
Technical Appendix
Lecture 3: Probability metrics

Prof. Dr. Svetlozar Rachev

Institute for Statistics and Mathematical Economics
University of Karlsruhe

Portfolio and Asset Liability Management

Summer Semester 2008

Prof. Dr. Svetlozar Rachev (University of Karlsruhe) Lecture 3: Probability metrics 2008 1 / 41



Copyright

These lecture-notes cannot be copied and/or distributed without
permission.
The material is based on the text-book:
Svetlozar T. Rachev, Stoyan Stoyanov, and Frank J. Fabozzi
Advanced Stochastic Models, Risk Assessment, and Portfolio
Optimization: The Ideal Risk, Uncertainty, and Performance
Measures
John Wiley, Finance, 2007

Prof. Svetlozar (Zari) T. Rachev
Chair of Econometrics, Statistics
and Mathematical Finance
School of Economics and Business Engineering
University of Karlsruhe
Kollegium am Schloss, Bau II, 20.12, R210
Postfach 6980, D-76128, Karlsruhe, Germany
Tel. +49-721-608-7535, +49-721-608-2042(s)
Fax: +49-721-608-3811
http://www.statistik.uni-karslruhe.de

Prof. Dr. Svetlozar Rachev (University of Karlsruhe) Lecture 3: Probability metrics 2008 2 / 41



Technical Appendix

The distance between various objects, such as vectors, matrices,
functions, etc., are measured by means of special functions called
metrics.

The notion of a metric function, usually denoted by ρ(x , y), is
actually very fundamental. It defines the distance between
elements of a given set.

The most common example is the Euclidean metric,

ρ(x , y) =

√√√√
n∑

i=1

(x2
i − y2

i )

where x = (x1, . . . , xn) and y = (y1, . . . , yn) are vectors in R
n,

which has a very intuitive meaning in the real plane. It calculates
the length of the straight line connecting the two points x and y .
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Technical Appendix

Metric functions are defined through a number of axioms.

A set S is said to be a metric space endowed with the metric ρ if ρ

is a mapping from the product S × S to [0,∞) having the following
properties for each x , y , z ∈ S

Identity property : ρ(x , y) = 0 ⇐⇒ x = y
Symmetry : ρ(x , y) = ρ(y , x)
Triangle inequality : ρ(x , y) ≤ ρ(x , z) + ρ(z, y)
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Technical Appendix

An example of a metric space is the n-dimensional vector space
R

n with the metric

ρ(x , y) = ||x − y ||p =

(
n∑

i=1

|xi − yi |
p

)1/p

, p ≥ 1.

Clearly, the Euclidean metric appears when p = 2.

The same ideas behind the definition of a metric function ρ are
used in the definition of probability metrics.
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Remarks on the axiomatic construction of prob- ability metrics

The first axiom, called the identity property, is a reasonable
requirement. In the theory of probability metrics, we distinguish
between two varieties,

ID. µ(X , Y ) ≥ 0 andµ(X , Y ) = 0, if and only if X ∼ Y
ĨD. µ(X , Y ) ≥ 0 andµ(X , Y ) = 0, if X ∼ Y

The notation X ∼ Y denotes that X is equivalent to Y . The
meaning of equivalence depends on the type of metrics.

If we consider compound metrics, then the equivalence is in
almost sure sense. If we consider simple metrics, then ∼ means
equality of distribution and, finally, if we consider primary metrics,
then ∼ stands for equality of some characteristics of X and Y .
The axiom ĨD is weaker than ID.
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Remarks on the axiomatic construction of prob- ability metrics

The symmetry axiom makes sense in the general context of
calculating distances between elements of a space,

SYM. µ(X , Y ) = µ(Y , X )

The third axiom is the triangle inequality,

TI. µ(X , Y ) ≤ µ(X , Z ) + µ(Z , Y ) for anyX , Y , Z

The triangle inequality is important because it guarantees,
together with ID, that µ is continuous in any of the two arguments.
This nice mathematical property appears as a result of the
consequence of TI,

|µ(X , Y ) − µ(X , Z )| ≤ µ(Z , Y ).
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Remarks on the axiomatic construction of prob- ability metrics

Observe that if the distance between Z and Y as measured by
µ(Z , Y ) is small, so is the left hand-side of the inequality above.
That is, intuitively, small deviations in the second argument of the
functional µ(X , ·) correspond to small deviations in the functional
values. The same conclusion holds for the first argument.

The triangle inequality can be relaxed to the more general form
called triangle inequality with parameter K ,

T̃I. µ(X , Y ) ≤ K (µ(X , Z ) + µ(Z , Y )) for anyX , Y , Z andK ≥ 1.

Notice that the traditional version TI appears when K = 1.
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Remarks on the axiomatic construction of prob- ability metrics

Notice that in the two versions of the triangle inequality, the
statement that the inequality holds for any X , Y , Z is not very
precise.

In fact, we are evaluating the functional µ for a pair of random
variables, for example (X , Y ), and µ shows the distance between
the random variables in the pair.

The pair cannot be dismantled to its constituents because the
random variables X and Y are coupled together by their
dependence structure and if µ is a compound functional, then how
X and Y are coupled is important.

Therefore, the triangle inequality holds for the three pairs (X , Y ),
(X , Z ), and (Y , Z ).
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Remarks on the axiomatic construction of prob- ability metrics

As matter of fact, the three pairs cannot be arbitrary. Suppose that we
choose the first pair (X , Y ) and the second pair (X , Z ); that is, we fix the
dependence between X and Y in the first pair, and X and Z in the
second pair. Under these circumstances, it is obvious that the
dependence between Z and Y cannot be arbitrary but should be
consistent with the dependence of the chosen pairs (X , Y ) and (X , Z ).

But then, is there any freedom in the choice of the pair (Z , Y )? Do these
arguments mean that by choosing the two pairs (X , Y ) and (X , Z ) we
have already fixed the pair (Z , Y )?

It turns out that the pair (Z , Y ) is not fixed by the choice of the other two
ones. We are free to choose the dependence in the pair (Z , Y ) as long
as we do not break the following consistency rule.

Consistency rule: The three pairs of random variables (X , Y ), (X , Z ), and
(Z , Y ) should be chosen in such a way that there exists a consistent
three-dimensional random vector (X , Y , Z ) and the three pairs are its
two-dimensional projections.
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Remarks on the axiomatic construction of prob- ability metrics

Here is an example illustrating the consistency rule.

Let us choose a metric µ. Suppose that we would like to verify if
the triangle inequality holds by choosing three pairs of random
variables.

The distribution of all pairs is assumed to be bivariate normal with
zero mean, (X , Y ) ∈ N(0, Σ1), (X , Z ) ∈ N(0, Σ2), and
(Z , Y ) ∈ N(0, Σ3) where the covariance matrices are given by

Σ1 =

(
1 0.99

0.99 1

)
, Σ2 =

(
1 0.99

0.99 1

)
, Σ3 =

(
1 0
0 1

)
.

Do these three pairs satisfy the consistency rule? Note that the
correlation between X and Y is very strongly positive,
corr(X , Y ) = 0.99. The correlation between X and Z is also very
strongly positive, corr(X , Z ) = 0.99.
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Remarks on the axiomatic construction of prob- ability metrics

Then, is it possible that Z and Y be independent?
The answer is no because, under our assumption, when X takes a
large positive value, both X and Y take large positive values which
implies strong dependence between them.

The consistency rule states that the dependence between Y and
Z should be such that the three pairs can be consistently
embedded in a three-dimensional vector.
Then, can we find a value for the correlation between Z and Y so
that this becomes possible?
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Remarks on the axiomatic construction of prob- ability metrics

We can find a partial answer to the last question by searching for
a consistent three-dimensional normal distribution such that its
two dimensional projections are the given bivariate normal
distributions.

That is, we are free to choose the correlation between Z and Y ,
corr(Z , Y ) = σZY , on condition that the matrix




1 0.99 0.99
0.99 1 σZY

0.99 σZY 1




is a valid covariance matrix, i.e. it should be positive definite.

For this particular example, it can be calculated that the
consistency condition holds if σZY ≥ 0.9602.
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Remarks on the axiomatic construction of prob- ability metrics

Combinations of the defining axioms considered above imply different
properties and, consequently, the functionals defined by them have
specific names. If a functional µ satisfies,

ID, SYM and TI, then µ is called probability metric

ĨD, SYM, TI, then µ is called called probability semimetric

ID, SYM, T̃I, then µ is called called probability distance

ĨD, SYM, T̃I, then µ is called called probability semidistance
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Remarks on the axiomatic construction of prob- ability metrics

In financial applications in particular, the symmetry axiom is not
important and is better to omit it.

Thus, we extend the treatment of these axioms in the same way as it is
done in the field of functional analysis. In case the symmetry axiom,
SYM, is omitted, then quasi- is added to the name. That is, if µ

satisfies,

ID and TI, then µ is called probability quasi-metric

ĨD, TI, then µ is called called probability quasi-semimetric

ID, T̃I, then µ is called called probability quasi-distance

ĨD, T̃I, then µ is called called probability quasi-semidistance

Note that by removing the symmetry axiom we obtain a larger class in
which the metrics appear as symmetric quasi-metrics.

Prof. Dr. Svetlozar Rachev (University of Karlsruhe) Lecture 3: Probability metrics 2008 15 / 41



Examples of probability distances

The difference between probability semi-metrics and probability
semi-distances is in the relaxation of the triangle inequality.

Probability semi-distances can be constructed from probability
semi-metrics by means of an additional function
H(x) : [0,∞) → [0,∞) which is non-decreasing and continuous
and satisfies the following condition

KH := sup
t>0

H(2t)
H(t)

< ∞ (1)

which is known as Orlicz’s condition.

There is a general result which states that if ρ is a metric function,
then H(ρ) is a semi-metric function and satisfies the triangle
inequality with parameter K = KH .

We denote all functions satisfying the properties above and
Orlicz’s condition (1) by H.
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Examples of probability distances
Primary distances

The engineer’s distance

EN(X , Y ; H) := H (|EX − EY |) , H ∈ H (2)

where the random variables X and Y have finite mathematical
expectation, E |X | < ∞, E |Y | < ∞.
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Examples of probability distances
Simple distances

1. The Kantorovich distance

ℓH(X , Y ) :=

∫ 1

0
H(|F−1

X (t) − F−1
Y (t)|)dt , H ∈ H (3)

where the random variables X and Y have finite mathematical
expectation, E |X | < ∞, E |Y | < ∞.

If we choose H(t) = tp, p ≥ 1, then (ℓH(X , Y ))1/p turns into the Lp

metric between inverse distribution functions, ℓp(X , Y ), defined in
(15) in the Lecture. Note that Lp metric between inverse
distribution functions, ℓp(X , Y ), can be slightly extended to

ℓp(X , Y ) :=

(∫ 1

0
|F−1

X (t) − F−1
Y (t)|pdt

)1/ min(1,1/p)

, p > 0. (4)
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Examples of probability distances
Simple distances

Under this slight extension, the limit case p → 0 appears to be the
total variation metric defined in (17),

ℓ0(X , Y ) = σ(X , Y ) = sup
all eventsA

|P(X ∈ A) − P(Y ∈ A)|. (5)

The other limit case provides a relation to the uniform metric
between inverse distribution functions W(X , Y ) given by (14),

ℓ∞(X , Y ) = W(X , Y ) = sup
0<t<1

|F−1
X (t) − F−1

Y (t)|

Prof. Dr. Svetlozar Rachev (University of Karlsruhe) Lecture 3: Probability metrics 2008 19 / 41



Examples of probability distances
Simple distances

2. The Birnbaum-Orlicz average distance

θH(X , Y ) :=

∫

R

H(|FX (x) − FY (x)|)dx , H ∈ H (6)

where the random variables X and Y have finite mathematical
expectation, E |X | < ∞, E |Y | < ∞.

If we choose H(t) = tp, p ≥ 1, then (θH(X , Y ))1/p turns into the
Lp metric between distribution functions, θp(X , Y ), defined in (13).
Note that Lp metric between distribution functions, θp(X , Y ), can
be slightly extended to

θp(X , Y ) :=

(∫ ∞

−∞

|FX (x) − FY (x)|pdx
)1/ min(1,1/p)

, p > 0. (7)
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Examples of probability distances
Simple distances

At limit as p → 0,

θ0(X , Y ) :=

∫ ∞

−∞

I{x : FX (x) 6= FY (x)}dx (8)

where the notation I{A} stands for the indicator of the set A. That
is, the simple metric θ0(X , Y ) calculates the Lebesgue measure of
the set {x : FX (x) 6= FY (x)}.

If p → ∞, then we obtain the Kolmogorov metric defined in (9) in
the Lecture, θ∞(X , Y ) = ρ(X , Y ).
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Examples of probability distances
Simple distances

3. The Birnbaum-Orlicz uniform distance

ρH(X , Y ) : = H(ρ(X , Y ))

= sup
x∈R

H(|FX (x) − FY (x)|), H ∈ H (9)

The Birnbaum-Orlicz uniform distance is a generalization of the
Kolmogorov metric.
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Examples of probability distances
Simple distances

4. The parametrized Lévy metric

Lλ(X , Y ) := inf{ǫ > 0 : FX (x − λǫ) − ǫ ≤ FY (x)

≤ FX (x + λǫ) + ǫ, ∀x ∈ R}
(10)

This is a parametric extension of the Lévy metric, L(X , Y ), defined
by (10). The obvious relationship with the Lévy metric is
L1(X , Y ) = L(X , Y ).
It is possible to show that the parametric extension Lλ(X , Y ) is
related to the celebrated Kolmogorov metric, ρ(X , Y ), defined by
(9) and the uniform metric between inverse distribution functions,
W(X , Y ), given by equation (14),

lim
λ→0

Lλ(X , Y ) = ρ(X , Y ) and lim
λ→∞

λLλ(X , Y ) = W(X , Y ).
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Examples of probability distances
Compound distances

1. The H-average compound distance

LH(X , Y ) := E(H(|X − Y |)), H ∈ H (11)

If we choose H(t) = tp, p ≥ 1, then (LH(X , Y ))1/p turns into the
p-average metric, Lp(X , Y ), defined in (20). Note that the
p-average metric can be slightly extended to

Lp(X , Y ) := (E |X − Y |p)1/ min(1,1/p), p > 0 (12)

At the limit, as p → 0, we define

L0(X , Y ) := P({w : X (w) 6= Y (w)}) (13)

If p → ∞, then we define

L∞(X , Y ) := inf{ǫ > 0 : P(|X − Y | > ǫ) = 0} (14)
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Examples of probability distances
Compound distances

2. The Ky-Fan distance

KFH(X , Y ) := inf{ǫ > 0 : P(H(|X − Y |) > ǫ) < ǫ}, H ∈ H (15)

A particular case of the Ky-Fan distance is the parametric family of
Ky-Fan metrics

Kλ(X , Y ) := inf{ǫ > 0 : P(|X − Y | > λǫ) < ǫ}, λ > 0 (16)

The parametric family Kλ(X , Y ) has application in the theory of
probability since, for each λ > 0, Kλ(X , Y ) metrizes the
convergence in probability. That is, if X1, . . . , Xn, . . . is a sequence
of random variables, then

Kλ(Xn, Y ) → 0 ⇐⇒ P(|Xn − Y | > ǫ) → 0, for anyǫ > 0.
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Examples of probability distances
Compound distances

The parametric family Kλ(X , Y ) is related to the p-average
compound metric. The following relations hold,

lim
λ→0

Kλ(X , Y ) = L0(X , Y ) and lim
λ→∞

λKλ(X , Y ) = L∞(X , Y )

Even though the Ky-Fan metrics imply convergence in probability,
these two limit cases induce stronger convergence. That is, if
X1, . . . , Xn, . . . is a sequence of random variables, then

L0(Xn, Y ) → 0 ⇒
6⇐ Xn → Y “in probability”

and

L∞(Xn, Y ) → 0 ⇒
6⇐ Xn → Y “in probability”
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Examples of probability distances
Compound distances

3. The Birnbaum-Orlicz compound average distance

ΘH(X , Y ) :=

∫ ∞

−∞

H(τ(t ; X , Y ))dt , H ∈ H (17)

where τ(t ; X , Y ) = P(X ≤ t < Y ) + P(X < t ≤ Y ).

If we choose H(t) = tp, p ≥ 1, then (ΘH(X , Y ))1/p turns into the
Birnbaum-Orlicz average metric, Θp(X , Y ), defined in (22) in the
Lecture. Note that the Birnbaum-Orlicz average metric can be
slightly extended to

Θp(X , Y ) :=

(∫ ∞

−∞

(τ(t ; X , Y ))pdt
)1/ min(1,1/p)

, p > 0 (18)
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Examples of probability distances
Compound distances

At the limit, as p → 0, we define

Θ0(X , Y ) :=

∫ ∞

−∞

I{t : τ(t ; X , Y ) 6= 0}dt (19)

where I{A} is the indicator of the set A. If p → ∞, then we define

Θ∞(X , Y ) := sup
t∈R

τ(t ; X , Y ) (20)
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Examples of probability distances
Compound distances

4. The Birnbaum-Orlicz compound uniform distance

RH(X , Y ) := H(Θ∞(X , Y )) = sup
t∈R

H(τ(t ; X , Y )), H ∈ H (21)

This is the compound uniform distance of the Birnbaum-Orlicz
family of compound metrics.
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Minimal and maximal distances

We noted that two functionals can be associated to any compound
metric µ(X , Y ) — the minimal metric µ̂(X , Y ) and the maximal metric
µ̌(X , Y ) defined with equations (23) and (24) in the Lecture, respectively.
The relationship between the three functionals is

µ̂(X , Y ) ≤ µ(X , Y ) ≤ µ̌(X , Y ).

Exactly the same process can be followed in order to construct minimal
and maximal distances, minimal and maximal semi-distances, minimal
and maximal quasi-distances, etc. It turns out that the minimal functional

µ̂(X , Y ) = inf{µ(X̃ , Ỹ ) : X̃ d
= X , Ỹ d

= Y}

is metric, distance, semi-distance or quasi-semidistance whenever
µ(X , Y ) is metric, distance, semi-distance or quasi-semidistance.

The minimization preserves the essential triangle inequality with
parameter Kµ̂ = Kµ and also the identity property assumed for µ.
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Minimal and maximal distances

In contrast, the maximal functional

µ̌(X , Y ) = sup{µ(X̃ , Ỹ ) : X̃ d
= X , Ỹ d

= Y}

does not preserve all properties of µ(X , Y ) and, therefore, it is not
a probability distance.

In fact, the maximization does not preserve the important identity
property, while the triangle inequality holds with parameter
Kµ̌ = Kµ.

As we noted in the lecture, functionals which satisfy properties
SYM and T̃I and fail to satisfy the identity property are called
moment functions. Thus, the maximal distance is a moment
function.
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Minimal and maximal distances

Many simple probability distances arise as minimal
semi-distances with respect to some compound semi-distance.

If H ∈ H is a convex function, then

ℓH(X , Y ) = L̂H(X , Y )

θH(X , Y ) = Θ̂H(X , Y )

ρH(X , Y ) = R̂H(X , Y ).
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Minimal and maximal distances

A very general result, which is used to obtain explicit expressions
for minimal and maximal functionals such as µ̂(X , Y ) and µ̌(X , Y ),
is the Cambanis-Simons-Stout theorem.

This theorem provides explicit forms of the minimal and maximal
functionals with respect to a compound functional having the
general form

µφ(X , Y ) := Eφ(X , Y )

where φ(x , y) is a specific function called quasi-antitone.

The index φ is a reminder that the functional has the particular
form with the φ function.
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Minimal and maximal distances

Then for the minimal and the maximal functionals µ̂φ(X , Y ) and
µ̌φ(X , Y ) we have the explicit representations,

µ̂φ(X , Y ) =

∫ 1

0
φ(F−1

X (t), F−1
Y (t))dt (22)

and

µ̌φ(X , Y ) =

∫ 1

0
φ(F−1

X (t), F−1
Y (1 − t))dt (23)
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Minimal and maximal distances

The function φ(x , y) is called quasi-antitone if it satisfies the
following property

φ(x , y) + φ(x ′, y ′) ≤ φ(x ′, y) + φ(x , y ′) (24)

for any x ′ > x and y ′ > y .

This property is related to how the function increases when its
arguments increase.

Also, the function φ should satisfy the technical condition that
φ(x , x) = 0. There is another technical condition which is related
to the random variables X and Y . The following moments should
be finite, Eφ(X , a) < ∞ and Eφ(Y , a) < ∞, a ∈ R.
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Minimal and maximal distances

General examples of quasi-antitone functions include

a) φ(x , y) = f (x − y) where f is a non-negative convex function in R,
for instance φ(x , y) = |x − y |p, p ≥ 1.

b) φ(x , y) = −F (x , y) where F (x , y) is the distribution function of a
two dimensional random variable.
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Minimal and maximal distances

How do we apply the Cambanis-Simons-Stout theorem?
There are three steps.

Step 1. Identify the function φ(x , y) from the particular form of
the compound metric.

Step 2. Verify if the function φ(x , y) is quasi-antitone and
whether φ(x , x) = 0. This can be done by verify-
ing first if φ(x , y) belongs to any of the examples of
quasi-antitone functions given above.

Step 3. Keep in mind that whenever we have to apply the
result in the theorem for particular random variables
(X , Y ), then the following moments should satisfy the
conditions Eφ(X , a) < ∞ and Eφ(Y , a) < ∞, a ∈ R.
Otherwise, the corresponding metrics may explode.
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Minimal and maximal distances

Let us see how the Cambanis-Simons-Stout result is applied to the
H-average compound distance LH(X , Y ) defined in (11).
The compound functional has the general form,

LH(X , Y ) = E(H(|X − Y |)), H ∈ H

and the function φ(x , y) = H(|x − y |), x , y ∈ R. Due to the properties of
the function H, φ(x , x) = H(0) = 0 and, if we assume additionally that H
is a convex function, we obtain that φ(x , y) is quasi-antitone.
Applying the theorem yields the following explicit forms of the minimal
and the maximal distance,

L̂H(X , Y ) =

∫ 1

0
H(|F−1

X (t) − F−1
Y (t)|)dt , H ∈ H

and

ĽH(X , Y ) =

∫ 1

0
H(|F−1

X (t) − F−1
Y (1 − t)|)dt , H ∈ H. (25)

We tacitly assume that the technical conditions E(H(|X − a|)) < ∞ and
E(H(|Y − a|)) < ∞, a ∈ R hold.
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Minimal and maximal distances

There is another method of obtaining explicit forms of minimal and
maximal functionals - the direct application of the celebrated
Fréchet-Hoeffding inequality between distribution functions,

max(FX (x) + FY (y) − 1, 0) ≤ P(X ≤ x , Y ≤ y)

≤ min(FX (x), FY (y)).
(26)

This inequality is applied to the problem of finding the minimal distance
of the Birnbaum-Orlicz distance defined in (17):

ΘH(X , Y ) =

∫
∞

−∞

H(P(X ≤ t < Y ) + P(X < t ≤ Y ))dt

=

∫
∞

−∞

H(P(X ≤ t) + P(Y ≤ t) − 2P(X ≤ t , Y ≤ t)))dt

≥

∫
∞

−∞

H(FX (t) + FY (t) − 2 min(FX (t), FY (t)))dt

=

∫
∞

−∞

H(|FX (t) − FY (t)|)dt = θH(X , Y )
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Minimal and maximal distances

In fact, the Fréchet-Hoeffding inequality is not unrelated to the
Cambanis-Simons-Stout result.

The minimal and the maximal functionals are obtained at the
upper and the lower Fréchet-Hoeffding bounds and they can also
be represented in terms of random variables as

µ̂φ(X , Y ) = Eφ(F−1
X (U), F−1

Y (U)) (27)

and
µ̌φ(X , Y ) = Eφ(F−1

X (U), F−1
Y (1 − U)) (28)

where U is a uniformly distributed random variable in the interval
(0, 1).
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