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Introduction

Limit theorems in probability theory have a long and interesting history:

In 1713, the Swiss mathematician Jacob Bernoulli gave a rigorous
proof that the average number of heads resulting from many
tosses of a coin converges to the probability of having a head.

In 1835, the French mathematician Simeon-Denis Poisson
described this result as “The Law of Large Numbers” and
formulated an approximation valid in the case of rare events.
Nowadays, this result is known as the approximation of Poisson to
the binomial distribution.
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Introduction

In 1733, the English mathematician Abraham de Moivre published
an article in which he calculated approximately the probability of
the number of heads resulting from many independent tosses of a
fair coin. In this calculation, he used the normal distribution as
approximation.

His discovery was rediscovered and extended in 1812 by the
French mathematician Pierre-Simon Laplace. Nowadays, this is
known as the theorem of de Moivre-Laplace of the normal
approximation to the binomial distribution.

The theorem of de Moivre-Laplace is a special case of the Central
Limit Theorem (CLT) but it was not until the beginning of the
twentieth century.
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Introduction

In 1901, the Russian mathematician Aleksandr Lyapunov gave a
more abstract formulation and showed that the limit result holds
under certain very general conditions known as Lyapunov’s
conditions. Later, other conditions were established which
generalized Lyapunov’s conditions.

A final solution to the problem was given by Bernstein, Lindeberg,
and Feller who specified necessary and sufficient conditions for
the CLT.

Prof. Dr. Svetlozar Rachev (University of Karlsruhe)Lecture 4: Ideal probability metrics 2008 5 / 88



Introduction

In the past century, the limit theory has been widely extended.

The abstract ideas behind the CLT were applied to stochastic
processes and it was shown that Brownian motion is the limit
process in the so-called Functional Limit Theorem or Invariance
Principle.

Brownian motion is the basic ingredient of the subsequently
developed theory of Ito processes which has huge application in
finance. The celebrated Black-Scholes equation and, in general,
derivative pricing is based on it.

Prof. Dr. Svetlozar Rachev (University of Karlsruhe)Lecture 4: Ideal probability metrics 2008 6 / 88



Introduction

The idea of Generalized CLT is as follows: When summing i.i.d.
infinite variance random variables we do not obtain the normal
distribution at the limit but so called the Lévy alpha-stable
distributions because of the fundamental work of the French
mathematician Paul Lévy. The normal distribution is only a special
case of the stable distributions.

The limit theory of max-stable distributions was developed which
studies the limit distribution with respect to maxima of random
variables.
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Introduction

From the standpoint of the applications, the limit theorems are
appealing because the limit law can be regarded as an approximate
model of the phenomenon under study.

For example, the limiting normal distribution (the result of de
Moivre-Laplace) can be accepted as an approximate model for
calculation of the number of heads in many tosses of a fair coin.

In the max-stable scheme, the limiting max-stable distribution can
be regarded as an approximate model for the maximum loss a
financial institution may face in a given period of time.

Similarly, in modeling returns for financial assets, the alpha-stable
distributions can be used as an approximate model as they
generalize the widely applied normal distribution and are the
limiting distribution in the Generalized CLT.
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Introduction

How close is the limiting distribution to the considered phenomenon?

The only way to answer this question is to employ the theory of
probability metrics. In technical terms, we are looking for a way to
estimate the rate of convergence to the limit distribution.

The following concepts will be considered:

The classical CLT

The Berry-Esseen result (the first attempt to estimate the rate of
convergence to the normal distribution)

The convergence rate estimation in the Generalized CLT based on
probability metrics called ideal metrics
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The classical Central Limit Theorem
The binomial approximation to the normal distribution

The goal is to illustrate the classical CLT.

We consider the simple experiment of flipping an unfair coin.

We are interested in calculating the probability that the number of
heads resulting from a large number of independent trials belongs
to a certain interval, i.e. if we toss a coin 10,000 times, then what
is the probability that the number of heads is between 6,600 and
7,200 provided that the probability of a head is equal to 2/3?
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The binomial approximation to the normal distribution

Let us first derive a simple formula which gives the probability that
we obtain exactly a given number of heads.

Consider a small number of independent tosses, for example four.

Denote by p the probability that a head occurs in a single
experiment, by q = 1 − p the probability that a tail occurs in a
single experiment, and by X the random variable indicating the
number of heads resulting from the experiment.

Then the probability that no head occurs is given by

P(X = 0) = q · q · q · q = q4

because we multiply the probabilities of the outcomes since we
assume independent trials.
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The binomial approximation to the normal distribution

The probability that exactly one head occurs is a little more difficult to
calculate.

If the head occurs on the very first toss, then the probability of the
event “exactly one head occurs” is equal to p · q · q · q = pq3.

If the head occurs on the second trial, the corresponding
probability is q · p · q · q = pq3.

Similarly, if the head occurs on the very last trial, the probability is
q · q · q · p = pq3.

The probability of the event “exactly one head occurs in a
sequence of four independent tosses” is equal to the sum of the
probabilities of the events in which we fix the trial when the head
occurs,

P(X = 1) = 4pq3.
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The binomial approximation to the normal distribution

Similar reasoning shows that the probability of the event “exactly
two heads occur in a sequence of four independent tosses” equals

P(X = 2) = 6p2q2

as there are six ways to obtain two heads in a row of four
experiments.

For the other two events, that the heads are exactly three and four,
we obtain

P(X = 3) = 4p3q and P(X = 4) = p4.
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The binomial approximation to the normal distribution

The power of p coincides with the number of heads, the power of
q coincides with the number of tails, and the coefficient is the
number of ways the given number of heads may occur in the
experiment.

The coefficient can be calculated by means of a formula known as
the binomial coefficient.

It computes the coefficients which appear in front of the unknowns
when expanding the expression (x + y)n in which x and y are the
unknowns. For example,

(x + y)4 = (x + y)2 · (x + y)2

= (x2 + 2xy + y2) · (x2 + 2xy + y2)

= x4 + 4x3y + 6x2y2 + 4xy3 + y4.
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The binomial approximation to the normal distribution

The general formula is given by the equation

(x + y)n =

(
n
0

)
xn +

(
n
1

)
xn−1y +

(
n
2

)
xn−2y2 + . . .

+

(
n

n − 1

)
xyn−1 +

(
n
n

)
yn

(1)

in which n is a positive integer and the coefficients
(n

k

)
and

k = 0, . . . , n are the binomial coefficients.

They are calculated through the formula,
(

n
k

)
=

n!

k !(n − k)!
(2)

where the notation n! stands for the product of all positive integers
smaller or equal to n, n! = 1 · 2 . . . (n − 1) · n.
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The binomial approximation to the normal distribution

In the context of the independent tosses of a coin, n stands for the
total number of tosses and k denotes the number of heads.

Thus, the probability of the event “exactly two heads occur in a
sequence of four independent tosses” can be written as

P(X = 2) =

(
4
2

)
p2q2 =

1 · 2 · 3 · 4
(1 · 2) · (1 · 2)

p2q2 = 6p2q2.

Denote the random variable by Xn, where n stands for the number
of trials, we obtain

P(Xn = k) =

(
n
k

)
pkqn−k , k = 0, 1 . . . n. (3)

Prof. Dr. Svetlozar Rachev (University of Karlsruhe)Lecture 4: Ideal probability metrics 2008 16 / 88



The binomial approximation to the normal distribution

The probability distribution defined in equation (3) is known as the
binomial distribution.

Replace the tossing of a coin by an experiment in which we
identify a certain event as “success”. All other events do not lead
to “success” and we say that “failure” occurs. Thus, the binomial
distribution gives the probability that exactly k “successes” occur
on condition that we carry out n experiments.

The mean value of the binomial distribution equals EX = np and
the variance equals DX = npq.
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The binomial approximation to the normal distribution

Let us consider the experiment of tossing a fair coin, i.e.
p = q = 1/2, and fix the number of tosses to 20.

What is the probability that exactly 4 heads occur?
We can easily calculate this by means of equation (3),

P(X20 = 4) =

(
20
4

) (
1
2

)4 (
1
2

)16

≈ 0.46%

Table below gives the corresponding probabilities for other
choices of the number of heads.

Number of heads, k 4 7 10 13 16
Probability, P(X = k) 0.46% 7.39% 17.62% 7.39% 0.46%

Table: The probability that exactly k heads occur resulting from 20
independent tosses of a fair coin.
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The binomial approximation to the normal distribution

Figure below graphically displays all probabilities, when the number of
heads range from zero to 20.
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Figure: The probabilities that exactly k heads occur in 20 independent tosses
of a fair coin.
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The binomial approximation to the normal distribution

Note that the probabilities change in a symmetric way around the
value mean value k = 10, which very much resembles the density
of the normal distribution. This similarity is by no means random.
As the number of experiments, n, increases, the similarity
becomes more and more evident.

The limit theorem which proves this fact is known as the theorem
of de Moivre-Laplace. It states that, for large values of n, the
probability that k heads occur equals approximately the density
function of a normal distribution evaluated at the value k .

The mean value of the normal distribution is np and the standard
deviation is

√
npq, in short-hand notation N(np, npq). The density

of a normal distribution with mean m and variance σ2 is given by

f (x) =
1√

2πσ2
exp

(
−(x − m)2

2σ2

)
, x ∈ R.
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The binomial approximation to the normal distribution

Therefore, the limit result states that

P(Xn = k) =

(
n
k

)
pkqn−k ≈ 1√

2πnpq
exp

(
−(k − np)2

2npq

)
(4)

for large values of n.

We can say that the normal distribution can be adopted as an
approximate model because the probabilistic properties of the
binomial distribution for large values of n are “close” to the
probabilistic properties of the normal distribution.
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The binomial approximation to the normal distribution

Are there other indications that the normal distribution can be
adopted as an approximate model? The answer is affirmative.

Consider the question we asked at the beginning of the lecture on
slide 10. Provided that n is large, what is the probability that the
number of heads resulting from independent tosses of an unfair
coin is between two numbers a and b?

For example, suppose that we toss an unfair coin 10,000 times.
Then, what is the probability that the number of heads is between
a = 6,600 and b = 7,200?
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The binomial approximation to the normal distribution

Suppose that we independently toss an unfair coin twenty times.
The probability of the event that no more than three heads occur
can be computed by summing the probabilities P(X20 = 0),
P(X20 = 1), P(X20 = 2), and P(X20 = 3).
Similarly, in order to calculate the the probability that the number
of heads is between a = 6,600 and b = 7,200 in 10,000 tosses, we
have to sum up the probabilities P(X10000 = k) where
6,600 ≤ k ≤ 7,200. This is not a simple thing to do.
The limit result in the theorem of de Moivre-Laplace can be
adapted to calculate such probabilities. We can use the limiting
normal distribution in order to calculate them,

P(a ≤ Xn ≤ b) ≈
∫ b

a

1√
2πnpq

exp
(
−(x − np)2

2npq

)
dx (5)

which means that instead of summing up the binomial
probabilities, we are summing up the normal probabilities.
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The binomial approximation to the normal distribution

The calculation of the right hand-side of (5) is easier because it
can be represented through the cumulative distribution function
(c.d.f.) of the normal distribution,

P(a ≤ Xn ≤ b) ≈ F (b) − F (a)

where F (x) is the c.d.f. of the normal distribution with mean np
and variance npq.

The c.d.f. of the normal distribution is tabulated and is also
available in software packages.

In fact, if we assume that p = 2/3, then the actual probability,
P(6,600 ≤ X10,000 ≤ 7,200) = 0.9196144 and through the
corresponding normal distribution we obtain
F (7,200) − F (6,600) = 0.92135 which means that we make an
error of about 0.17%.
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The binomial approximation to the normal distribution

Another implication of (5) means that the c.d.f. of the binomial
distribution is approximated by the c.d.f. of the corresponding
normal distribution,

P(Xn ≤ b) ≈ F (b).

It virtually means that the probabilistic properties of the binomial
distribution are approximately the same as the ones of the normal
distribution.

This is illustrated on the next slide, where we plot the c.d.f. of a
binomial distribution resulting from 200 independent tosses of a
fair coin and the corresponding normal approximation.

Prof. Dr. Svetlozar Rachev (University of Karlsruhe)Lecture 4: Ideal probability metrics 2008 25 / 88



The binomial approximation to the normal distribution
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Figure: The binomial c.d.f. resulting from 200 independent tosses of a fair
coin and the normal approximation.
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The binomial approximation to the normal distribution

Generalizations of approximations (4) and (5) are used in pricing
options and other derivatives, the price of which depends on
another instrument called underlying instrument.

The binomial distribution is behind the construction of binomial
trees employed to evolve the price of the underlying into the
future. The basic principle is that, as the steps in the tree increase
(the number of trials), the binomial path becomes closer to a
sample path of the price process of the underlying instrument.

Therefore, this technique provides a powerful numerical way to
pricing path-dependent derivatives.
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The general case

Usually, the convergence to the normal distribution is derived by
means of centered and normalized binomial distributions.

We considered the binomial distribution directly, while in this
setting, it is not possible to obtain a non-degenerate limit as the
number of trials approaches infinity.

This is because the mean value of np and the variance npq
explode and the normal approximation N(np, npq), which is
well-defined for any finite n, stops making any sense.
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The general case

The procedure of centering and normalizing a random variable
means that we subtract the mean of the random variable and
divide the difference by its standard deviation so that the new
random quantity has a zero mean and a unit variance.

For instance, in the case of the binomial distribution, the random
quantity

Yn =
Xn − np√

npq

has a zero mean and unit variance, EYn = 0 and DYn = 1.

Therefore, it makes more sense to consider the limit distribution of
Yn as n approaches infinity because it may converge to a
non-degenerate limit distribution as its mean and variance do not
depend on the number of trials.
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The general case

In fact, the approximation in equation (5) is an illustration of the
limit result

lim
n→∞

P
(

u ≤ Xn − np√
npq

≤ v
)

=
1√
2π

∫ v

u
e−x2/2dx (6)

which means that as the number of trials approaches infinity, the
centered and normalized binomial distribution approaches the
standard normal distribution N(0, 1).

By observing the centered binomial distributions, we can visually
compare the improvement in the approximation as the scale is not
influenced by n. This is shown on the next slide.

Prof. Dr. Svetlozar Rachev (University of Karlsruhe)Lecture 4: Ideal probability metrics 2008 30 / 88



The general case
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Figure: The centered and normalized binomial c.d.f.s resulting from 5, 10, 20,
and 40 independent tosses of a fair coin and the normal approximation.
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The general case

Suppose now that in the n-tosses experiment we look at each toss
separately. That is, each toss is a random variable that can take
only two values — zero with probability q (if a tail occurs), and one
with probability p (if a head occurs).

Since each toss is a new experiment in itself, we denote these
random variables by δi , i is the number of the corresponding toss.

If δ2 takes the value zero, it means that on the second toss, a tail
has occurred.

In this setting, the random variable Xn describing the number of
heads resulting from n independent tosses of a coin can be
represented as a sum of the corresponding single-toss
experiments,

Xn = δ1 + δ2 + . . . + δn (7)

where the random variables δi , i = 1, . . . , n are i.i.d.
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The general case

It appears that the limit relation (6) concerns a sum of i.i.d. random
variables in which the number of summands approaches infinity.

It turns out that (6) holds true for sums of i.i.d. random variables,
just as in (7), the distribution of which may be quite arbitrary.

This result is the celebrated Central Limit Theorem.

There are several sets of regularity conditions, only two of them
will be described below, as they have vast implications.
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The meaning of summation in financial variables

Before proceeding with the regularity conditions, let us discuss briefly
why summing random variables is important in the context of finance.

A huge topic in finance is imposing a proper distributional
assumption for the returns of a variable such as stock returns,
exchange rate returns, changes in interest rates, and the like.

Usually, the distributional hypothesis concerns the logarithmic
returns in particular or the changes in the values which are also
known as the increments.

Prof. Dr. Svetlozar Rachev (University of Karlsruhe)Lecture 4: Ideal probability metrics 2008 34 / 88



The meaning of summation in financial variables

Let us consider the price Pt of a common stock. The logarithmic
return, or simply the log-return, for a given period (t , T ) is defined
as

r(t ,T ) = log
PT

Pt
.

If the period (t , T ) is one month, then r(t ,T ) is the monthly
log-return.

We split this period into two smaller periods (t , t1) and (t1, T ). The
log-return of the longer period is actually the sum of the
log-returns of the shorter periods,

r(t ,T ) = log
Pt1

Pt
+ log

PT

Pt1
= r(t ,t1) + r(t1,T ).
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The meaning of summation in financial variables

Then we can split further the time interval and we obtain that the
log-return of the longer period is the sum of the log-returns of the
shorter periods.

Thus, the monthly log-return is the sum of the daily log-returns.

The daily log-returns are the sum of the ten-minute log-returns in
one day, etc.

⇒ The general rule is that the lower frequency log-returns accumulate
the corresponding higher frequency log-returns.
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The meaning of summation in financial variables

Exactly the same conclusion holds with respect to the increments.

Consider an interest rate in a period (t , T ). The increments are
defined as,

∆IR(t ,T ) = IRT − IRt

which is simply the difference between the interest rate at moment
t and T .

Splitting the interval into two smaller intervals results in

∆IR(t ,T ) = IRt1 − IRt + IRT − IRt1 = ∆IR(t ,t1) + IR(t1,T )

meaning that the increment in the longer period equals the sum of
the increments in the smaller period.

Prof. Dr. Svetlozar Rachev (University of Karlsruhe)Lecture 4: Ideal probability metrics 2008 37 / 88



The meaning of summation in financial variables

The concept that a variable accumulates the efects of other
variables is natural in finance.

This observation makes the limit theorems in probability theory
appealing because they show the limit distribution of sums of
random variables without the complete knowledge of the
distributions of the summands.

Nevertheless, there are certain regularity conditions which the
summands should satisfy in order for the sum to converge to a
particular limit distribution.
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Two regularity conditions

Suppose that the random variables X1, X2, . . . , Xn, . . . are
independent and share a common distribution with mean µ and
variance σ2. Consider their sum

Sn = X1 + X2 + . . . + Xn. (8)

The CLT states that the centered and normalized sequence of Sn

converges to the standard normal distribution as n approaches
infinity on condition that the variance σ2 is finite.

The mean of the sum equals the sum of the means of the
summands,

ESn = EX1 + EX2 + . . . + EXn = nµ.
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Two regularity conditions

The same conclusion holds for the variance because the
summands are assumed to be independent,

DSn = DX1 + DX2 + . . . + DXn = nσ2.

Thus, subtracting the mean and dividing by the standard
deviation, we obtain the statement of the CLT,

lim
n→∞

P
(

u ≤ Sn − nµ

σ
√

n
≤ v

)
=

1√
2π

∫ v

u
e−x2/2dx . (9)
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Two regularity conditions

The truly striking implication of the CLT is that the result is, to a
large extent, invariant on the distributions of the summands.

The distributions only need to be i.i.d. and their variance needs to
be finite, σ2 < ∞.

The common distribution of the summands may be discrete, see
equation (6) for the binomial distribution, or skewed, or it may have
point masses.

⇒ The limit distribution is the standard normal law.
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Two regularity conditions
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Figure: The c.d.f.s of the centered and normalized sum of exponential
distributions (solid line) resulting from 2, 5, 10, and 20 summands and the
normal approximation (dashed line). The exponential distribution by definition
takes only positive values, which means that it is also asymmetric.
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Two regularity conditions
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Figure: The density functions of the centered and normalized sum of
exponential distributions (solid line) resulting from 2, 5, 10, and 20 summands
and the normal approximation (dashed line).
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Two regularity conditions

The CLT states that the distribution function of the centered and
normalized sum converges to the distribution function of the
standard normal distribution.

Thus, for a large number of summands,

P
(

Sn − nµ

σ
√

n
≤ v

)
≈ 1√

2π

∫ v

−∞
e−x2/2dx .

which is the same as saying that the c.d.f of a normal distribution
with mean nµ and variance nσ2 is close to the distribution function
of the sum Sn.

When the number of summands is large, the normal distribution
can be accepted as an approximate model because the
probabilistic properties of the N(nµ, nσ2) are “close” to the
probabilistic properties of the corresponding sum.
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Two regularity conditions

The fact that the CLT holds when the summands in (8) are i.i.d.
with finite variance is already a very strong result with far-reaching
consequences.

The assumption of common distribution can be replaced by a
different property. It states that as n grows to infinity, the
summands should become negligible with respect to the total
sum. That is, the contribution of each summand to the sum should
become more and more negligible as their number increases.
This property is called asymptotic negligibility.

The summands need not have a common distribution. Some of
them may be discrete random variables, some may have
symmetric distribution, others asymmetric.

⇒ The only conditions the summands have to satisfy in order for the
CLT to hold is, first, they have to be independent and, second, they
have to be asymptotically negligible.
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Application of the CLT in modeling financial assets

Let us go back to the discussion of the behavior of financial variables.

If the daily log-returns appear as a sum of so many short period
log-returns, can we safely assume, on the basis of the CLT, that
the distribution of the daily log-return is approximately normal?

Such a direct application of the limit result is not acceptable
because there are certain conditions which need to be satisfied
before we can say that the limit result holds.

We have to answer two questions:
1 Is it true that the shorter period log-returns are independent?
2 Are they asymptotically negligible? Is it true that if we sum them

up, the total sum is not dominated by any of the summands?
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Application of the CLT in modeling financial assets

The answer to the first question is negative because of the
empirically observed clustering of the volatility effect and the
autocorrelations existing in the high-frequency time series.

The answer to the second question is also negative.
Usually, there are very large log-returns in absolute value which
dominate the sum and dictate its behavior. They translate into
what is known as the heavy-tailed behavior of the log-returns time
series of stock prices.

While the autocorrelations and the clustering of the volatility can be
taken care of by advanced time-series models, the outliers available in
the data creep into the residual and, very often, can only be modeled
by a non-normal, heavy-tailed distribution.

⇒ As a result, we can reject the normal distribution as a realistic
approximate model of the log-returns of stock prices.
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Estimating the distance from the limit distribution

Under mentioned 2 sets of conditions, we can adopt the normal
distribution as an approximate model for the sum of random
variables (8) when the number of summands is large.

As was explained, the rationale is that the distribution function of
the sum with the number of summands fixed is “close” to the
distribution function of the corresponding normal distribution.

We say “the corresponding normal distribution” because its mean
and variance should equal the mean and variance of the sum.
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Estimating the distance from the limit distribution

We would like to quantify the phenomenon that the two c.d.f.s do
not deviate too much. For this purpose, we take advantage of a
probability metric which computes the distance between the two
c.d.f.s. and is, therefore, a simple metric.

For example, suppose that we would like to fix the number of
summands to 20. If the distribution of the summands is
symmetric, then we may expect that the sum of 20 terms could be
closer to the normal distribution compared to a sum of 20
asymmetric terms.

Therefore, we need a way to estimate the error of adopting the
limit distribution as a model which is not influenced by the
particular distribution of the summands.
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Estimating the distance from the limit distribution

In the classical setting, when the sum (8) consists of i.i.d.
summands, there is a result1 which states how quickly the
distance between the c.d.f. of the centered and normalized sum
and the c.d.f. of the standard normal distribution decays to zero in
terms of the Kolmogorov metric.

Denote by S̃n the centered and normalized sum,

S̃n =
Sn − nµ

σ
√

n
=

X1 + . . . + Xn − nµ

σ
√

n
.

1In the theory of probability, this result is known as the Berry-Esseen theorem.
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Estimating the distance from the limit distribution

The result states that if E |X1|3 < ∞, then in terms of the
Kolmogorov metric the distance between the two c.d.f.s can be
bounded by,

ρ(S̃n, Z ) ≤ C · E |X1|3
σ3

√
n

(10)

in which C is an absolute constant which does not depend on the
distribution of X1, Z ∈ N(0, 1), and the Kolmogorov metric ρ is
defined as

ρ(S̃n, Z ) = sup
x∈R

|FS̃n
(x) − FZ (x)|.

The only term which depends on n is
√

n in the denominator. The
only facts about the common distribution of the summands we
have to know are the standard deviation σ and the moment E |X1|3.
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Estimating the distance from the limit distribution

As a result, the “speed” with which the c.d.f. FS̃n
(x) approaches

FZ (x) as the number of summands increases, or the convergence
rate, is completely characterized by n−1/2.

We also need the value of the constant C. Currently, its exact
value is unknown but it should be in the interval
(2π)−1/2 ≤ C < 0.8.

At any rate, an implication of the inequality (10) is that the
convergence of the c.d.f. of S̃n to the c.d.f. of the standard normal
distribution may be quite slow.
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The Generalized Central Limit Theorem

What happens if the condition in the classical CLT is relaxed; if the
summands are so erratic that one of them can actually dominate
the others and thus influence the behavior of the entire sum?

The normal distribution is not the limit law under these conditions
but still there are non-degenerate limit distributions - stable
distributions. The limit theorem is a generalization of the CLT and
is known as the Generalized CLT.
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The Generalized Central Limit Theorem

Any properly centered and normalized sum of i.i.d. random
variables converges at the limit to a stable distribution. This
means that the stable distributions are the only distributions which
can arise as limits of sums of i.i.d. random variables.

This feature makes the stable distributions very attractive for the
modeling of financial assets because only they can be used as an
approximate model for sums of i.i.d. random variables.

⇒ The normal distribution is a special case of the stable distributions,
just as the CLT is a special case of the Generalized CLT.

In contrast to the normal distribution, the class of non-normal
stable distributions has skewed and heavy-tailed representatives.
Because of these differences, stable non-normal laws are also
called stable Paretian or Lévy stable.
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Stable distributions

A random variable X is said to have a stable distribution if there
are parameters 0 < α ≤ 2, σ > 0, −1 ≤ β ≤ 1, µ ∈ R such that
its characteristic function ϕX (t) = EeitX has the following form

ϕX (t) =

{
exp{−σα|t |α(1 − iβ t

|t | tan(πα
2 )) + iµt}, α 6= 1

exp{−σ|t |(1 + iβ 2
π

t
|t | ln(|t |)) + iµt}, α = 1

(11)

where t
|t | = 0 if t = 0 and

α is called the index of stability or the tail exponent
β is a skewness parameter
σ is a scale parameter
µ is a location parameter

Since stable distributions are uniquely determined by the four
parameters, the common notation is Sα(σ, β, µ).
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Stable distributions

The parameter α determines how heavy the tails of the distribution
are. That is why it is also called the tail exponent.

The lower the tail exponent, the heavier the tails.

If α = 2, then we obtain the normal distribution.

Thicker tails indicate that the extreme events become more
frequent.

Due to the important effect of the parameter α on the properties of
the stable distributions, they are often called α-stable or alpha
stable.
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Stable distributions
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Figure: The density functions of stable laws with parameters
α = 1.8, 1.4, 1, and 0.8, β = 0.6, σ = 1, µ = 0. All densities are asymmetric
but the skewness is more pronounced when the tail exponent is lower.
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Stable distributions
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Figure: The density functions of stable laws with parameters
α = 1.8, 1.4, 1, and 0.8, β = 0, σ = 1, µ = 0. All densities are symmetric.
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Stable distributions

There is another important characteristic which is the stability
property.

According to the stability property, appropriately centered and
normalized sums of i.i.d. α-stable random variables is again
α-stable.

This property is unique to the class of stable laws.
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Modeling financial assets with stable distributions

We noted that the outliers in the high-frequency data cannot be
modeled by the normal distribution.

But the stable Paretian distributions are heavy-tailed and they
have the potential to describe the heavy-tails and the asymmetry
of the empirical data.

The stable Paretian distributions arise as limit distributions of
sums of i.i.d. random variables with infinite variance and their
variance is also unbounded.

If X ∈ Sα(σ, β, µ), then the moment E |X |p < ∞ only if p < α ≤ 2.
So if we assume a stable Paretian distribution as a model for the
log-returns of a price time series, then we assume that the
variance of the log-returns is infinite.
From a practical viewpoint, this is not a desirable consequence.
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Modeling financial assets with stable distributions

A large number of empirical studies have shown that the stable
distributions provide a very good fit to the observed daily
log-returns for common stocks in different countries and, thus, the
overall idea of using the limit distributions in the Generalized CLT
as a probabilistic model has empirical support.

⇒ As a result, the probabilistic properties of the daily log-returns for
common stocks seem to be well approximated by those of the stable
distributions.

The infinite variance of the stable hypothesis appear as an
undesirable consequence. Therefore, it is reasonable to search for
distributions close to the stable distributions and, at the same
time, have finite variance.

Prof. Dr. Svetlozar Rachev (University of Karlsruhe)Lecture 4: Ideal probability metrics 2008 61 / 88



Modeling financial assets with stable distributions

The methods to obtain such distributions concern truncating the tail of
the stable law very far away from the center of the distribution:

A straightforward approach is to cut the tails of the distribution and
to make the random variable defined not on the entire real line but
on the interval defined by the two truncation points.

Another, more sophisticated approach involves replacing the
stable tails very far away from the center of the distribution by the
tails of another distribution so that the variance becomes finite.

This is the method behind the smoothly truncated stable
distributions which have been very successfully used in option
pricing.
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Modeling financial assets with stable distributions

The tail truncation method is reasonable from a practical viewpoint:

On every stock exchange, there are certain regulations according
to which trading stops if the market index loses more than a given
percentage.

In fact, this is a practical implementation of tail truncation because
huge losses (very small negative log-returns) usually happen
when there is a crisis and in market crashes the market index
plunges.

Thus, astronomical losses (incredibly small negative log-returns)
are not possible in practice.
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Modeling financial assets with stable distributions

From the point of view of the limit theorems, the tail truncation results
in finite variance. Don’t we actually assume that it is the normal
distribution which drives the properties of the monthly log-returns if the
daily log-returns are assumed to follow the truncated stable
distribution?

This is not the case because the truncated stable distributions
converge very slowly to the normal distribution.

The c.d.f. of the sum will begin to resemble the normal c.d.f. only
when the number of summands becomes really huge.

For small and medium number of summands, the density of the
sum is actually closer to the density of the corresponding stable
distribution. This fact has been established using the theory of
probability metrics and is also known as a pre-limit theorem.

Prof. Dr. Svetlozar Rachev (University of Karlsruhe)Lecture 4: Ideal probability metrics 2008 64 / 88



Construction of ideal probability metrics

Fixing the number of summands, how close is the sum of i.i.d.
variables to the limit distribution? What is the convergence rate?

There are many results which state the convergence rate in terms
of different simple probability metrics, such as the Kolmogorov
metric, the total variation metric, the uniform metric between
densities, the Kantorovich metric, etc.

It turned out that probability metrics with special structure have to
be introduced - ideal metrics. Their special structure is dictated by
the particular problem under study — different additional axioms
are added depending on the limit problem.

They are called ideal because they solve the problem in the best
possible way due to their special structure.
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Construction of ideal probability metrics

From Lecture 3, a probability metric µ(X , Y ) is a functional which
measures the “closeness” between the random variables X and
Y , satisfying the following three properties:

Property 1. µ(X , Y ) ≥ 0 for any X , Y and µ(X , X ) = 0

Property 2. µ(X , Y ) = µ(Y , X ) for any X , Y

Property 3. µ(X , Y ) ≤ µ(X , Z ) + µ(Z , Y ) for any X , Y , Z

The three properties are called the identity axiom, the symmetry
axiom and the triangle inequality, respectively.

The ideal probability metrics are probability metrics which satisfy 2
additional properties: the homogeneity property and the regularity
property.

Prof. Dr. Svetlozar Rachev (University of Karlsruhe)Lecture 4: Ideal probability metrics 2008 66 / 88



Homogeneity property

The homogeneity property is

Property 4. µ(cX , cY ) = |c|rµ(X , Y ) for any X , Y and
constants c ∈ R and r ∈ R.

Basically, the homogeneity property states that if we scale the two
random variables by one and the same constant, the distance
between the scaled quantities (µ(cX , cY )) is proportional to the
initial distance (µ(X , Y )) by |c|r .
In particular, if r = 1, then the distance between the scaled
quantities changes linearly with c.
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Homogeneity property

The homogeneity property has a financial interpretation.

We briefly remark that if X and Y are random variables describing
the random return of two portfolios, then converting proportionally
into cash, for example, 30% of the two portfolios results in returns
scaled down to 0.3X and 0.3Y .

Since the returns of the two portfolios appear scaled by the same
factor, it is reasonable to assume that the distance between the
two scales down proportionally.
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Regularity property

The regularity property is

Property 5. µ(X + Z , Y + Z ) ≤ µ(Y , X ) for any X , Y and Z
independent of X and Y .

The regularity property states that if we add to the initial random
variables X and Y one and the same random variable Z
independent of X and Y , then the distance decreases.

Prof. Dr. Svetlozar Rachev (University of Karlsruhe)Lecture 4: Ideal probability metrics 2008 69 / 88



Regularity property

The regularity property has a financial interpretation.

Suppose that X and Y are random variables describing the
random values of two portfolios and Z describes the random price
of a common stock.

Then buying one share of stock Z per portfolio results in two new
portfolios with random wealth X + Z and Y + Z . Because of the
common factor in the two new portfolios, we can expect that the
distance between X + Z and Y + Z is smaller than the one
between X and Y .

⇒ Any functional satisfying Property 1, 2, 3, 4, and 5 is called an ideal
probability metric of order r .
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Examples

There are examples of both compound and simple ideal probability
metrics.

For instance, the p-average compound metric Lp(X , Y ) defined in
equation (20) and the Birnbaum-Orlicz metric Θp(X , Y ) defined in
equation (22) in Lecture 3 are ideal compound probability metrics
of order one and 1/p respectively.

Almost all known examples of ideal probability metrics of order
r > 1 are simple metrics.
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Examples

Almost all of the simple metrics defined in Lecture 3 are ideal:

1. The uniform metric between densities ℓ(X , Y ) defined in equation
(16) is an ideal metric of order −1.

2. The Lp-metrics between distribution functions θp(X , Y ) defined in
equation (13) is an ideal probability metric of order 1/p, p ≥ 1.

3. The Kolmogorov metric ρ(X , Y ) defined in equation (9) is an ideal
metric of order 0. This can also be inferred from the relationship
ρ(X , Y ) = θ∞(X , Y ).

4. The Lp-metrics between inverse distribution functions ℓp(X , Y )
defined in equation (15) is an ideal metric of order 1.
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Examples

5. The Kantorovich metric κ(X , Y ) defined in equation (12) is an
ideal metric of order 1. This can also be inferred from the
relationship κ(X , Y ) = ℓ1(X , Y ).

6. The total variation metric σ(X , Y ) defined in equation (17) is an
ideal probability metric of order 0.

7. The uniform metric between inverse c.d.f.s W(X , Y ) defined in
equation (14) is an ideal metric of order 1.
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Examples

Let us illustrate the order of ideality, or the homogeneity order, by the
ideal metrics ℓ(X , Y ) and σ(X , Y ) which are both based on measuring
distances between density functions.

The left part of Figure on the next slide shows the densities fX (x)
and fY (x) of two random variables X and Y .

At the bottom of the figure, we can see the absolute difference
between the two densities |fX (x) − fY (x)| as a function of x .

The upper right plot shows the densities of the scaled random
variables 0.5X and 0.5Y . Note that they are more peaked at the
means of X and Y .

The lower right plot shows the absolute difference
|fX/2(x) − fY/2(x)| as a function of x .
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Examples
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Figure: The left part shows the densities of X and Y and the absolute
difference between them. The right part shows the same information but for
the scaled random variables 0.5X and 0.5Y .
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Examples

Recall that
ℓ(X , Y ) = max

x∈R

|fX (x) − fY (x)|.

which means that the uniform distance between the two densities
is equal to the maximum absolute difference.

On the figure above we can see that the maximum between the
densities of the scaled random variables is clearly larger than the
maximum of the non-scaled counterparts. Actually, it is exactly
twice as large,

ℓ(X/2, Y/2) = 2ℓ(X , Y )

because of the metric ℓ(X , Y ) is ideal of order −1.
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Examples

In Lecture 3 we explained that the total variation metric σ(X , Y )
can be expressed as one half the area closed between the graphs
of the two densities.

Since the total variation metric is ideal of order zero,

σ(X/2, Y/2) = σ(X , Y ),

then it follows that the surface closed between the two graphs is
not changed by the scaling.

Therefore, the shaded areas on the figure on slide 75 are exactly
the same.
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Examples

Suppose that X and Y are random variables describing the return
of two portfolios.

While interpretation of the homogeneity property, if we start
converting those portfolios into cash, then their returns appear
scaled by a smaller and smaller factor.

Our expectations are that the portfolios should appear more and
more alike; that is, when decreasing the scaling factor, the ideal
metric should indicate that the distance between the two portfolios
decreases.

We verified that the metrics ℓ(X , Y ) and σ(X , Y ) indicate
otherwise. Therefore, in the problem of benchmark tracking it
makes more sense to consider ideal metrics of order greater than
zero, r > 0.
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Examples

Besides the ideal metrics we have listed above, there are others which
allow for interesting interpretations.

1. The Zolotarev ideal metric
Zolotarev’s family of ideal metrics is very large. Here we state only
one example.

ζ2(X , Y ) =

∫ ∞

−∞

∣∣∣∣
∫ x

−∞
FX (t)dt −

∫ x

−∞
FY (t)dt

∣∣∣∣ dx (12)

where X and Y are random variables with equal means,
EX = EY , and they have finite variances. The metric ζ2(X , Y ) is
ideal of order 2.
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Examples

The Zolotarev ideal metric ζ2(X , Y ) can be related to the theory of
preference relations of risk-averse investors, who are
characterized by the their concave utility functions.

Suppose that X and Y are random variables describing the
returns on two investments.

Rothschild and Stiglitz (1970) showed that investment “X ” is
preferred to investment “Y ” by all risk-averse investors if and only
if EX = EY and

∫ t

−∞
FX (x)dx ≤

∫ t

−∞
FY (x)dx , ∀t ∈ R. (13)

This relation is known as Rothschild-Stiglitz dominance.

Prof. Dr. Svetlozar Rachev (University of Karlsruhe)Lecture 4: Ideal probability metrics 2008 80 / 88



Examples

The Zolotarev ideal metric ζ2(X , Y ) sums up the absolute
deviations between the two quantities in inequality (13) for all
values of t .

Therefore, it measures the distance between the investments
returns X and Y directly in terms of the quantities defining the
preference relation of all risk-averse investors. As a result, we can
use it to quantify the preference order.

For example, if we know that investment “X ” is preferred to
investment “Y ” by all risk-averse investors, we can answer the
question of whether X is preferred to Y only to a small degree (if
ζ2(X , Y ) is a small number), or whether X dominates Y
significantly (if ζ2(X , Y ) is a large number).

Prof. Dr. Svetlozar Rachev (University of Karlsruhe)Lecture 4: Ideal probability metrics 2008 81 / 88



The Rachev ideal metric

2. The Rachev family of ideal metrics is also very large. Consider
only one example.

ζs,p(X , Y ) = Cs

(∫ ∞

−∞
|E(t − X )s

+ − E(t − Y )s
+|pdt

)1/p

, (14)

where

Cs is a constant, Cs = 1/(s − 1)!
p is a power parameter, p ≥ 1
s takes integer values, s = 1, 2, . . . , n, . . .
(t − x)s

+ is a notation meaning the larger quantity between t−x
and zero raised to the power s, (t − x)s

+ = (max(t −
x , 0))s

X , Y are random variables with finite moments E |X |s < ∞
and E |Y |s < ∞.

Prof. Dr. Svetlozar Rachev (University of Karlsruhe)Lecture 4: Ideal probability metrics 2008 82 / 88



The Rachev ideal metric

The quantity E(t − X )s
+ appearing in the definition of the metric is

also known as the lower partial moment of order s. The simple
metric ζs,p(X , Y ) is ideal with order r = s + 1/p − 1.

Suppose that X and Y are random variables describing the return
distribution of two common-stocks. The quantity E(t − X )+
calculates the average loss of X provided that the loss is larger
than the performance level t .

Likewise, E(t − Y )+ calculates the average loss of Y larger than t .
The absolute difference |E(t − X )+ − E(t − Y )+| calculates the
deviation between the average loss of X and the average loss of
Y for one and the same performance level t .

Prof. Dr. Svetlozar Rachev (University of Karlsruhe)Lecture 4: Ideal probability metrics 2008 83 / 88



The Rachev ideal metric

In the case p = 1, the metric

ζ1,1(X , Y ) =

∫ ∞

−∞
|E(t − X )+ − E(t − Y )+|dt

sums up the absolute deviations for all possible performance
levels.

In this respect, it is an aggregate measure of the deviations
between the average losses above a threshold. If s > 1, then the
metric ζs,1(X , Y ) sums up the deviations between the lower partial
moments for all possible performance levels.
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The Rachev ideal metric

As the power p increases, it makes the smaller contributors to the
total sum in ζ1,1(X , Y ) become even smaller in the Rachev ideal
metric ζ1,p(X , Y ) defined in (14).

Thus, as p grows, only the largest absolute differences
|E(t − X )+ − E(t − Y )+| start to matter. At the limit, as p
approaches infinity, only the largest difference
|E(t − X )+ − E(t − Y )+| becomes significant and the metric
ζ1,p(X , Y ) turns into

ζ1,∞(X , Y ) = sup
t∈R

|E(t − X )+ − E(t − Y )+|. (15)
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The Rachev ideal metric

Note that the Rachev ideal metric given in equation (15) is entirely
concentrated on the largest absolute difference between the
average loss of X and Y for a common performance level t .

Similarly, the Rachev ideal metric ζs,∞(X , Y ) is calculated to be
represented by the expression

ζs,∞(X , Y ) = Cs sup
t∈R

|E(t − X )s
+ − E(t − Y )s

+|.

It is entirely concentrated on the largest absolute difference
between the lower partial moments of order s of the two random
variables.

⇒ The Zolotarev ideal metric defined in equation (12) appears as a
special case of the Rachev ideal metric.
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The Rachev ideal metric

In financial theory, the lower partial moments are used to
characterize preferences of difference classes of investors.

For example, the lower partial moment of order 2 characterizes
the investors preferences who are non-satiable, risk-averse, and
prefer positively skewed distributions.

Suppose that X and Y describe the return distribution of two
portfolios. X is preferred to Y by this class of investors if EX = EY
and

E(t − X )2
+ ≤ E(t − Y )2

+, ∀t ∈ R.

The Rachev ideal metric ζ2,p(X , Y ) quantifies such a preference
order in a natural way — if X is preferred to Y , then we can
calculate the distance by ζ2,p(X , Y ) and check whether X
significantly dominates Y .
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