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Introduction

Theory of probability metrics came from the investigations related
to limit theorems in probability theory.

A well-known example is Central Limit Theorem (CLT) but there
are many other limit theorems, such as the Generalized CLT, the
max-stable CLT, functional limit theorems, etc.

The limit law can be regarded as an approximation to the
stochastic model considered and, therefore, can be accepted as
an approximate substitute.

How large an error we make by adopting the approximate model?
This question can be investigated by studying the distance
between the limit law and the stochastic model and whether it is,
for example, sum or maxima of i.i.d. random variables makes no
difference as far as the universal principle is concerned.
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Introduction

The theory of probability metrics studies the problem of measuring
distances between random quantities.

First, it provides the fundamental principles for building probability
metrics — the means of measuring such distances.

Second, it studies the relationships between various classes of
probability metrics.

It also concerns problems which require a particular metric while
the basic results can be obtained in terms of other metrics.
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Introduction

No limitations in the theory of probability metrics on the nature of
the random quantities makes its methods fundamental and
appealing.

It is more appropriate to refer to the random quantities as random
elements: random variables, random vectors, random functions or
random elements of general spaces.

For instance, in the context of financial applications, we can study
the distance between two random stocks prices, or between
vectors of financial variables building portfolios, or between entire
yield curves which are much more complicated objects.

⇒ The methods of the theory remain the same, no matter the nature of
the random elements.
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Measuring distances: the discrete case

So how can we measure the distance between two random quantities?

The important topics will be discussed such as:

Examples of metrics defined on sets of characteristics of discrete
distributions

Examples of metrics based on the cumulative distribution function
of discrete random variables

Examples of metrics defined on the joint probability of discrete
random variables

Minimal and maximal distances
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Sets of characteristics

Let us consider a pair of unfair dice and label the elements of the pair
“die X” and “die Y”.

“Die X” face 1 2 3 4 5 6
Probability, pi 3/12 2/12 1/12 2/12 2/12 2/12

“Die Y” face 1 2 3 4 5 6
Probability, qi 2/12 2/12 2/12 1/12 2/12 3/12

Table: The probabilities of the faces of “die X” and “die Y”

In the case of “die X”, the probability of face 1 is higher than 1/6, which
is the probability of a face of a fair die, and the probability of face 3 is
less than 1/6. The probabilities of “die Y” have similar deviations from
those of a fair die.
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Measuring distances: the discrete case

We can view the pair of dice as an example of two discrete
random variables: X for “die X” and Y for “die Y”.

The two discrete random variables have different distributions and,
also, different characteristics, such as the mean and higher
moments.

Therefore, we can compare the two random variables in terms of
the differences in some of their characteristics.

For example, let us choose the mathematical expectation:

EX =
6∑

i=1

ipi = 40/12 and EY =
6∑

i=1

iqi = 44/12.
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Measuring distances: the discrete case

The distance between the two random variables, µ(X , Y ), may be
computed as the absolute difference between the corresponding
mathematical expectations,

µ(X , Y ) = |EX − EY | = 4/12.

The second moment can be calculated:

EX 2 =
6∑

i=1

i2pi = 174/12 and EY 2 =
6∑

i=1

i2qi = 202/12.

If we add it to the mathematical expectation, for the distance we
obtain

µ(X , Y ) = |EX − EY | + |EX 2 − EY 2| = 32/12.
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Measuring distances: the discrete case

If we considered a pair of fair dice, these characteristics would
coincide and we would obtain that the distance between the two
random variables is zero.

However, it is possible to obtain zero deviation between given
characteristics in the case of unfair dice.

Let us illustrate this with the variance of X and Y . The variance of
a random variable Z , DZ , is defined as,

DZ = E(Z − EZ )2.

or
DZ = E(Z − EZ )2 = EZ 2 − (EZ )2.
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Measuring distances: the discrete case

The variance of X equals

DX = EX 2 − (EX )2 =
174
12

−

(
40
12

)2

=
61
18

and the variance of Y equals

DY = EY 2 − (EY )2 =
202
12

−

(
44
12

)2

=
61
18

.

We obtain that DX = DY .

⇒ Thus, any attempts to measure the distance between the two
random variables in terms of differences in variance will indicate zero
distance even though “die X” is quite different from “die Y”.
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Distribution functions

By including more additional characteristics when measuring the
distance between two random variables, we incorporate in
µ(X , Y ) more information from their distribution functions.

How many characteristics we have to include, when X and Y have
discrete distributions, so that we can be sure that the entire
distribution function of X , FX (x) = P(X ≤ x) agrees to the entire
distribution of Y , FY (x) = P(Y ≤ x)?

Let us consider

µ(X , Y ) =
n∑

k=1

|EX k − EY k | (1)

assuming that X and Y are the two dice considered above but this
time we do not know the probabilities pi and qi , i = 1, 6.
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Distribution functions

How large should n be so that µ(X , Y ) = 0 guarantees that the
distributions of X and Y agree completely?
Since µ(X , Y ) = 0 is equivalent to

∣∣∣∣∣∣∣∣

EX = EY
EX 2 = EY 2

. . .
EX n = EY n

⇐⇒

∣∣∣∣∣∣∣∣

∑6
i=1 i(pi − qi) = 0∑6
i=1 i2(pi − qi) = 0

. . .∑6
i=1 in(pi − qi) = 0

then we need exactly 5 equations in order to guarantee that
P(X = i) = pi = P(Y = i) = qi , i = 1, 6.

Because there are 6 differences pi − qi in the equations and we
need 6 equations from the ones above plus the additional equation∑6

i=1(pi − qi) = 0 as all probabilities should sum up to one.

⇒ If X and Y are positive integers valued with k outcomes, then we
need k − 1 equations in order to solve the linear system.
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Distribution functions

⇒ If a given number of characteristics of two discrete random variables
with finitely many outcomes agree, then their distribution functions
agree completely.

Then, instead of trying to figure out how many characteristics to
include in a metric of a given type, is it possible to consider ways
of measuring the distance between X and Y directly through their
distribution function?

If the distribution functions of two random variables coincide, then
we have equal corresponding probabilities of any event and we
can conclude that they have the same probabilistic properties.

In the pair of dice example, all events are described by the set of
all possible unions of the outcomes.
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Distribution functions

The distribution functions FX (x) and FY (x) of “die X” and “die Y”
are easy to calculate,

FX (x) =

{
0, [x ] < 1∑[x ]

i=1 pi , [x ] ≥ 1
=





0, x < 1
3/12, 1 ≤ x < 2
5/12, 2 ≤ x < 3
6/12, 3 ≤ x < 4
8/12, 4 ≤ x < 5
10/12, 5 ≤ x < 6
1, x ≥ 6

(2)

FY (x) =

{
0, [x ] < 1∑[x ]

i=1 qi , [x ] ≥ 1
=





0, x < 1
2/12, 1 ≤ x < 2
4/12, 2 ≤ x < 3
6/12, 3 ≤ x < 4
7/12, 4 ≤ x < 5
9/12, 5 ≤ x < 6
1, x ≥ 6

(3)

where [x ] denotes the largest integer smaller than x .

Prof. Dr. Svetlozar Rachev (University of Karlsruhe) Lecture 3: Probability metrics 2008 15 / 93



Distribution functions

One way to calculate the distance between two discrete
cumulative distribution functions (c.d.f.s) FX (x) and FY (x) is to
calculate the maximal absolute difference between them,

µ(X , Y ) = max
x∈R

|FX (x) − FY (x)|. (4)

In the case of the two dice example, equation (4) can be readily
computed, maxx∈R |FX (x) − FY (x)| = 1/12. The maximum is
attained at any x ∈ [1, 3)

⋃
[4, 6).
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Distribution functions

Another approach is to compute the area closed between the graphs
of the two functions. If the area is zero, then due to the properties of
the c.d.f.s we can conclude that the two functions coincide.

F x( )

F x( )
X

Y

0

1

4/12

8/12

1 2 3 4 5 60 7

Figure: The plot shows the c.d.f.s of “die X” and “die Y”. The area closed
between the graphs of the two c.d.f.s is shaded.
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Distribution functions

The formula for the total area between the graphs of the two step
functions is easy to arrive at,

µ(X , Y ) =
6∑

k=1

∣∣∣∣∣

k∑

i=1

pi −
k∑

i=1

qi

∣∣∣∣∣ . (5)

Using the probabilities given in the table before on the slide 7, we
compute that the µ(X , Y ) = 4/12.

Prof. Dr. Svetlozar Rachev (University of Karlsruhe) Lecture 3: Probability metrics 2008 18 / 93



Distribution functions

A similar approach can be adopted with respect to the quantile
function of a random variable Z , or the inverse of the c.d.f.

If the inverse c.d.f.s of two random variables coincide, then the
distribution functions coincide. Then the distance between two
random variables can be measured through the distance between
the inverse of the c.d.f.s.

The inverse F−1
Z (t) of the c.d.f. is defined as

F−1
Z (t) = inf{x : FZ (x) ≥ t}.
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Distribution functions

For example, the inverse c.d.f.s of (2) and (3) are

F−1
X (t) =





1, 0 < t ≤ 3/12
2, 3/12 < t ≤ 5/12
3, 5/12 < t ≤ 6/12
4, 6/12 < t ≤ 8/12
5, 8/12 < t ≤ 10/12
6, 10/12 < t ≤ 1

(6)

F−1
Y (t) =





1, 0 < t ≤ 2/12
2, 2/12 < t ≤ 4/12
3, 4/12 < t ≤ 6/12
4, 6/12 < t ≤ 7/12
5, 7/12 < t ≤ 9/12
6, 9/12 < t ≤ 1

(7)
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Distribution functions

Again, the distance between the inverse c.d.f.s, and, hence,
between the corresponding random variables, can be computed
as the maximal absolute deviation between them,

µ(X , Y ) = sup
t

|F−1
X (t) − F−1

Y (t)|,

or as the area between their graphs.

In fact, the area between the graphs of the c.d.f.s and the inverse
c.d.f.s is one and the same, therefore formula (5) holds.
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Distribution functions

0 14/12 8/12

1

2

3

4

5

6

0

7

F x( )Y

F x( )X
-1

-1

Figure: The plot shows the inverse c.d.f.s of “die X” and “die Y”. The area
closed between the graphs of the two functions is shaded.
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Joint distribution

We’ve already considered the discrete r.v. X and Y separately,
without their joint distribution. Here we will construct metrics
directly using the joint distribution on the example of 2 coins.

First, let us consider a pair of fair coins with joint probabilities as
given below. The outcomes are traditionally denoted by zero and
one and the joint probabilities indicate that the outcomes of the
two coins are independent events.

“coin X”
0 1

“coin Y” 0 1/4 1/4
1 1/4 1/4

Table: The joint probabilities of the outcomes of two fair coins.
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Joint distribution

Both coins are fair and, therefore, they are indistinguishable if
considered separately, as stand-alone random mechanisms.

The distance between the two random variables behind the
random mechanism is zero on the basis of the discussed
approach. They have the same distribution functions and,
consequently, all kinds of characteristics are also the same.

⇒ In effect, any kind of metric based on the distribution function would
indicate zero distance between the two random variables.
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Joint distribution

Of course, the two random variables are not the same. They only
have identical probabilistic properties.

For instance, the conditional probability P(X = 0|Y = 1) = 1/2
and it follows that the events {X = 0, Y = 1} and {X = 0, Y = 0}
may both occur if we observe realizations of the pair.

If we would like to measure the distance between the random
variables themselves, we need a different approach than the ones
described above. If the random variables are defined on the same
probability space (i.e. if we know their joint distribution), then we
can take advantage of the additional information.
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Joint distribution

One way to calculate the distance between the two random
variables is through an absolute moment of the difference X − Y ,
for example,

µ(X , Y ) = E |X − Y |. (8)

A simple calculation shows that µ(X , Y ) = 1/2 for the joint
distribution in the table on slide 23.
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Joint distribution

The joint distribution of a pair of random variables (X , Y ) provides
a complete description of the probabilistic properties of the pair.

We can compute the one-dimensional distribution functions; that
is, we know the probabilistic properties of the variables if viewed
on a stand-alone basis, and we also know the dependence
between X and Y .

If we keep the one-dimensional distributions fixed and change the
dependence only, does the distance between the random
variables change?

The answer is affirmative and we can illustrate it with the metric (8)
using the joint distribution in the table already given on slide 23.
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Joint distribution

The absolute difference |X − Y | in this case may take only two
values — zero and one.

The mean E |X − Y | can increase or decrease depending on the
probabilities of the two outcomes.

We have to keep in mind that the one-dimensional probabilities
should remain unchanged, i.e. the sums of the numbers in the
rows and the columns should be fixed to 1/2.

Now it is easy to see how the probability mass has to be
reallocated so that we obtain the minimal E |X − Y | — we have to
increase the probability of the outcome (X = 0, Y = 0) and
(X = 1, Y = 1) and reduce the probabilities of the other two
outcomes.

Prof. Dr. Svetlozar Rachev (University of Karlsruhe) Lecture 3: Probability metrics 2008 28 / 93



Joint distribution

We arrive at the conclusion that the minimal E |X − Y | is attained
at the joint distribution given in table below.
The minimal E |X − Y | is called the minimal metric.

“coin X”
0 1

“coin Y” 0 1/2 0
1 0 1/2

Table: The joint probabilities of the outcomes of two fair coins yielding
the minimal E |X − Y |.

The minimal E |X − Y | in this case is equal to zero. Because the
joint distribution implies that the only possible outcomes are
(X = 0, Y = 0) and (X = 1, Y = 1) which means that the two
random variables cannot be distinguished. In all states of the
world with non-zero probability, they take identical values.
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Joint distribution

The exercise of finding the maximal E |X − Y | is an alternative to
finding the minimal metric.
Now we have to increase the probability of (X = 0, Y = 1) and
(X = 1, Y = 0) and reduce the probabilities of the other two
outcomes.
Finally, we find that the maximal E |X − Y | is attained at the joint
distribution given in the table below. The maximal E |X − Y | is
called the maximal distance because it does not have metric
properties.

“coin X”
0 1

“coin Y” 0 0 1/2
1 1/2 0

Table: The joint probabilities of the outcomes of two fair coins yielding the
maximal E |X − Y |.
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Joint distribution

Note that in latter case the only possible outcomes are
(X = 0, Y = 1) and (X = 1, Y = 0) and thus the two random
variables are, in a certain sense, “maximally distinct”.

There is not a single state of the world with non-zero probability in
which the two random variables take identical values.
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Joint distribution

When considering two fair coins, we checked that the minimal
E |X − Y | is equal to zero.
If the one-dimensional distribution of the coins were not the same
then we would not obtain a zero distance from the minimal metric.
For example, let us consider two coins, “coin U” and “coin V” with
joint probabilities as given in the table below.

“coin U”
0 1

“coin V” 0 3/20 7/20
1 2/20 8/20

Table: The joint probabilities of the outcomes “coin U” and “coin V”

⇒ It becomes clear that “coin V” is fair, while “coin U” is unfair — the
event “0” happens with probability 5/20 and the event “1” with
probability 15/20.
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Joint distribution

The same arguments as in the fair-coin example show that the
minimal E |U − V | and the maximal E |U − V | are achieved at the
joint distributions given in the tables below.

“coin U”
0 1

“coin V” 0 1/4 1/4
1 0 1/2

Table: The joint probabilities yielding minimal E |U − V |

“coin U”
0 1

“coin V” 0 0 1/2
1 1/4 1/4

Table: The joint probabilities yielding maximal E |U − V |

The minimal E |U − V | equals 1/4. It cannot equal zero because the
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Joint distribution

There is a remarkable relationship between minimal metrics and
the metrics based on the distribution functions.

For example, the metric (5) applied to the one-dimensional
distributions of the two coins U and V yields exactly 1/4, which is
also the value of the minimal E |U − V |.
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Primary, simple, and compound metrics

Here we’ll revisit the ideas considered in the previous section at a
more advanced level with continuous random variables’ examples.

Important topics will be discussed such as:

Axiomatic construction of probability metrics

Distinction between the three classes of primary, simple, and
compound metrics

Minimal and maximal distances
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Axiomatic construction

Generally, a metric, or a metric function, defines the distance
between elements of a given set.

Metrics are introduced axiomatically; that is, any function which
satisfies a set of axioms is called a metric.

A functional which measures the distance between random
quantities is called a probability metric.

These random quantities can be random variables, such as the
daily returns of equities, the daily change of an exchange rate,
etc., or stochastic processes, such as a price evolution in a given
period, or much more complex objects such as the daily
movement of the shape of the yield curve.

We limit the discussion to one-dimensional random variables only.

Prof. Dr. Svetlozar Rachev (University of Karlsruhe) Lecture 3: Probability metrics 2008 36 / 93



Axiomatic construction

There are special properties that should be satisfied in order for
the functional to be called a probability metric.

These special properties are the axioms which constitute the
building blocks behind the axiomatic construction:

1. The first axiom states that the distance between a random
quantity and itself should be zero while in general, it is a
non-negative number,

Property 1. µ(X , Y ) ≥ 0 for any X , Y and µ(X , X ) = 0

Any other requirement will necessarily result in logical
inconsistencies.
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Axiomatic construction

2. The second axiom demands that the distance between X and Y
should be the same as the distance between Y and X and is
referred to as the symmetry axiom,

Property 2. µ(X , Y ) = µ(Y , X ) for any X , Y

3. The third axiom is essentially an abstract version of the triangle
inequality — the distance between X and Y is not larger than the
sum of the distances between X and Z and between Z and Y ,

Property 3. µ(X , Y ) ≤ µ(X , Z ) + µ(Z , Y ) for any X , Y , Z

⇒ Any functional satisfying Property 1, 2, and 3 is called probability
metric.
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Primary metrics

Suppose that X and Y stand for the random returns of 2 equities.

Then what is meant by X being the same or coincident to Y? It is
that X and Y are indistinguishable in a certain sense. This sense
could be to the extent of a given set of characteristics of X and Y .

For example, X is to be considered indistinguishable to Y if their
expected returns and variances are the same. Therefore, a way to
define the distance between them is through the distance between
the corresponding characteristics, i.e., how much their expected
returns and variances deviate.

One example is

µ(X , Y ) = |EX − EY | + |σ2(X ) − σ2(Y )|

Such probability metrics are called primary metrics, and they
imply the weakest form of sameness.
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Primary metrics

Primary metrics may be relevant in the following case:

Suppose that we adopt the normal distribution to model the
returns of two equities X and Y .

We estimate the mean of equity X to be larger than the mean of
equity Y , EX > EY . We may want to measure the distance
between X and Y in terms of their variances only because if
|σ2(X ) − σ2(Y )| turns out to be zero, then, on the basis of our
assumption, we conclude that we prefer X to Y .

Certainly this conclusion may turn out to be totally incorrect
because the assumption of normality may be completely wrong.
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Primary metrics

Common examples of primary metrics include,

1 The engineer’s metric

EN(X , Y ) := |EX − EY |

where X and Y are random variables with finite mathematical
expectation, EX < ∞ and EY < ∞.

2 The absolute moments metric

MOMp(X , Y ) := |mp(X ) − mp(Y )|, p ≥ 1

where mp(X ) = (E |X |p)1/p and X and Y are random variables
with finite moments, E |X |p < ∞ and E |Y |p < ∞, p ≥ 1.
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Simple metrics

From probability theory we know that a random variable X is
completely described by its cumulative distribution function.
⇒ If we know the distribution function, then we can calculate all
kinds of probabilities and characteristics.

In the case of equity returns, we can compute the probability of
the event that the return falls below a given target or the expected
loss on condition that the loss is below a target.

Therefore, zero distance between X and Y can imply complete
coincidence of the distribution functions FX (x) and FY (x) of X and
Y and therefore, a stronger form of sameness.

Probability metrics which essentially measure the distance
between the corresponding distribution functions are called simple
metrics.
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Simple metrics

In the case of continuous random variables, is it possible to determine
how many characteristics we need to include so that the primary
metric turns essentially into a simple metric?

In contrast to the discrete case, the question does not have a
simple answer.

Generally, a very rich set of characteristics will ensure that the
distribution functions coincide. Such a set is, for example, the set
of all moments Eg(X ) where the function g is a bounded,
real-valued continuous function.

Clearly, this is without any practical significance because this set
of characteristics is not denumerable; that is, it contains more
characteristics than the natural numbers.

Nevertheless, this argument shows the connection between the
classes of primary and simple metrics.
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Simple metrics - The Kolmogorov metric

Common examples of simple metrics are stated below:

1. The Kolmogorov metric

ρ(X , Y ) := sup
x∈R

|FX (x) − FY (x)| (9)

where FX (x) is the distribution function of X and FY (x) is the
distribution function of Y .

The Kolmogorov metric is also called the uniform metric.

Figure on the next slide illustrates the Kolmogorov metric.
|FX (x) − FY (x)|, as a function of x .
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Simple metrics - The Kolmogorov metric
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Figure: Illustration of the Kolmogorov metric. The bottom plot shows the
absolute difference between the two c.d.f.s plotted on the top plot,
|FX (x) − FY (x)|, as a function of x . The arrow indicates where the largest
absolute difference is attained.

Prof. Dr. Svetlozar Rachev (University of Karlsruhe) Lecture 3: Probability metrics 2008 45 / 93



Simple metrics - The Kolmogorov metric

If the r.v. X and Y describe the return distribution of 2 common stocks,
then the Kolmogorov metric has the following interpretation.

The distribution function FX (x) is the probability that X loses more
than a level x , FX (x) = P(X ≤ x). Similarly, FY (x) is the
probability that Y loses more than x .

Therefore, the Kolmogorov distance ρ(X , Y ) is the maximum
deviation between the two probabilities that can be attained by
varying the loss level x . If ρ(X , Y ) = 0, then the probabilities that
X and Y lose more than a loss level x coincide for all loss levels.

Usually, the loss level x , for which the maximum deviation is
attained, is close to the mean of the return distribution, i.e. the
mean return. Thus, the Kolmogorov metric is completely
insensitive to the tails of the distribution which describe the
probabilities of extreme events.
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Simple metrics - The Lévy metric

2. The Lévy metric

L(X , Y ) := inf
ǫ>0

{FX (x−ǫ)−ǫ ≤ FY (x) ≤ FX (x+ǫ)+ǫ, ∀x ∈ R} (10)

The Lévy metric is difficult to calculate in practice.

It has important theoretic application in probability theory as it
metrizes the weak convergence.
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Simple metrics - The Lévy metric

The Kolmogorov metric and the Lévy metric can be regarded as
metrics on the space of distribution functions because ρ(X , Y ) = 0
and L(X , Y ) = 0 imply coincidence of the distribution functions
FX (x) and FY (x).

The Lévy metric can be viewed as measuring the closeness
between the graphs of the distribution functions while the
Kolmogorov metric is a uniform metric between the distribution
functions.

The general relationship between the two is

L(X , Y ) ≤ ρ(X , Y ) (11)
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Simple metrics - The Lévy metric

Suppose that X is a random variable describing the return
distribution of a portfolio of stocks and Y is a deterministic
benchmark with a return of 2.5% (Y = 2.5%).

Assume also that the portfolio return has a normal distribution with
mean equal to 2.5% and a volatility σ.

Since the expected portfolio return is exactly equal to the
deterministic benchmark, the Kolmogorov distance between them
is always equal to 1/2 irrespective of how small the volatility is,

ρ(X , 2.5%) = 1/2, ∀ σ > 0.

Thus, if we rebalance the portfolio and reduce its volatility, the
Kolmogorov metric will not register any change in the distance
between the portfolio return and the deterministic benchmark.

In contrast to the Kolmogorov metric, the Lévy metric will indicate
that the rebalanced portfolio is closer to the benchmark.
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Simple metrics - The Kantorovich metric

3. The Kantorovich metric

κ(X , Y ) :=

∫

R

|FX (x) − FY (x)|dx . (12)

where X and Y are random variables with finite mathematical
expectation, EX < ∞ and EY < ∞.

The Kantorovich metric can be interpreted along the lines of the
Kolmogorov metric.
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Simple metrics - The Kantorovich metric

Suppose that X and Y are r.v. describing the return distribution of
2 common stocks. Then FX (x) and FY (x) are the probabilities that
X and Y , respectively, lose more than the level x .

The Kantorovich metric sums the absolute deviation between the
two probabilities for all possible values of the loss level x .

Thus, the Kantorovich metric provides aggregate information
about the deviations between the two probabilities.
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Simple metrics - The Kantorovich metric
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Figure: Illustration of the Kantorovich metric. The bottom plot shows the
absolute difference between the two c.d.f.s plotted on the top plot. The
Kantorovich metric equals the shaded area.
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Simple metrics - The Kantorovich metric

In contrast to the Kolmogorov metric, the Kantorovich metric is
sensitive to the differences in the probabilities corresponding to
extreme profits and losses but to a small degree.

This is because the difference |FX (x) − FY (x)| converges to zero
as the loss level (x) increases or decreases and, therefore, the
contribution of the terms corresponding to extreme events to the
total sum is small.

As a result, the differences in the tail behavior of X and Y will be
reflected in κ(X , Y ) but only to a small extent.
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Simple metrics
The Lp-metrics between distribution functions

4. The Lp-metrics between distribution functions

θp(X , Y ) :=

(∫
∞

−∞

|FX (x) − FY (x)|px.

)1/p

, p ≥ 1. (13)

where X and Y are random variables with finite mathematical
expectation, EX < ∞ and EY < ∞.
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Simple metrics
The Lp-metrics between distribution functions

The financial interpretation of θp(X , Y ) is similar to the
interpretation of the Kantorovich metric, which appears as a
special case, κ(X , Y ) = θ1(X , Y ).

The metric θp(X , Y ) is an aggregate metric of the difference
between the probabilities that X and Y lose more than the level x .

The power p makes the smaller contributors to the total sum of the
Kantorovich metric become even smaller contributors to the total
sum in (13).

Thus, as p increases, only the largest absolute differences
|FX (x) − FY (x)| start to matter. At the limit, as p approaches
infinity, only the largest difference |FX (x) − FY (x)| becomes
significant and the metric θ∞(X , Y ) turns into the Kolmogorov
metric.
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Simple metrics
The uniform metric between inverse distribution functions

5. The uniform metric between inverse distribution functions

W(X , Y ) = sup
0<t<1

|F−1
X (t) − F−1

Y (t)| (14)

where F−1
X (t) is the inverse of the distribution function of the

random variable X .
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Simple metrics
The uniform metric between inverse distribution functions

The uniform metric between inverse distribution functions has the
following financial interpretation.

Suppose that X and Y describe the return distribution of 2
common stocks. Then the quantity −F−1

X (t) is known as the
Value-at-Risk (VaR) of common stock X at confidence level
(1 − t)100%.

It is used as a risk measure and represents a loss threshold such
that losing more than it happens with probability t .

The probability t is also called the tail probability because the VaR
is usually calculated for high confidence levels, e.g. 95%, 99%,
and the corresponding loss thresholds are in the tail of the
distribution.
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Simple metrics
The uniform metric between inverse distribution functions

Therefore, the difference F−1
X (t) − F−1

Y (t) is nothing but the
difference between the VaRs of X and Y at confidence level
(1 − t)100%.

The probability metric W(X , Y ) is the maximal difference in
absolute value between the VaRs of X and Y when the
confidence level is varied.

Usually, the maximal difference is attained for values of t close to
zero or one which corresponds to VaR levels close to the
maximum loss or profit of the return distribution. As a result, the
probability metric W(X , Y ) is entirely centered on the extreme
profits or losses.
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Simple metrics
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Figure: Illustration of the uniform metric between inverse distribution
functions. The right plot shows the absolute difference between the two
inverse c.d.f.s plotted on the left plot. The arrow indicates where the largest
absolute difference is attained. Note that the inverse c.d.f.s plotted here
correspond to the c.d.f.s on slide 45 (Kolmogorov metric).
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Simple metrics
The Lp-metrics between inverse distribution functions

6. The Lp-metrics between inverse distribution functions

ℓp(X , Y ) :=

(∫ 1

0
|F−1

X (t) − F−1
Y (t)|pt.

)1/p

, p ≥ 1. (15)

where X and Y are random variables with finite mathematical
expectation, EX < ∞ and EY < ∞ and F−1

X (t) is the inverse of
the distribution function of the random variable X .
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Simple metrics
The Lp-metrics between inverse distribution functions

The metric ℓ1(X , Y ) is also known as first difference
pseudomoment as well as the average metric in the space of
distribution functions because ℓ1(X , Y ) = θ1(X , Y ).

Another notation used for this metric is κ(X , Y ), note that
θ1(X , Y ) = κ(X , Y ). This special case is called the Kantorovich
metric because great contributions to the properties of ℓ1(X , Y )
were made by Kantorovich in 1940s.
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Simple metrics
The Lp-metrics between inverse distribution functions

We provide another interpretation of the Kantorovich metric arising
from equation (15).

Suppose that X and Y are r.v. describing the return distribution of
2 common stocks. We explained that the VaRs of X and Y at
confidence level (1 − t)100% are equal to −F−1

X (t) and −F−1
Y (t)

respectively.

Therefore, the metric

ℓ1(X , Y ) =

∫ 1

0
|F−1

X (t) − F−1
Y (t)|t.

equals the sum of the absolute differences between the VaRs of X
and Y across all confidence levels.

In effect, it provides aggregate information about the deviations
between the VaRs of X and Y for all confidence levels.
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Simple metrics
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Figure: Illustration of the ℓ1(X , Y ) metric. The right plot shows the absolute
difference between the two inverse c.d.f.s plotted on the left plot. The
ℓ1(X , Y ) metric equals to the the largest absolute difference between the two
densities, shown as shaded area.
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Simple metrics
The Lp-metrics between inverse distribution functions

The power p in equation (15) acts in the same way as in the case of
θp(X , Y ):

The smaller contributors to the sum in ℓ1(X , Y ) become even
smaller contributors to the sum in ℓp(X , Y ).

Thus, as p increases, only the larger absolute differences
between the VaRs of X and Y across all confidence levels
become significant in the total sum. The larger differences are in
the tails of the two distributions.
Therefore, the metric ℓp(X , Y ) accentuates on the deviations
between X and Y in the zone of the extreme profits or losses.

⇒ At the limit, as p approaches infinity, only the largest absolute
differences matter and the ℓp(X , Y ) metric turns into the uniform metric
between inverse c.d.f.s W(X , Y ).
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Simple metrics
The uniform metric between densities

7. The uniform metric between densities

ℓ(X , Y ) := sup
x∈R

|fX (x) − fY (x)| (16)

where fX (x) = F ′

X (x) is the density of the random variable X .
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Simple metrics
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Figure: Illustration of the uniform metric between densities. The bottom plot
shows the absolute difference between the two densities plotted on the top
plot. The arrow indicates where the largest absolute difference is attained.
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Simple metrics
The uniform metric between densities

The uniform metric between densities can be interpreted through
the link between the density function and the c.d.f.

The probability that X belongs to a small interval [x , x + ∆x ],
where ∆x > 0 is small number, can be represented approximately
as

P(X ∈ [x , x + ∆x ]) ≈ fX (x).∆x .
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Simple metrics
The uniform metric between densities

Suppose that X and Y describe the return distribution of 2
common stocks.

Then the difference between the densities fX (x) − fY (x) can be
viewed as a quantity approximately proportional to the difference
between the probabilities that X and Y realize a return belonging
to the small interval [x , x + ∆x ],

P(X ∈ [x , x + ∆x ]) − P(Y ∈ [x , x + ∆x ]).
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Simple metrics
The uniform metric between densities

Thus, the largest absolute difference between the two density
functions is attained at such a return level x that the difference
between the probabilities of X and Y gaining return [x , x + ∆x ] is
largest in absolute value.

Just as in the case of the Kolmogorov metric, the value of x for
which the maximal absolute difference between the densities is
attained is close to the mean return. Therefore, the metric ℓ(X , Y )
is not sensitive to extreme losses or profits.
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Simple metrics
The total variation metric

The total variation metric

σ(X , Y ) = sup
all events A

|P(X ∈ A) − P(Y ∈ A)| (17)

If the random variables X and Y have densities fX (x) and fY (x),
then the total variation metric can be represented through the area
closed between the graphs of the densities,

σ(X , Y ) =
1
2

∫
∞

−∞

|fX (x) − fY (x)|dx . (18)
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Simple metrics
The total variation metric

Suppose that X and Y describe the return distribution of 2
common stocks. We can calculate the probabilities P(X ∈ A) and
P(Y ∈ A) where A is an arbitrary event.

For example, A can be the event that the loss exceeds a given
target x , or that the loss is in a given bound (x%, y%), or in an
arbitrary unions of such bounds. The total variation metric is the
maximum absolute difference between these probabilities.

The reasoning is very similar to the one behind the interpretation
of the Kolmogorov metric.
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Simple metrics
The total variation metric

The principal difference from the Kolmogorov metric is that in the
total variation metric, we do not fix the events to be only of the
type “losses exceed a given target x”.

Instead, we calculate the maximal difference by looking at all
possible types of events. Therefore, the general relationship
between the two metrics is

ρ(X , Y ) ≤ σ(X , Y ). (19)

⇒ If any of these metrics turn into zero, then it follows that the
distribution functions of the corresponding random variables coincide.
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Compound metrics

The coincidence of distribution functions is stronger than
coincidence of certain characteristics. But there is a stronger form
of identity than coincidence of distribution functions, which is
actually the strongest possible.

Consider the case in which no matter what happens, the returns
of equity 1 and equity 2 are identical. As a consequence, their
distribution functions are the same because the probabilities of all
events of the return of equity 1 are exactly equal to the
corresponding events of the return of equity 2.

This identity is also known as almost everywhere identity because
it considers all states of the world which happen with non-zero
probability.

The probability metrics which imply the almost everywhere identity
are called compound metrics.
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Compound metrics - The p-average compound metric

Common examples of compound metrics are stated below:

1). The p-average compound metric

Lp(X , Y ) = (E |X − Y |p)1/p, p ≥ 1 (20)

where X and Y are random variables with finite moments,
E |X |p < ∞ and E |Y |p < ∞, p ≥ 1.
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Compound metrics - The p-average compound metric

From a financial viewpoint, we can recognize two widely used
measures of deviation which belong to the family of the p-average
compound metrics. If p is equal to one, we obtain the mean
absolute deviation between X and Y ,

L1(X , Y ) = E |X − Y |.

Suppose that X describes the returns of a stock portfolio and Y
describes the returns of a benchmark portfolio. Then the mean
absolute deviation is a way to measure how closely the stock
portfolio tracks the benchmark. If p is equal to two, we obtain

L2(X , Y ) =
√

E(X − Y )2

which is a quantity very similar to the tracking error between the
two portfolios.
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Compound metrics - The Ky Fan metric

2). The Ky Fan metric

K (X , Y ) := inf{ǫ > 0 : P(|X − Y | > ǫ) < ǫ} (21)

where X and Y are real-valued random variables.

The Ky Fan metric has an important application in theory of
probability as it metrizes convergence in probability of real-valued
random variables.
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Compound metrics - The Ky Fan metric

Assume that X is a random variable describing the return
distribution of a portfolio of stocks and Y describes the return
distribution of a benchmark portfolio. The probability

P(|X − Y | > ǫ) = P
(
{X < Y − ǫ}

⋃
{X > Y + ǫ}

)

concerns the event that either the portfolio will outperform the
benchmark by ǫ or it will underperform the benchmark by ǫ.

Therefore, the quantity 2ǫ can be interpreted as the width of a
performance band.

The probability 1 − P(|X − Y | > ǫ) is actually the probability that
the portfolio stays within the performance band, i.e. it does not
deviate from the benchmark more than ǫ in an upward or
downward direction.
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Compound metrics - The Ky Fan metric

As the width of the performance band decreases, the probability
P(|X − Y | > ǫ) increases because the portfolio returns will be
more often outside a smaller band.

The Ky Fan metric calculates the width of a performance band
such that the probability of the event that the portfolio return is
outside the performance band is smaller than half of it.
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Compound metrics
The Birnbaum-Orlicz compound metric

3). The Birnbaum-Orlicz compound metric

Θp(X , Y ) =

(∫
∞

−∞

τp(t ; X , Y )dt
)1/p

, p ≥ 1 (22)

where τ(t ; X , Y ) = P(X ≤ t < Y ) + P(Y ≤ t < X ).
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Compound metrics
The Birnbaum-Orlicz compound metric

The function τ(t ; X , Y ) can be interpreted in the following way.

Suppose that X and Y describe the return distributions of 2
common stocks.
The function argument, t , can be regarded as a performance
divide. The term P(X ≤ t < Y ) is the probability that X
underperforms t and, simultaneously, Y outperforms t .

❏ If t is a very small number, then the probability P(X ≤ t < Y ) will
be close to zero because the stock X will underperform it very
rarely.
❏ If t is a very large number, then P(X ≤ t < Y ) will again be close
to zero because stock Y will rarely outperform it.

⇒ Therefore, function τ(t ; X , Y ) calculates the probabilities of the
relative underperformance or outperformance of X and Y , and has a
maximum for moderate values of the performance divide t .
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Compound metrics
The Birnbaum-Orlicz compound metric

In the case of p = 1, the Birnbaum-Orlicz compound metric sums
all probabilities of this type for all values of the performance divide
t .

Thus, it is an aggregate measure of the deviations in the relative
performance of X and Y . In fact, it is exactly equal to the mean
absolute deviation,

Θ1(X , Y ) = E |X − Y | = L1(X , Y ).
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Minimal and maximal metrics

From the discussion above, three classes of probability metrics are
interrelated: they are contained in one another.
Primary metrics can be “enriched” so that they turn into simple metrics
by the following process.

Suppose that we have a list of characteristics which defines the
primary metric.

Then we start adding additional characteristics which cannot be
expressed in any way by means of the ones currently in the list.
Assume that this process continues indefinitely, until we exhaust
all possible characteristics.

The primary metric obtained by means of the set of all possible
characteristics is actually a simple metric, as we end up with
coincident distribution functions.
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Minimal and maximal metrics

For instance, assume that we have a compound metric. It is
influenced not only by the distribution functions but also by the
dependence between the random variables.

Is it possible to construct a simple metric on the basis of it?
The answer is positive and the simple metric is built by
constructing the minimal metric:

❏ Choose two random variables X and Y .
❏ Compute the distances between all possible random variables
having the same distribution as the ones selected using the
compound metric.
❏ Set the minimum of these distances to be the distance between
the random variables X and Y .

The result is a simple metric because due to the minimization, we
remove the influence on the dependence structure and only the
distribution functions remain. By this process, we associate a
simple metric to any compound metric.
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Minimal and maximal metrics

The minimal metrics have an important place in the theory of
probability metrics and there is notation reserved for them.

Denote by µ the selected compound metric. The functional µ̂
defined by the equality

µ̂(X , Y ) := inf{µ(X̃ , Ỹ ) : X̃ d
= X , Ỹ d

= Y} (23)

is said to be the minimal metric with respect to µ.
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Minimal and maximal metrics

Many of the well-known simple metrics arise as minimal metrics with
respect to some compound metric.

For example, the Lp metrics between distribution functions and
inverse distribution functions defined in (13) and (15) are minimal
metrics with respect to the p-average compound metric (20) and
the Birnbaum-Orlicz compound metric (22),

ℓp(X , Y ) = L̂p(X , Y )

θp(X , Y ) = Θ̂p(X , Y ).

The Kolmogorov metric (9) can be represented as a special case
of the simple metric θp, ρ(X , Y ) = θ∞(X , Y ) and, therefore, it also
arises as a minimal metric

ρ(X , Y ) = Θ̂∞(X , Y ).
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Minimal and maximal metrics

But not all simple metrics arise as minimal metrics. A compound
metric such that its minimal metric is equivalent to a given simple
metric is called protominimal with respect to the given simple metric.

For instance, Θ1(X , Y ) is protominimal to the Kantorovich metric
κ(X , Y ).

⇒ Not all simple metrics have protominimal ones and, also, some
simple metrics have several protominimal ones.

The definition of the minimal metric (23) shows that the compound
metric and the minimal metric relative to it are related by the
inequality

µ̂(X , Y ) ≤ µ(X , Y ).
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Minimal and maximal metrics

We can find an upper bound to the compound metric by a process very
similar to finding the minimal metric.

We choose two random variables X and Y and compute the
distances by means of the compound metric between all possible
random variables having the same distribution as the ones
selected.

Then we set the maximum of these distances to be the needed
upper bound. Naturally, this upper bound is called maximal metric.
It is denoted by

µ̌(X , Y ) := sup{µ(X̃ , Ỹ ) : X̃ d
= X , Ỹ d

= Y} (24)

Thus, we can associate a lower and an upper bound to each
compound metric,

µ̂(X , Y ) ≤ µ(X , Y ) ≤ µ̌(X , Y ).

Prof. Dr. Svetlozar Rachev (University of Karlsruhe) Lecture 3: Probability metrics 2008 87 / 93



Minimal and maximal metrics

It turns out that the maximal distance is not a probability metric
because the identity property may not hold, µ̌(X , X ) > 0, as it is
an upper bound to the compound metric µ(X , Y ).

Functionals which satisfy only Property 2 and Property 3 from the
defining axioms of probability metrics are called moment
functions. Therefore, the maximal metric is a moment function.
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Minimal and maximal metrics

We illustrate the notions of minimal and maximal metrics further:

Suppose that the pair of random variables (X , Y ) has some
bivariate distribution with zero-mean normal marginals,
X ∈ N(0, σ2

X ), Y ∈ N(0, σ2
Y ). The particular form of the bivariate

distribution is insignificant.

Let us calculate the minimal and the maximal metrics of the
2-average compound metric L2(X , Y ) = (E(X − Y )2)1/2.

In fact, the compound metric L2(X , Y ) stands for the standard
deviation of the difference X − Y . The variance of the difference,
σ2

X−Y , can be calculated explicitly,

σ2
X−Y = σ2

X + σ2
Y − 2σX σY corr(X , Y )

where corr(X , Y ) denotes the correlation coefficient between X
and Y .
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Minimal and maximal metrics

Holding the one-dimensional distributions fixed and varying the
dependence model, or the copula function, in this case means
that we hold fixed the variances σ2

X and σ2
Y and we vary the

correlation corr(X , Y ).

This is true because the one-dimensional normal distributions are
identified only by their variances. Recall that the absolute value of
the correlation coefficient is bounded by one,

−1 ≤ corr(X , Y ) ≤ 1,

and, as a result, the lower and upper bounds of the variance σ2
X−Y

are

σ2
X + σ2

Y − 2σX σY ≤ σ2
X−Y ≤ σ2

X + σ2
Y + 2σX σY .
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Minimal and maximal metrics

Note that the bounds for the correlation coefficient are not tied to
any sort of distributional hypothesis and are a consequence of a
very fundamental inequality in mathematics known as the
Cauchy-Bunyakovski-Schwarz inequality.

As a result, we obtain bounds for the standard deviation of the
difference X − Y which is the 2-average compound metric,

|σX − σY | ≤ L2(X , Y ) ≤ σX + σY .

We have followed strictly the process of obtaining minimal and
maximal metrics. Therefore, we conclude that, in the setting of the
example,

L̂2(X , Y ) = |σX − σY | and Ľ2(X , Y ) = σX + σY .
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Minimal and maximal metrics

An example of an explicit expression for a maximal metric is the
p-average maximal distance

Ľp(X , Y ) =

(∫ 1

0
(F−1

X (t) − F−1
Y (1 − t))pdt

)1/p

, p ≥ 1 (25)

where F−1
X (t) is the inverse of the distribution function of the

random variable X .

Prof. Dr. Svetlozar Rachev (University of Karlsruhe) Lecture 3: Probability metrics 2008 92 / 93



Svetlozar T. Rachev, Stoyan Stoyanov, and Frank J. Fabozzi
Advanced Stochastic Models, Risk Assessment, and Portfolio
Optimization: The Ideal Risk, Uncertainty, and Performance
Measures
John Wiley, Finance, 2007.

Chapter 3.

Prof. Dr. Svetlozar Rachev (University of Karlsruhe) Lecture 3: Probability metrics 2008 93 / 93


