Remarks on ideal metrics

Here we briefly mention a few general conditions which need to be
satisfied in order for the ideal metrics considered to be finite.

Suppose that the probability metric µ(X , Y ) is a simple ideal
metric of order r . The finiteness of µ(X , Y ) guarantees equality of
all moments up to order r ,

µ(X , Y ) < ∞ =⇒ E(X k − Y k ) = 0, k = 1, 2, . . . , n < r .

Conversely, if all moments k = 1, 2, . . . , n < r agree and, in
addition to this, the absolute moments of order r are finite, then
metric µ(X , Y ) is finite,

EX k = EY k

E |X |r < ∞
E |Y |r < ∞

=⇒ µ(X , Y ) < ∞

where k = 1, 2, . . . , n < r .
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Remarks on ideal metrics

The conditions which guarantee finiteness of the ideal metric µ
are very important when investigating the problem of convergence
in distribution of random variables in the context of the metric µ.
Consider a sequence of random variables X1, X2, . . . , Xn, . . . and a
random variable X which satisfy the conditions,

EX k
n = EX k , ∀n, k = 1, 2, . . . , n < r

and
E |X |r < ∞, E |Xn|r < ∞, ∀n.

For all known ideal metrics µ(X , Y ) of order r > 0, given the
above moment assumptions, the following holds: µ(Xn, X ) → 0 if
and only if Xn converges to X in distribution and the absolute
moment of order r converge,

µ(Xn, X ) → 0 if and only if Xn
d−→ X and E |Xn|r → E |X r |.
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Remarks on ideal metrics

This abstract result has the following interpretation.

Suppose that X and Y describe the returns of two portfolios.
Choose an ideal metric µ of order 3 < r < 4, for example. The
convergence result above means that if µ(X , Y ) ≈ 0, then both
portfolios have very similar distribution functions and also they
have very similar means, volatilities and skewness.

Note that, generally, the c.d.f.s of two portfolios being “close” to
each other does not necessarily mean that their moments will be
approximately the same.

It is of crucial importance which metric is chosen to measure the
distance between the distribution functions. The ideal metrics
have this nice property that they guarantee convergence of certain
moments. Rachev(1991) provides an extensive review of the
properties of ideal metrics and their application.
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Remarks on ideal metrics

1. The Zolotarev ideal metric
Only a special case of the Zolotarev ideal metric was given in the
lecture. The general form of the Zolotarev ideal metric is

ζs(X , Y ) =

∫ ∞

−∞

∣∣Fs,X (x) − Fs,Y (x)
∣∣ dx (4)

where s = 1, 2, . . . and

Fs,X (x) =

∫ x

−∞

(x − t)s−1

(s − 1)!
dFX (t) (5)

The Zolotarev metric ζs(X , Y ) is ideal of order r = s.
Zolotarev(1997) provides more information.
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Remarks on ideal metrics

2. The Rachev metric
The general form of the Rachev metric is

ζs,p,α(X , Y ) =

(∫
∞

−∞

|Fs,X (x) − Fs,Y (x)|p |x |αp′

dx
)1/p′

(6)

where p′ = max(1, p), α ≥ 0, p ∈ [0,∞], and Fs,X (x) is defined in
equation (5). If α = 0, then the Rachev metric ζs,p,0(X , Y ) is ideal of
order r = (s − 1)p/p′ + 1/p′.
Note that ζs,p,α(X , Y ) can be represented in terms of lower partial
moments,

ζs,p,α(X , Y ) =
1

(s − 1)!

(∫
∞

−∞

∣∣E(t − X )s
+ − E(t − X )s

+

∣∣p |t |αp′

dt
)1/p′

.

The metric defined in equation (14) in the lecture arises from the metric
in (6) when α = 0,

ζs,p(X , Y ) = ζs,p,0(X , Y ).
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Remarks on ideal metrics

3. The Kolmogorov-Rachev metrics
The Kolmogorov-Rachev metrics arise from other ideal metrics by
a process known as smoothing. Suppose the metric µ is ideal of
order 0 ≤ r ≤ 1.

Consider the metric defined as

µs(X , Y ) = sup
h∈R

|h|sµ(X + hZ , X + hZ ) (7)

where Z is independent of X and Y and is a symmetric random

variable Z d
= −Z .

The metric µs(X , Y ) defined in this way is ideal of order r = s.
Note that while (7) always defines an ideal metric of order s, this
does not mean that the metric is finite. The finiteness of µs should
be studied for every choice of the metric µ.
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Remarks on ideal metrics

For example, suppose that µ(X , X ) is the total variation metric σ(X , Y )
defined in (17) in Lecture 3 "Probability metrics" and Z has the standard
normal distribution, Z ∈ N(0, 1). We calculate that

σs(X , Y ) = sup
h∈R

|h|sσ(X + hZ , X + hZ )

= sup
h∈R

|h|s 1
2

∫

R

|fX (x) − fY (x)| fZ (x/h)

h
dx

= sup
h∈R

|h|s 1
2

∫

R

|fX (x) − fY (x)| 1√
2πh2

e−
x2

2h2 dx

(8)

in which we use the explicit form of the standard normal density,
fZ (u) = exp(−u2/2)/

√
2π, u ∈ R.

Note that the absolute difference between the two densities of X and Y
in (8) is averaged with respect to the standard normal density. This is
why the Kolmogorov-Rachev metrics are also called smoothing metrics.
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Remarks on ideal metrics

The Kolmogorov-Rachev metrics are applied in estimating the
convergence rate in the Generalized CLT and other limit theorems.

Rachev and Rüschendorf (1998) and Rachev (1991) provide more
background and further details on the application in limit theorems.
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