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Extensions of STARR

We revisit the problem of finding the maximal STARR portfolio.

We demonstrate that the Rachev ratio can be viewed as an
extension of STARR.

Furthermore, we show that a new performance measure
extending STARR can be derived.
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Extensions of STARR

Consider the definition of STARR given in (8) in the lecture. In
order to keep notation simpler, we denote the active portfolio
return by X = rp − rb.

STARR can be represented as

STARRǫ(w) =
EX

AVaRǫ(X )

=
−ǫAVaRǫ(X ) +

∫ 1
ǫ F−1

X (p)dp
AVaRǫ(X )

= −ǫ + (1 − ǫ)
1

1−ǫ

∫ 1
ǫ F−1

X (p)dp

AVaRǫ(X )
.

(1)

The numerator in the ratio is the average active return provided
that it is larger than the VaR at tail probability ǫ.
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Extensions of STARR

In fact, the fraction can be recognized as the Rachev ratio with
ǫ1 = 1 − ǫ and ǫ2 = ǫ,

RaR1−ǫ,ǫ(w) =
1

1−ǫ

∫ 1
ǫ F−1

X (p)dp

AVaRǫ(X )
.

As a consequence, the portfolios maximizing STARR also
maximize the RaR1−ǫ,ǫ(w) as the former is a positive linear
function of the latter which is the main conclusion in (1).

Thus, from the standpoint of the ex-ante analysis, STARR and
RaR1−ǫ,ǫ(w) can be regarded as equivalent performance
measures.

The more general Rachev ratio appears when 1 − ǫ is replaced by
an arbitrary probability ǫ1.
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Extensions of STARR

The representation in (1) provides a way of obtaining another
generalization of STARR which we call the robust STARR and abbreviate
by RobS. It is defined as

RobSδ,ǫ(w) =
1

δ−ǫ

∫ δ

ǫ
F−1

X (p)dp

AVaRǫ(X )
(2)

where δ ≥ ǫ is an upper tail probability.

The numerator can be interpreted as the average active return between
VaR at tail probability ǫ and the quantile at upper tail probability δ.

Since the extreme quantiles are not included, the numerator can be
viewed as a reward measure which is a robust alternative of the
mathematical expectation.

A reasonable choice for δ is, for example, δ = 0.95.

The optimal STARR portfolios appear from the optimal RobSδ,ǫ(w)
portfolios when δ = 1.
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Extensions of STARR

Taking advantage of the same approach as in the derivation of the
representation in (1), it is possible to obtain that the optimal
RobSδ,ǫ(w) portfolios also maximize the ratio,

RobS∗

δ,ǫ(w) =
−AVaRδ(X )

AVaRǫ(X )
, (3)

which means that (3) is equivalent to (2) as far as the ex-ante
analysis is concerned.
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Extensions of STARR

The formula in (3) turns out to be a more suitable objective
function than (2). In effect, the optimal robust STARR problem is

max
w

−AVaRδ(rp − rb)

AVaRǫ(rp − rb)
subject to w ′e = 1

w ≥ 0.

(4)

The robust STARR is a quasi-concave performance measure
which can be optimized through a linear programming problem.
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Quasi-concave performance measures

In this section, we consider the RR ratio optimization problem of the
general form

max
w

ν(w ′X − rb)

ρ(w ′X − rb)
subject to w ′e = 1

w ≥ 0,

(5)

where

X is a random vector describing the return of portfolio assets
ν is a reward measure
ρ is a risk measure
rb is return of a benchmark portfolio

Depending on the properties assumed for the reward measure and the
risk measure, the optimization problem can be reduced to a simpler
form.
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Quasi-concave performance measures

We start with a few comments on the general properties of problem (5) which
is also called a fractional program because the objective function is a ratio.

First, in order for the objective function to be bounded, we have to
assume that the denominator does not turn into zero for any feasible
portfolio. For this reason, we assume that the risk of the active portfolio
return is positive for all feasible portfolios. This assumption is crucial, if it
does not hold, then the optimization problem does not have a solution.

Second, without loss of generality, we assume that the reward measure
is positive for all feasible portfolios. This may be regarded as a restrictive
property but if it does not hold, then we can consider the optimization
problem only on the subset of the feasible portfolios for which
ν(w ′X − rb) ≥ ǫ > 0. The portfolios with negative reward can be safely
ignored because the optimal solution can never be among them on
condition that there are feasible portfolios with positive reward.
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Quasi-concave performance measures

In summary, the basic assumptions for all feasible portfolios are
the following,

ν(w ′X − rb) > 0 and ρ(w ′X − rb) > 0. (6)

If they are satisfied, then we can consider either problem (5), in
which we maximize the RR ratio, or problem

min
w

ρ(w ′X − rb)

ν(w ′X − rb)
subject to w ′e = 1

w ≥ 0,

(7)

in which we minimize the inverse ratio.

Under the basic assumptions in (6), the portfolios solving problem
(5) also solve problem (7).

Prof. Dr. Svetlozar Rachev (University of Karlsruhe)Lecture 10: Performance measures 2008 11 / 57



Quasi-concave performance measures

The portfolio yielding the optimal ratio in (5) can also be
interpreted as a tangent portfolio, which is similar to the
corresponding interpretation when the benchmark is a constant
target.

If rb is a r.v., then the efficient frontier is generated by a R-R
analysis with a reward measure ν and a risk measure ρ which are
considered on the space of active portfolio returns.

The efficient portfolios are obtained by solving optimization
problem (5) but changing the objective function to

f (w) = ν(w ′X − rb) − λρ(w ′X − rb)

where λ ≥ 0 is the risk-aversion parameters.

By varying λ and solving the optimization problem, we obtain the
set of efficient portfolios.
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Quasi-concave performance measures

The portfolio yielding the maximal ratio appears as a tangent
portfolio to the efficient frontier in the reward-risk plane.

The benchmark return is taken into account by considering the
risk and the reward of the active portfolio returns.

In effect, the tangent line identifying the tangent portfolio passes
through the origin. Figure 1 shows a case in which the tangent
portfolio is not unique.

Prof. Dr. Svetlozar Rachev (University of Karlsruhe)Lecture 10: Performance measures 2008 13 / 57



Convex programming problem

Portfolio risk
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The tangent portfolios

Figure 1. The efficient frontier may have a linear section which may result in
non-unique tangent portfolios.
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Quasi-concave fractional program

If the reward functional is a concave function of portfolio weights
and the risk measure is a convex function of portfolio weights,
then the objective function of (5) is quasi-concave and the
objective function of (7) is quasi-convex.

If the reward measure satisfies the properties given in the
appendix to Lecture 8 and ρ is a coherent risk measure, then they
are a concave and a convex function respectively.
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Quasi-concave fractional program

Quasi-concave and quasi-convex functions have nice optimality
properties which are similar to the properties of the concave and
convex functions, respectively.

For example, if the objective function of (7) is quasi-convex then
there exists a unique solution.

The differences from the convex functions can be best illustrated if
the function has a one-dimensional argument.

A quasi-convex function has one global minimum and is
composed of two monotonic sections. In contrast to convex
functions, the monotonic sections may not be strictly monotonic;
that is, the graph may have some “flat” sections which make the
optimization a more involved affair.
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Quasi-concave fractional program

Generally, an optimization problem with a quasi-convex function
can be decomposed into a sequence of convex feasibility
problems.

The sequence of feasibility problem can be obtained using the set

Wt =







w :

∣

∣

∣

∣

∣

∣

ρ(wT r − rb) − tµ(wT r − rb) ≤ 0
wT e = 1
w ≥ 0







where t is a fixed positive number.

For a given t , the above set is convex and therefore we have a
convex feasibility problem.
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Quasi-concave fractional program

A simple algorithm based on bisection can be devised so that the
smallest t is found, tmin, for which the set is non-empty.

If tmin is the solution of the feasibility problem, then 1/tmin is the
value of the optimal ratio and the portfolios in the set

Wtmin =







w :

∣

∣

∣

∣

∣

∣

ρ(wT r − rb) − tminµ(wT r − rb) ≤ 0
wT e = 1
w ≥ 0







are the optimal portfolios solving the fractional problem (7).

The same set of portfolios also solve problem (5).
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Convex programming problem

Suppose that the reward measure is a concave function of
portfolio weights and the risk measure is a convex function of
portfolio weights.

In addition, suppose that both functions are positively
homogeneous,

ν(hX ) = hν(X ) and ρ(hX ) = hρ(X )

where h > 0.

In this case, we can formulate two convex optimization problems
equivalent to (5) and (7) respectively.

The equivalent convex problems are obtained through the
substitutions t−1 = ρ(w ′X − rb) and t−1 = ν(w ′X − rb) for the
former and the latter problem respectively and then setting v = tw .
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Convex programming problem

As a result, we obtain the problems

max
v ,t

ν(v ′X − trb)

subject to v ′e = t
ρ(v ′X − trb) ≤ 1
v ≥ 0, t ≥ 0

(8)

and
min
v ,t

ρ(v ′X − trb)

subject to v ′e = t
ν(v ′X − trb) ≥ 1
v ≥ 0, t ≥ 0.

(9)
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Convex programming problem

The equivalence with (5) and (7) respectively is the following.

Suppose that the pair (v̄1, t̄1) is an optimal solution to (8).

Then, w̄1 = v̄1/t̄1 is a portfolio yielding the maximal ratio in (5).
The quantity 1/t̄1 is equal to the risk of the optimal portfolio.

Furthermore, if we denote by νmax the value of the objective
function of (8) at the solution point (v̄1, t̄1), then νmax is equal to
the value of the optimal ratio, i.e. the optimal value of the objective
function of problem (5).

As a consequence, νmax/t̄1 equals the reward of the optimal
portfolio.
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Convex programming problem

In a similar way, if the pair (v̄2, t̄2) is an optimal solution to (9), then
w̄2 = v̄2/t̄2 is an optimal solution to (7) and, therefore, to (5).

Denote by ρmin the value of the objective function of (9) at the solution
point (v̄2, t̄2).

Then, 1/ρmin is equal to the value of the optimal ratio, i.e. the optimal
value of the objective function of problem (5).

In addition, 1/t̄2 is the reward and ρmin/t̄2 is the risk of the optimal
portfolio.

The portfolios w̄1 and w̄2 may not be the same because there may be
many portfolios yielding the unique maximum of the fractional program
(5).

Geometrically, this case arises if the efficient frontier has a linear section
and the tangent line passes through all points in the linear section. (See
the illustration in Figure 1).
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Convex programming problem

As a sub-case in this section, suppose that both the risk and the
reward measures satisfy the invariance property,

ν(X + C) = ν(X ) + C and ρ(X + C) = ρ(X ) − C. (10)

where C is an arbitrary constant.

Under these assumptions and a few additional technical
conditions given in the appendix to Lecture 8, we can associate an
optimal RV ratio problem which is equivalent to (5) in the sense
that both problems have coincident optimal solutions.
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Convex programming problem

Consider the following transformations of the objective function of
(7),

ρ(w ′X − rb)

ν(w ′X − rb)
=

ρ(w ′X − rb − ν(w ′X − rb)) − ν(w ′X − rb)

ν(w ′X − rb)

=
ρ(w ′X − rb − ν(w ′X − rb))

ν(w ′X − rb)
− 1.

(11)
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Convex programming problem

In the appendix to Lecture 8, we demonstrated that the functional
in the numerator

ρ(w ′X − rb − ν(w ′X − rb))

can be a dispersion measure and, therefore, the ratio on the right
hand-side is the inverse of a RV ratio.

On the basis of equation (11) and the relationship between (7) and
(5), we arrive at the conclusion that the optimal RV ratio problem

max
w

ν(w ′X − rb)

ρ(w ′X − rb − ν(w ′X − rb))
subject to w ′e = 1

w ≥ 0,

(12)

has the same solution as the optimal RR ratio problem (5).
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Convex programming problem

A special example of an optimal ratio problem belonging to the category
of convex programming problems is when the reward measure coincides
with the mathematical expectation.

In this case, the objective function of (5) and the reward constraint in (5)
turn into linear functions. We only provide the corresponding version to
(5) since the reward constraint can be an equality rather than an
inequality,

min
v ,t

ρ(v ′X − trb)

subject to v ′e = t
E(v ′X ) − tE(rb) = 1
v ≥ 0, t ≥ 0.

(13)

In the case of a linear reward measure, the relationship between the
optimal RV ratio problem (12) and the optimal RR ratio (5) explains the
relationship between the RR ratios based on the expectations bounded
coherent risk measures and the corresponding RV ratios based on
deviation measures.
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Convex programming problem

Recall that the assumptions made for ρ are that it should be positive for
all feasible portfolios, convex and positively homogeneous.

Generally, these properties alone do not imply that ρ is a risk measure.
(Any deviation measure satisfies them as well).

As a consequence, the established relationship between (5) and (13)
holds if there is a deviation measure in the denominator.

Consider for instance the optimal Sharpe ratio problem (30) discussed in
the lecture. The standard deviation in the denominator is a convex,
positively homogeneous function of portfolio weights.

The simpler convex programming problem, which is the analogue of
(13), is problem (31) from the lecture.

It can be further simplified to the quadratic programming problem (32)
because of properties specific to the standard deviation.
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Convex programming problem

Another optimal portfolio problem falling into this category is the
problem of maximizing the Sortino-Satchell ratio. The functional in
the denominator is

ρ(w ′X − rb) = (E(s − (w ′X − rb))q
+)1/q (14)

where (x)q
+ = (max(x , 0)q), s is the minimum acceptable return

level, and q ≥ 1 is the order of the lower partial moment.
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Convex programming problem

Assuming that the portfolio weights sum up to 1, it turns out that
this is a convex function of portfolio weights.

In order to demonstrate this property, we consider (14) in the next
more suitable form,

g(w) = (E(w ′Z )q
+)1/q (15)

where Z = se − X + rbe and e = (1, . . . , 1). In the demonstration,
we refer to the celebrated Minkowski inequality.
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Convex programming problem

Consider a portfolio wλ, which is a convex combination of two
other portfolios; that is, wλ = λw1 + (1 − λ)w2. Then,

g(wλ) = (E((λw1 + (1 − λ)w2)
′Z )q

+)1/q

≤ (E(λ(w ′

1Z )+ + (1 − λ)(w ′

2Z )+)q)1/q

≤ (E(λw ′

1Z )q
+)1/q + (E((1 − λ)w ′

2Z )q
+)1/q

= λ(E(w ′

1Z )q
+)1/q + (1 − λ)(E(w ′

2Z )q
+)1/q

= λg(w1) + (1 − λ)g(w2).

The first inequality follows because of the convexity of the max
function and in order to obtain the second inequality, we apply the
Minkowski inequality.

As a result, the function g(w) is a convex function of portfolio
weights.
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Convex programming problem

In addition to the convexity property, the function g(w) is also
positively homogeneous, g(hw) = hg(w), h > 0.

Therefore, the problem of maximizing the Sortino-Satchell ratio
can be reduced to a problem of the type (13).

The particular form of the simpler problem is

min
v ,t

E(ts − v ′X + trb)q
+

subject to v ′e = t
E(v ′X ) − tE(rb) = 1
v ≥ 0, t ≥ 0,

(16)

which is obtained after raising the objective function to the power
q ≥ 1. This transformation does not change the optimal solution
points.
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Convex programming problem

If there are scenarios available for the assets returns and the
benchmark return, then (16) can be further reduced to a more
simple problem.

In this case, the objective function is the estimator of the
mathematical expectation and, therefore, it is a sum of maxima
raised to the power q.

The maxima are either positive or zero and can be replaced by
additional variables following the method of linearizing a
piece-wise linear convex function, which is used also in the
linearization of AVaR described Lecture 8.
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Convex programming problem

In this reasoning, we consider the argument of the max function
ts − v ′X + trb as a r.v. the scenarios of which are obtained from
the scenarios of the assets returns and the benchmark return.

As a result, we derive the optimization problem

min
v ,t ,d

k
∑

i=1

dq
i

subject to tse − Hv + thb ≤ d
v ′e = t
v ′µ − tErb = 1
v ≥ 0, t ≥ 0, d ≥ 0.

(17)

where hb = (r1
b , . . . , r k

b ) is a vector of the observed returns of the
benchmark portfolio.
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Convex programming problem

From the point of view of the optimal portfolio problem structure, there
are two interesting cases.

If q = 1, then (17) is a linear programming problem. This is not
surprising because in this case the objective function in (16) is the
expectation of the maxima function.

If q = 2, then (17) is a quadratic programming problem. In this
case, the objective function can be represented in matrix form as

k
∑

i=1

d2
i = d ′Id ,

where I stands for the identity matrix.
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Reductions to linear programming problems

Suppose that the reward measure is a concave function of
portfolio weights and the risk measure is a convex function of
portfolio weights, and that both functions are positively
homogeneous.

In addition to these properties, which were the basic assumptions
in the previous section, suppose that both ν and ρ can be
approximated by piece-wise linear functions.

Then, the convex optimization problems (8) and (8) can be further
simplified to linear programming problems.

It is also often said that, in this case the convex problem allows for
a linear relaxation.
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Reductions to linear programming problems

A problem belonging to this category is the optimal STARR
problem. It arises when ρ(X ) = AVaRǫ(X ) and the reward
measure is the mathematical expectation.

On condition that there are scenarios for the assets returns and
the benchmark return, AVaR can be approximated by a piece-wise
linear function on the basis of which the convex optimization
problem can be simplified to a linear programming problem.

The linear programming problem can be directly applied to (13) by
considering the argument of the risk measure v ′X − trb as a r.v.
the scenarios of which are obtained from the scenarios of the
assets returns X and the benchmark return rb.
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Reductions to linear programming problems

Another problem in this category is the optimal robust STARR
problem formulated in (4).

The reward measure is the negative of AVaR at a certain upper
tail probability and, therefore, it is a concave function of portfolio
weights. The risk measure is AVaR. Both the reward measure and
the risk measure can be linearized.

In the case of the robust STARR, the analogue of the convex
problem (9) is

min
v ,t

AVaRǫ(v ′X − trb)

subject to v ′e = t
AVaRδ(v ′X − trb) ≥ 1
v ≥ 0, t ≥ 0.

(18)
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Reductions to linear programming problems

The linear relaxation of the convex optimization problem (18) is

min
(v ,t ,θ1,d ,θ2,g)

θ1 +
1
kǫ

d ′e

subject to −Hv − θ1 ≤ d

θ2 +
1
kδ

g′e ≤ 1

−Hv − θ2 ≤ g
v ′e = t
v ≥ 0, t ≥ 0, d ≥ 0, g ≥ 0
θ1 ∈ R, θ2 ∈ R,

(19)

where the auxiliary variables θ1 and d are because of the
linearization of the risk measure and the auxiliary variables θ2 and
g are because of the linearization of the reward measure.
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The capital market line and quasi-concave ratios

We considered the capital market line generated by mean-variance
analysis with a risk-free asset added to the investment universe and the
optimal Sharpe ratio problem.

We demonstrated that the market portfolio, which is a key constituent of
the efficient portfolios, yields the maximal Sharpe ratio with a constant
benchmark return equal to the return on the risk-free asset.

It turns out that this property is not valid only for the mean-variance
analysis and the Sharpe ratio but also for the more general case of
reward-risk analysis and the corresponding optimal quasi-concave ratio
problem under certain technical conditions.

The necessary general technical conditions are stated in the opening
part of the section about quasi-concave ratio with the additional
requirements that the reward measure and the risk measure are
positively homogeneous and they satisfy the invariance property given in
(10).
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The capital market line and quasi-concave ratios

Under these conditions, the optimal quasi-concave ratio problem
(5) can be reduced to the convex problem

min
v ,t

ρ(v ′X ) + trb

subject to v ′e = t
ν(v ′X ) − trb ≥ 1
v ≥ 0, t ≥ 0.

(20)

We’ll demonstrate that the two-fund separation theorem is valid for
the efficient portfolios generated by reward-risk analysis with a
risk-free asset added to the investment universe.

Similar to the Sharpe ratio, the market portfolio appears as a
solution to the optimal reward-to-risk ratio problem (5).
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The capital market line and quasi-concave ratios

The optimal portfolio problem behind reward-risk analysis with a risk-free
asset is given by

min
ω,ωf

ρ(ω′X ) − ωf rf

subject to ω′e + ωf = 1
ν(ω′X ) + ωf rf ≥ R∗

ω ≥ 0, ωf ≤ 1,

(21)

where

ω denotes the weights of the risky assets
ωf stands for the weight of the risk-free asset
rf denotes the return on the risk-free asset
R∗ denotes the bound on the expected portfolio return

Negative values of ωf are interpreted as borrowing at the risk-free rate
with the borrowed funds invested in the risky assets. Also, we assume
that the lower bound on the expected return is larger than the risk-free
rate, R∗ > rf .
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The capital market line and quasi-concave ratios

We substitute the variable ωf for 1 − s where s calculates the total
weight of the risky assets in the portfolio.

We derive the following optimization problem, equivalent to (21),

min
ω,s

ρ(ω′X ) + srf − rf

subject to ω′e = s
ν(ω′X ) − srf ≥ R∗ − rf
ω ≥ 0, s ≥ 0.

(22)
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The capital market line and quasi-concave ratios

There are many similar features between the optimal ratio problem
(20) and (22).

Denote the optimal solution of (22) by (ω̄, s̄). The optimal solution
to (20) equals

v̄ =
ω̄

(R∗ − rf )
and t̄ =

s̄
(R∗ − rf )

. (23)

Formula (23) holds because scaling the optimal solution (ω̄, s̄)
with the positive factor 1/(R∗ − rf ) makes the resulting quantities
feasible for problem (20).

Furthermore, scaling the objective function of problem (22) by the
same factor does not change the optimal solution point.
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The capital market line and quasi-concave ratios

Note that both v̄ and t̄ , being an optimal solution to (20), do not
depend on R∗ because R∗ is not a parameter in (20).

The vector v̄ and the scalar t̄ can be regarded as characteristics
of the efficient portfolios generated by (21).

According to the analysis made for the generic optimal RR ratio
problem (5), we obtain that the weights w̄ of the portfolio yielding
the maximal RR ratio are computed by

w̄ = v̄/t̄ = ω̄/s̄ = ω̄/(1 − ω̄f ). (24)
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The capital market line and quasi-concave ratios

As a consequence, the optimal RR ratio portfolio w̄ is a
fundamental ingredient in all portfolios in the efficient set
generated by (21).

The weights of the risky assets in the efficient portfolios are
proportional to it and can be computed according to the formula
ω̄ = w̄(1 − ω̄f ).

As a result, the optimal RR ratio portfolio represents the market
portfolio and the returns of any reward-risk efficient portfolio with a
risk-free asset can be expressed as

ω̄X + ω̄f rf = (1 − ω̄f )w̄X + ω̄f rf ,

where rM = w̄X stands for the return of the optimal RR ratio
portfolio.
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The capital market line and quasi-concave ratios

The approach behind the derivation of the capital market line in
the case of mean-variance analysis can be applied for the more
general reward-risk analysis.

We obtain that the equation for the capital market line is

ν(rp) = rf +

(

ν(rM) − rf

ρ(rM) + rf

)

(ρ(rp) + rf ), (25)

where rp denotes the return of the efficient portfolio.

Equation (25) suggests that the capital market line coincides with
the tangent line to the efficient frontier in the reward-shifted risk
plane.

Prof. Dr. Svetlozar Rachev (University of Karlsruhe)Lecture 10: Performance measures 2008 46 / 57



Non-quasi-concave performance measures

Not all RR ratios and RV ratios belong to the class of the
quasi-concave performance measures described in the previous
section.

Examples include the one-sided variability ratio defined in (??)
and the Rachev ratio described in the chapter which are ratios of a
convex reward measure of portfolio weights and a convex risk
measure.

Other examples include the generalized Rachev ratio, the
Gini-type ratio, and the spectral-type ratio discussed in Rachev et
al. (2007).
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Non-quasi-concave performance measures

Since these performance measures are not quasi-concave
functions of portfolio weights, there may be multiple local extrema
and, therefore, any numerical method based on convex
programming will find the closest local maximum which may not
be the global one.

Nevertheless, for some of the non-quasi-concave performance
measures, it could be possible to find a method yielding the global
maximum.

For example, in the case of the Rachev ratio, it is possible to find a
mixed-integer programming problem finding the global maximum
of the Rachev ratio.
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Non-quasi-concave performance measures

Here we provide a definition of the generalized Rachev ratio as it
includes several of the ratios as special examples.

The generalized Rachev ratio is defined as

GRaRδ,γ
α,β(w) =

AVaRδ
α(rb − rp)

AVaRγ
β(rp − rb)

(26)

where α and β denote tail probabilities, and δ and γ are powers
generalizing the AVaR concept,

AVaRδ
α(X ) =

(

1
α

∫ α

0

[

max(−F−1
X (p), 0)

]δ
dp

)1/δ

.

in which δ ≥ 1 and X stands for the r.v. which in this case can be
the active portfolio return X = rp − rb or the negative of it
X = rb − rp.
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Non-quasi-concave performance measures

If δ = 1, then the quantity AVaRδ
α(X ) coincides with AVaR,

AVaR1
α(X ) = AVaRα(X ).

if α ≤ FX (0).

As a consequence of this equality, the Rachev ratio appears as a
special example of the generalized Rachev ratio,

GRaR1,1
α,β(w) = RaRα,β(w).

when α and β are sufficiently small.

Prof. Dr. Svetlozar Rachev (University of Karlsruhe)Lecture 10: Performance measures 2008 50 / 57



Non-quasi-concave performance measures

Furthermore, choosing appropriately the tail probabilities, the
generalized Rachev ratio generates a scaled one-sided variability
ratio Φp,q

rb
(w).

Suppose that α1 = P(rb − rp ≤ 0) and β1 = P(rp − rb ≤ 0).

Then, on condition that the active return is an absolutely
continuous random variable,

GRaRp,q
α1,β1

(w) = C.Φp,q
rb

(w)

where C = βq
1/αp

1 is a positive constant.
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Probability metrics and performance measures

Concerning the problem of evaluating the performance of a given
portfolio, the ideas behind the theory of probability metrics can be
applied in the construction of general families of performance
measures.
For example, consider the following general ratio,

GRδ,γ
α,β,M(w) =

AVaRδ
α,M(rb − rp)

AVaRγ
β,M(rp − rb)

(27)

where

AVaRδ
α,M(X ) =

(

1
α

∫ α

0

[

max(−F−1
X (p), 0)

]δ
dM(p)

)min(1,1/δ)

(28)
in which δ > 0 and all notation is the same as in formula (26) and
the function M(p) satisfies the properties of a cumulative
distribution function (c.d.f.) of a r.v. defined in the unit interval.
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Probability metrics and performance measures

There are a few interesting special cases of (28).

If M(p) is the c.d.f. of the uniform distribution in [0, 1], then (28)
coincides with the generalized Rachev ratio given in (26).

As a next case, suppose that M(p) is the c.d.f. of the constant α
which is the tail probability in (28).

Under this assumption, the integral equals the value of the
integrand function at p = α.

As a result, we can obtain a performance measure represented by
a scaled ratio of two VaRs,

GR1,1
α,β,M(w) = C

VaRα(rb − rp)

VaRβ(rp − rb)

where C = β/α is a positive constant.
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Probability metrics and performance measures

Furthermore, taking advantage of the underlying structure of the
performance measure in (27), we can derive the next two limit cases.

Suppose that δ → ∞ and γ → ∞ and that M(p) is a continuous
function.

Under these conditions and using the properties of the inverse
c.d.f.,

GR∞,∞
α,β,M(w) =

VaR0(rb − rp)

VaR0(rp − rb)

where VaR0(X ) denotes the smallest value that the random
variable X can take.

Thus, the performance measure GR∞,∞
α,β,M(w) is in fact the ratio

between the maximal outperformance of the benchmark and the
maximal underperformance of the benchmark.

This quantity does not depend on the selected tail probabilities
and the form of the continuous c.d.f. M(p).
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Probability metrics and performance measures

At the other limit, suppose that δ → 0 and γ → 0. Then, using the
properties of the inverse c.d.f., we derive the ratio

GR0,0
α,β,M(w) =

βM(α)

αM(β)

the properties of which are driven by the assumptions behind the
c.d.f. M(p).

The general ratio defined in formula (27) can be regarded as an
illustration of how the theory of probability metrics can be
employed in order to obtain general classes of performance
measures encompassing other performance measures as special
cases.
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