3 Grundlagen statistischer Tests (Kap. 8 IS)

3.1 Beispiel zum Hypothesentest

Beispiel:

- Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht $\mu_0 = 1000g$ und bekannter Standardabweichung des Abfüllgewichts von $\sigma = 3g$.
- Beobachtet wird die einfache Zufallsstichprobe (iid-Stichprobe)

$$x_1 = 1002g, x_2 = 1007g, x_3 = 997g, x_4 = 1014g$$

vom Umfang n=4 mit dem Mittelwert

$$\bar{x} = \frac{1}{4} \sum_{i=1}^{4} x_i = 1005g.$$

Interessierende Fragestellung:

- Wird die **Hypothese** $\mu = \mu_0 = 1000g$ durch die Beobachtung von $\bar{x} = 1005g$ erschüttert?
- Weicht also \bar{x} statistisch signifikant von μ_0 ab?

Stochastisches Modell:

- Die Zufallsvariable Y beschreibe das Abfüllgewicht der Anlage in Gramm, wobei $Y \sim N(\mu, \sigma^2)$ mit unbekannten $\mu \in \mathbb{R}$ und bekannter Varianz $\sigma^2 > 0$ gelte.
- Es liegt eine einfache Zufallsstichprobe (iid-Stichprobe) vom Umfang n zu Y vor, d. h. $X_i \overset{\text{i.i.d.}}{\sim} N(\mu, \sigma^2)$ für $i = 1, \ldots, n$.

Implikationen und Testdurchführung:

• In diesem Modell ist das zufällige Stichprobenmittel $\bar{X} \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^{n} X_i$ normalverteilt,

$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right).$$

• Um eine Entscheidung bzgl. der Hypothese zu fällen, wird im Folgenden die Zufallsvariable

$$T(X) = T(X_1, \dots, X_n) \stackrel{\text{def}}{=} \frac{\bar{X} - \mu_0}{\sigma} \sqrt{n}$$

betrachtet, die auch als Prüfgröße, Testfunktion oder Teststatistik bezeichnet wird.

Diese Zufallsvariable ist normalverteilt und es gilt

$$T(X) = \frac{\bar{X} - \mu_0}{\sigma} \sqrt{n} \sim N\left(\frac{\mu - \mu_0}{\sigma} \sqrt{n}, 1\right).$$

• Falls die Hypothese $\mu = \mu_0$ richtig wäre, dann wäre die Prüfgröße T(X) standardnormalverteilt,

$$T(X) \stackrel{\mu=\mu_0}{\sim} N(0,1)$$

und es gilt

$$P\left(T(X) \in \left[u_{\frac{\alpha}{2}}, u_{1-\frac{\alpha}{2}}\right]\right) = 1 - \alpha \qquad \text{und} \qquad P\left(T(X) \notin \left[u_{\frac{\alpha}{2}}, u_{1-\frac{\alpha}{2}}\right]\right) = \alpha.$$

Dabei bezeichnet $0<\alpha<1$ eine vorgegebene (in der Regel) kleine **Wahrscheinlichkeit**; übliche Werte für α sind 1%, 5%, 10%. Es bezeichnet $u_{\frac{\alpha}{2}}$ das $\alpha/2$ -Quantil und $u_{1-\frac{\alpha}{2}}$ das $(1-\alpha/2)$ -Quantil der Standardnormalverteilung, wobei $u_{\frac{\alpha}{2}}=-u_{1-\frac{\alpha}{2}}$ gilt.

- Falls $\mu>\mu_0$ wäre (Hypothese falsch), dann sind große Werte von T(X) wahrscheinlicher als im Fall $\mu=\mu_0$.
- Falls $\mu < \mu_0$ ware (Hypothese auch falsch), dann sind kleine Werte von T(X) wahrscheinlicher als im Fall $\mu = \mu_0$.

• Im Beispiel ergibt sich mit $\bar{x}=1005g$, $\mu_0=1000g$, $\sigma=3g$ und n=4 für die Prüfgröße T(X) die Realisation

$$T(x) = T(x_1, \dots, x_n) = \frac{1005 - 1000}{3} \sqrt{4} = \frac{10}{3}.$$

Ist $\alpha=0.01$ gegeben, dann ist $u_{\frac{\alpha}{2}}=u_{0.005}=-2.58$ und $u_{1-\frac{\alpha}{2}}=u_{0.995}=2.58$. Da $T(x)=\frac{10}{3}>2.58$, wird die Hypothese $\mu=\mu_0$ in diesem Beispiel auf dem **Signifikanzniveau** $\alpha=0.01$ verworfen.

3.2 Allgemeine Teststruktur und Grundbegriffe

• Nullhypothese H_0 und Gegenhypothese (auch Alternativhypothese) H_1 : Zerlegung des Parameterraums Γ in zwei disjunkte nichtleere Teilmengen Γ_0 und Γ_1 , d. h. $\Gamma_0 \cap \Gamma_1 = \emptyset$, $\Gamma_0 \neq \emptyset$ und $\Gamma_1 \neq \emptyset$. Oft vollständige Zerlegung, so dass $\Gamma = \Gamma_0 \cup \Gamma_1$. Testproblem lautet somit:

$$H_0: \gamma \in \Gamma_0$$
 vs. $H_1: \gamma \in \Gamma_1$

- **Test** und **Entscheidungsfunktion** δ : Entscheidungsfunktion δ : $\mathcal{X} \to \{d_0, d_1\}$ wird Test genannt; \mathcal{X} ... Stichprobenraum, d_0 ... H_0 wird nicht verworfen, d_1 ... H_0 wird verworfen
- **Prüfgröße** (auch Testfunktion, Teststatistik) T(X): Stichprobenfunktion $T(X) = T(X_1, \ldots, X_n)$, die als Hilfsmittel zur Entscheidungsfindung dient, Realisationen: $T(x) = T(x_1, \ldots, x_n) \in \mathbb{R}$
- Annahmebereich A_{δ} und Ablehnungsbereich (auch Ablehnbereich, kritischer Bereich, Verwerfungsbereich) K_{δ} :

$$A_{\delta} \stackrel{\text{def}}{=} \{x \in \mathcal{X} \mid \delta(x) = d_0\} \quad \text{und} \quad K_{\delta} \stackrel{\text{def}}{=} \{x \in \mathcal{X} \mid \delta(x) = d_1\}$$

Es gilt $\mathcal{X} = A_{\delta} \cup K_{\delta}$, $A_{\delta} \cap K_{\delta} = \emptyset$.

Alternative Definition: $A_{\delta}^* \stackrel{\text{def}}{=} \{T(x) \in \mathbb{R} \mid \delta(x) = d_0\} \text{ und } K_{\delta}^* \stackrel{\text{def}}{=} \{T(x) \in \mathbb{R} \mid \delta(x) = d_1\}$

• Fehler 1. Art und Fehler 2. Art:

- Der Fehler, dass H_0 abgelehnt wird (Entscheidung d_1), obwohl H_0 richtig ist ($\gamma \in \Gamma_0$), heißt Fehler 1. Art.
- Der Fehler, dass H_0 nicht abgelehnt wird (Entscheidung d_0), obwohl H_0 falsch ist $(\gamma \in \Gamma_1)$, heißt Fehler 2. Art.
- Die Wahrscheinlichkeit, den Fehler 1. Art zu begehen, ist

$$P_I(\delta, \gamma) \stackrel{\text{def}}{=} P_{\gamma}(\delta(X) = d_1) = P_{\gamma}(X \in K_{\delta}) = P_{\gamma}(T(X) \in K_{\delta}^*)$$
 für $\gamma \in \Gamma_0$

und heißt Fehlerwahrscheinlichkeit 1. Art.

- Die Wahrscheinlichkeit, den Fehler 2. Art zu begehen, ist

$$P_{II}(\delta,\gamma) \stackrel{\mathrm{def}}{=} P_{\gamma}(\delta(X) = d_0) = P_{\gamma}(X \in A_{\delta}) = P_{\gamma}(T(X) \in A_{\delta}^*)$$
 für $\gamma \in \Gamma_1$

und heißt Fehlerwahrscheinlichkeit 2. Art.

- Beide Fehlerwahrscheinlichkeiten sind im Allgemeinen nicht konstant und variieren mit n.
- $P_I(\delta,\gamma)$ verringert sich durch Verkleinerung von K_δ (Vergrößerung von A_δ) und $P_{II}(\delta,\gamma)$ verringert sich durch Verkleinerung von A_δ (Vergrößerung von K_δ). In der Regel führt daher Verringerung von $P_I(\delta,\gamma)$ zur Erhöhung von $P_{II}(\delta,\gamma)$ und umgekehrt.
- **Signifikanzniveau** α : vorgegebene Oberschranke für Fehlerwahrscheinlichkeit 1. Art, $0 < \alpha < 1$, übliche Werte: 1%, 5%, 10%,

• Gütefunktion und Operationscharakteristik (auch OC-Kurve):

Die Funktion

$$G_{\delta}(\gamma) \stackrel{\text{def}}{=} P_{\gamma}(\delta(X) = d_1), \qquad \gamma \in \Gamma$$

heißt Gütefunktion (power) eines Tests $\delta: \mathcal{X} \to \{d_0, d_1\}$ und gibt zu jedem γ die Wahrscheinlichkeit an, H_0 zu verwerfen.

- Für $\gamma \in \Gamma_0$ ist $G_\delta(\gamma)$ die Fehlerwahrscheinlichkeit 1. Art. Für $\gamma \in \Gamma_1$ ist $G_\delta(\gamma)$ die Wahrscheinlichkeit für die korrekte Entscheidung H_0 zu verwerfen.
- Die Funktion

$$L_{\delta}(\gamma) \stackrel{\text{def}}{=} 1 - G_{\delta}(\gamma) = P_{\gamma}(\delta(X) = d_0), \qquad \gamma \in \Gamma$$

heißt Operationscharakteristik eines Tests $\delta: \mathcal{X} \to \{d_0, d_1\}$ und gibt zu jedem γ die Wahrscheinlichkeit an, H_0 nicht zu verwerfen.

- Für $\gamma \in \Gamma_0$ ist $L_\delta(\gamma)$ die Wahrscheinlichkeit für die korrekte Entscheidung H_0 nicht zu verwerfen. Für $\gamma \in \Gamma_1$ ist $L_\delta(\gamma)$ die Fehlerwahrscheinlichkeit 2. Art.
- Beide Funktionen hängen auch vom Stichprobenumfang n ab.

3.3 Tests zum Niveau α

Es sei $0 < \alpha < 1$.

ullet Ein Test $\delta: \mathcal{X} o \{d_0, d_1\}$ mit der Eigenschaft

$$P_I(\delta,\gamma) = P_\gamma(\delta(X) = d_1) = P_\gamma(X \in K_\delta) = P_\gamma(T(X) \in K_\delta^*) \le \alpha \qquad \text{für alle} \qquad \gamma \in \Gamma_0$$

heißt **Test zum Niveau** α , d. h. die Gütefunktion $G_{\delta}(\gamma)$ überschreitet im gesamten Bereich $\gamma \in \Gamma_0$ nie den Wert α .

• Ein Test zum Niveau α heißt **unverfälscht**, falls

$$G_{\delta}(\gamma) \geq \alpha$$
 für alle $\gamma \in \Gamma_1$.

• Ein Test δ zum Niveau α heißt **gleichmäßig bester Test zum Niveau** α , falls für jeden anderen Test δ' zum Niveau α gilt, dass

$$P_{II}(\delta,\gamma) = P_{\gamma}(\delta(X) = d_0) \le P_{II}(\delta',\gamma) = P_{\gamma}(\delta'(X) = d_0)$$
 für alle $\gamma \in \Gamma_1$.

D. h. für die Operationscharakteristiken gilt $L_{\delta}(\gamma) \leq L_{\delta'}(\gamma)$ im gesamten Bereich $\gamma \in \Gamma_1$.

4 Tests für die Parameter der Normalverteilung

Im Folgenden werden der Gauß-Test, der t-Test und ein Varianz-Test vorgestellt.

Für alle drei Tests müssen folgende Voraussetzungen erfüllt sein:

- Es sei $Y \sim N(\mu, \sigma^2)$ mit $\mu \in \mathbb{R}$ und Varianz $\sigma^2 > 0$.
- Es liegt eine einfache Zufallsstichprobe (iid-Stichprobe) vom Umfang n zu Y vor, d. h. $X_i \overset{\text{i.i.d.}}{\sim} N(\mu, \sigma^2)$ für $i = 1, \ldots, n$.

Der Gauß-Test ist ein Test über den Erwartungswert μ , falls die Varianz σ^2 bekannt ist.

Der t-Test ist ein Test über den Erwartungswert μ , falls die Varianz σ^2 unbekannt ist und geschätzt werden muss.

Der vorgestellte Varianz-Test ist ein Test über die Varianz σ^2 der Normalverteilung, falls der Erwartungswert μ der Normalverteilung unbekannt ist und geschätzt werden muss.

4.1 Gauß-Test

Zweck: Test über den Parameter μ einer Normalverteilung bei bekannter Varianz σ^2

Voraussetzung: $X_i \overset{\text{i.i.d.}}{\sim} N(\mu, \sigma^2)$ für $i = 1, \ldots, n$

Gegeben: Signifikanzniveau $\alpha \in]0,1[$, Varianz $\sigma^2>0$, $\mu_0\in\mathbb{R}$

4.1.1 Zweiseitiger Gauß-Test

Das in Abschnitt 3.1 diskutierte Beispiel ist ein zweiseitiger Gauß-Test.

Null- und Gegenhypothese: $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$

Prüfgröße: $T(X) \stackrel{\mathrm{def}}{=} \frac{\bar{X} - \mu_0}{\sigma} \sqrt{n} \sim N\left(\frac{\mu - \mu_0}{\sigma} \sqrt{n}, 1\right)$

Testverteilung: $T(X) \stackrel{\mu=\mu_0}{\sim} N(0,1)$

Die Testverteilung ist die Verteilung der Prüfgröße, falls $\mu=\mu_0$ und somit beim zweiseitigen Test die Hypothese H_0 richtig ist. Die Testverteilung ist beim Gauß-Test die Standardnormalverteilung, die auch Gauß-Verteilung heißt, und dem Test den Namen gibt.

Ablehnungsbereich:

$$K_{\delta}^* =]-\infty, -u_{1-\frac{\alpha}{2}}[\cup]u_{1-\frac{\alpha}{2}}, \infty[$$

Im Gauß-Test ist $u_{1-\frac{\alpha}{2}}$ das $(1-\frac{\alpha}{2})$ -Quantil der Standardnormalverteilung. Da diese Verteilung eine Dichtefunktion besitzt, die symmetrisch um Null ist, gilt $u_{\frac{\alpha}{2}}=-u_{1-\frac{\alpha}{2}}$. Beim zweiseitigen Gauß-Test gilt $P(T(X)\in K^*_\delta)=\alpha$.

Testentscheidung:

$$\delta(x) = \begin{cases} d_0, & \text{falls} \quad T(x) \notin K_{\delta}^* \\ d_1, & \text{falls} \quad T(x) \in K_{\delta}^* \end{cases}$$

Dabei ist $x \stackrel{\text{def}}{=} (x_1, \dots, x_n)$ eine Realisation des Stichprobenvektors $X \stackrel{\text{def}}{=} (X_1, \dots, X_n)$ und T(x) eine Realisation der Prüfgröße T(X).

4.1.2 Einseitige Gauß-Tests

Bei einseitigen und zweiseitigen Gauß-Tests stimmen Prüfgröße, Testverteilung und das Treffen der Testentscheidung überein, nur Hypothesenpaare und Ablehnungsbereiche sind verschieden.

Null- und Gegenhypothese: $H_0: \mu = \mu_0 \text{ oder } \mu \geq \mu_0$ vs. $H_1: \mu < \mu_0$

Ablehnungsbereich: $K_{\delta}^* =]-\infty, -u_{1-\alpha}[$

Dabei ist $u_{1-\alpha}$ das $(1-\alpha)$ -Quantil der Standardnormalverteilung. Da diese Verteilung eine Dichtefunktion besitzt, die symmetrisch um Null ist, gilt $u_{\alpha}=-u_{1-\alpha}$.

Null- und Gegenhypothese: $H_0: \mu = \mu_0 \text{ oder } \mu \leq \mu_0 \text{ vs. } H_1: \mu > \mu_0$

Ablehnungsbereich: $K_{\delta}^* =]u_{1-\alpha}, \infty[$

Bei ein- oder zweiseitigen Gauß-Tests mit einfacher Nullhypothese $\mu=\mu_0$ gilt

$$P_{\mu}(T(X) \in K_{\delta}^*) = \alpha$$
 für $\mu = \mu_0$.

Liegt beim einseitigen Gauß-Test eine **zusammengesetzte Nullhypothese** $\mu \geq \mu_0$ vor, dann gilt

$$P_{\mu}(T(X) \in K_{\delta}^*) \le \alpha$$
 für alle $\mu \ge \mu_0$,

liegt eine **zusammengesetzte Nullhypothese** der Form $\mu \leq \mu_0$ vor, dann gilt

$$P_{\mu}(T(X) \in K_{\delta}^*) \le \alpha$$
 für alle $\mu \le \mu_0$.

4.1.3 Beispiel für DAX-Renditen

- Zufallsvariable Y beschreibe die stetige Jahresrendite des DAX
- Annahme des Standardmodells für stetige Renditen: $Y \sim N(\mu, \sigma^2)$ mit $\mu \in \mathbb{R}$ und $\sigma^2 > 0$
- Erwartungswert μ unbekannt; Volatilität (p. a.) mit $\sigma = 25\%$ bekannt
- ullet einfache Zufallsstichprobe vom Umfang n=25 Jahre zu $Y\colon X_t\stackrel{\mathrm{i.i.d.}}{\sim} N(\mu,\sigma^2)$, $t=1,\ldots,n$
- beobachtete durchschnittliche Jahresrendite des DAX über 25 Jahre: $\bar{x}=10\%$

Testfragestellung: Ist \bar{x} signifikant ($\alpha = 5\%$) von Null verschieden?

Hypothesen: $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$ mit $\mu_0 = 0$

Realisation der Prüfgröße: $T(x) = \frac{\bar{x} - \mu_0}{\sigma} \sqrt{n} = \frac{0.1 - 0}{0.25} \sqrt{25} = 2$

Ablehnungsbereich: Es ist $u_{1-\frac{\alpha}{2}} = u_{0.975} = 1.96$ und damit $K_{\delta}^* =]-\infty, -1.96[\cup]1.96, \infty[$.

Testentscheidung: H_0 wird verworfen, da $T(x) \in K_{\delta}^*$.

Testfragestellung: Ist \bar{x} signifikant ($\alpha = 5\%$) größer als 4%?

Hypothesen: $H_0: \mu = \mu_0$ vs. $H_1: \mu > \mu_0$ mit $\mu_0 = 0.04$

Realisation der Prüfgröße: $T(x) = \frac{\bar{x} - \mu_0}{\sigma} \sqrt{n} = \frac{0.1 - 0.04}{0.25} \sqrt{25} = 1.2$

Ablehnungsbereich: Es ist $u_{1-\alpha} = u_{0.95} = 1.65$ und damit $K_{\delta}^* =]1.65, \infty[$.

Testentscheidung: H_0 wird nicht verworfen, da $T(x) \notin K_{\delta}^*$.

4.1.4 Eigenschaften des Gauß-Tests

Es wird der einseitige Gauß-Test mit dem folgenden Hypothesenpaar betrachtet:

$$H_0: \ \mu \leq \mu_0 \qquad ext{vs.} \qquad H_1: \ \mu > \mu_0 \qquad ext{mit gegebenen} \qquad \mu_0 \in \mathbb{R}.$$

Die **Gütefunktion** dieses Gauß-Tests ist für alle $\mu \in \mathbb{R}$ gegeben durch

$$G_{\delta}(\mu) \stackrel{\text{def}}{=} P_{\mu}(\delta(X) = d_{1})$$

$$= P_{\mu}(T(X) \in K_{\delta}^{*})$$

$$= P_{\mu}\left(\frac{\bar{X} - \mu_{0}}{\sigma}\sqrt{n} > u_{1-\alpha}\right)$$

$$= P_{\mu}\left(\frac{\bar{X}}{\sigma}\sqrt{n} > u_{1-\alpha} + \frac{\mu_{0}}{\sigma}\sqrt{n}\right)$$

$$= P_{\mu}\left(\frac{\bar{X} - \mu}{\sigma}\sqrt{n} > u_{1-\alpha} - \frac{\mu - \mu_{0}}{\sigma}\sqrt{n}\right)$$

$$= 1 - P_{\mu}\left(\frac{\bar{X} - \mu}{\sigma}\sqrt{n} \leq u_{1-\alpha} - \frac{\mu - \mu_{0}}{\sigma}\sqrt{n}\right)$$

$$= 1 - \Phi\left(u_{1-\alpha} - \frac{\mu - \mu_{0}}{\sigma}\sqrt{n}\right),$$

wobei Φ die Verteilungsfunktion der Standardnormalverteilung bezeichnet.

Es gilt

$$G_{\delta}(\mu) < G_{\delta}(\mu_0)$$
 für alle $\mu < \mu_0$

und

$$\max_{\mu \le \mu_0} G_{\delta}(\mu) = G_{\delta}(\mu_0) = \alpha,$$

so dass der Test das **Niveau** α hat. Wegen

$$G_{\delta}(\mu) = 1 - \Phi\left(u_{1-\alpha} - \frac{\mu - \mu_0}{\sigma}\sqrt{n}\right) > \alpha$$
 für alle $\mu > \mu_0$

ist der Test unverfälscht.

Die **Operationscharakteristik** dieses Gauß-Tests ist für alle $\mu \in \mathbb{R}$ gegeben durch

$$L_{\delta}(\mu) \stackrel{\text{def}}{=} 1 - G_{\delta}(\mu) = \Phi\left(u_{1-\alpha} - \frac{\mu - \mu_0}{\sigma}\sqrt{n}\right).$$

4.2 *t*-**Test**

Zweck: Test über den Parameter μ einer Normalverteilung bei **unbekannter** Varianz σ^2

Voraussetzung: $X_i \overset{\text{i.i.d.}}{\sim} N(\mu, \sigma^2)$ für $i = 1, \ldots, n$

Gegeben: Signifikanzniveau $\alpha \in]0,1[$, $\mu_0 \in \mathbb{R}$

4.2.1 Zweiseitiger *t*-Test

Null- und Gegenhypothese: $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$

Prüfgröße: $T(X) \stackrel{\text{def}}{=} \frac{\bar{X} - \mu_0}{S^*(X)} \sqrt{n} = \frac{\bar{X} - \mu_0}{S(X)} \sqrt{n-1}$

Testverteilung: $T(X) \stackrel{\mu=\mu_0}{\sim} t(n-1)$

Die Testverteilung ist die Verteilung der Prüfgröße, falls $\mu=\mu_0$ und somit beim zweiseitigen Test die Hypothese H_0 richtig ist. Die Testverteilung ist beim t-Test die t-Verteilung mit n-1 Freiheitsgraden.

Ablehnungsbereich:

$$K_{\delta}^* =]-\infty, -t(n-1)_{1-\frac{\alpha}{2}}[\cup]t(n-1)_{1-\frac{\alpha}{2}},\infty[$$

Im t-Test ist $t(n-1)_{1-\frac{\alpha}{2}}$ das $(1-\frac{\alpha}{2})$ -Quantil der t-Verteilung mit n-1 Freiheitsgraden. Da diese Verteilung eine Dichtefunktion besitzt, die symmetrisch um Null ist, gilt $t(n-1)_{\frac{\alpha}{2}}=-t(n-1)_{1-\frac{\alpha}{2}}$.

Testentscheidung:

$$\delta(x) = \begin{cases} d_0, & \text{falls} \quad T(x) \notin K_{\delta}^* \\ d_1, & \text{falls} \quad T(x) \in K_{\delta}^* \end{cases}$$

Dabei ist $x \stackrel{\text{def}}{=} (x_1, \dots, x_n)$ eine Realisation des Stichprobenvektors $X \stackrel{\text{def}}{=} (X_1, \dots, X_n)$ und T(x) eine Realisation der Prüfgröße T(X).

4.2.2 Einseitige *t*-Tests

Bei einseitigen und zweiseitigen t-Tests stimmen Prüfgröße, Testverteilung und das Treffen der Testentscheidung überein, nur Hypothesenpaare und Ablehnungsbereiche sind verschieden.

Null- und Gegenhypothese: $H_0: \mu=\mu_0 \text{ oder } \mu\geq\mu_0$ vs. $H_1: \mu<\mu_0$ Ablehnungsbereich: $K_\delta^*=]-\infty, -t(n-1)_{1-\alpha}[$

Dabei ist $t(n-1)_{1-\alpha}$ das $(1-\alpha)$ -Quantil der t-Verteilung mit n-1 Freiheitsgraden. Da diese Verteilung eine Dichtefunktion besitzt, die symmetrisch um Null ist, gilt $t(n-1)_{\alpha}=-t(n-1)_{1-\alpha}$.

Null- und Gegenhypothese: $H_0: \mu=\mu_0 \text{ oder } \mu\leq\mu_0$ vs. $H_1: \mu>\mu_0$ Ablehnungsbereich: $K_\delta^*=]t(n-1)_{1-\alpha},\infty[$

Hinweis: Für große Stichprobenumfänge n kann die t-Verteilung mit n-1 Freiheitsgraden durch die Standardnormalverteilung approximiert werden, d. h. $t(n-1)_{\alpha} \approx u_{\alpha}$, $t(n-1)_{1-\alpha} \approx u_{1-\alpha}$ und $t(n-1)_{1-\frac{\alpha}{2}} \approx u_{1-\frac{\alpha}{2}}$ (z. B. für $n-1 \geq 30$).

4.2.3 Beispiel für DAX-Renditen

- ullet Zufallsvariable Y beschreibe die stetige Jahresrendite des DAX
- Annahme des Standardmodells für stetige Renditen: $Y\sim N(\mu,\sigma^2)$ mit unbekannten Parametern $\mu\in\mathbb{R}$ und $\sigma^2>0$
- ullet einfache Zufallsstichprobe vom Umfang n=25 Jahre zu $Y\colon X_t\stackrel{\mathrm{i.i.d.}}{\sim} N(\mu,\sigma^2)$, $t=1,\ldots,n$
- Schätzwerte: $\bar{x} = 10\%$, $S^*(x) = 25\%$

Testfragestellung: Ist \bar{x} signifikant ($\alpha = 5\%$) von Null verschieden?

Hypothesen: $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$ mit $\mu_0 = 0$

Realisation der Prüfgröße: $T(x) = \frac{\bar{x} - \mu_0}{S^*(x)} \sqrt{n} = \frac{0.1 - 0}{0.25} \sqrt{25} = 2$

Ablehnungsbereich: Mit $t(24)_{0.975} = 2.064$ folgt $K_{\delta}^* =]-\infty, -2.064[\cup]2.064, \infty[$.

Testentscheidung: H_0 wird nicht verworfen, da $T(x) \notin K_{\delta}^*$.

Testfragestellung: Ist \bar{x} signifikant ($\alpha = 5\%$) größer als 4%?

Hypothesen: $H_0: \mu=\mu_0$ vs. $H_1: \mu>\mu_0$ mit $\mu_0=0.04$

Realisation der Prüfgröße: $T(x) = \frac{\bar{x} - \mu_0}{S^*(x)} \sqrt{n} = \frac{0.1 - 0.04}{0.25} \sqrt{25} = 1.2$

Ablehnungsbereich: Mit $t(24)_{0.95} = 1.711$ folgt $K_{\delta}^* =]1.711, \infty[$.

Testentscheidung: H_0 wird nicht verworfen, da $T(x) \notin K_{\delta}^*$.

4.3 Test über die Varianz der Normalverteilung

Zweck: Test über die Varianz σ^2 einer Normalverteilung bei **unbekanntem** Erwartungswert μ

Voraussetzung: $X_i \overset{\text{i.i.d.}}{\sim} N(\mu, \sigma^2)$ für $i = 1, \ldots, n$

Gegeben: Signifikanzniveau $\alpha \in]0,1[$, $\sigma_0^2>0$

4.3.1 Zweiseitiger Varianz-Test

Null- und Gegenhypothese: $H_0: \sigma^2 = \sigma_0^2$ vs. $H_1: \sigma^2 \neq \sigma_0^2$

Prüfgröße: $T(X) \stackrel{\text{def}}{=} \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{\sigma_0^2}$

Testverteilung: $T(X) \stackrel{\sigma^2 = \sigma_0^2}{\sim} \chi^2(n-1)$

Die Testverteilung ist die Verteilung der Prüfgröße, falls $\sigma^2=\sigma_0^2$ und somit beim zweiseitigen Test die Hypothese H_0 richtig ist. Die Testverteilung ist beim Varianz-Test die χ^2 -Verteilung mit n-1 Freiheitsgraden.

Ablehnungsbereich:

$$K_{\delta}^* = [0, \chi^2(n-1)_{\frac{\alpha}{2}}[\cup]\chi^2(n-1)_{1-\frac{\alpha}{2}}, \infty[$$

Im Varianz-Test ist $\chi^2(n-1)_{\frac{\alpha}{2}}$ das $(\frac{\alpha}{2})$ -Quantil und $\chi^2(n-1)_{1-\frac{\alpha}{2}}$ das $(1-\frac{\alpha}{2})$ -Quantil der χ^2 -Verteilung mit n-1 Freiheitsgraden.

Testentscheidung:

$$\delta(x) = \begin{cases} d_0, & \text{falls} \quad T(x) \notin K_{\delta}^* \\ d_1, & \text{falls} \quad T(x) \in K_{\delta}^* \end{cases}$$

Dabei ist $x \stackrel{\text{def}}{=} (x_1, \dots, x_n)$ eine Realisation des Stichprobenvektors $X \stackrel{\text{def}}{=} (X_1, \dots, X_n)$ und T(x) eine Realisation der Prüfgröße T(X).

4.3.2 Einseitige Varianz-Tests

Bei einseitigen und zweiseitigen Varianz-Tests stimmen Prüfgröße, Testverteilung und das Treffen der Testentscheidung überein, nur Hypothesenpaare und Ablehnungsbereiche sind verschieden.

Null- und Gegenhypothese: $H_0: \sigma^2=\sigma_0^2 \text{ oder } \sigma^2 \geq \sigma_0^2$ vs. $H_1: \sigma^2<\sigma_0^2$ Ablehnungsbereich: $K_\delta^*=[0,\chi^2(n-1)_\alpha[$

Dabei ist $\chi^2(n-1)_{\alpha}$ das α -Quantil der χ^2 -Verteilung mit n-1 Freiheitsgraden.

Null- und Gegenhypothese: $H_0: \sigma^2=\sigma_0^2 \text{ oder } \sigma^2 \leq \sigma_0^2 \text{ vs. } H_1: \sigma^2>\sigma_0^2$ Ablehnungsbereich: $K_\delta^*=]\chi^2(n-1)_{1-\alpha},\infty[$

Dabei ist $\chi^2(n-1)_{1-\alpha}$ das $(1-\alpha)$ -Quantil der χ^2 -Verteilung mit n-1 Freiheitsgraden.

Bemerkung: Ist der Erwartungswert $\mu \in \mathbb{R}$ der Normalverteilung bekannt, ergeben sich ein- und zweiseitige Varianz-Tests zu den oben angegebenen Hypothesenpaaren, falls die Prüfgröße

$$T(X) = \frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\sigma_0^2}$$

verwendet wird. Als Testverteilung ergibt sich dann für $\sigma^2=\sigma_0^2$ die χ^2 -Verteilung mit n Freiheitsgraden. In den jeweiligen Ablehnungsbereichen müssen dann die entsprechenden Quantile der χ^2 -Verteilung mit n Freiheitsgraden eingesetzt werden.

Hinweis: Für große Stichprobenumfänge kann die χ^2 -Verteilung mit ν Freiheitsgraden durch die $N(\nu,2\nu)$ -Verteilung approximiert werden. Für das α -Quantil gilt dann beispielsweise $\chi^2(\nu)_{\alpha}\approx \nu+u_{\alpha}\cdot\sqrt{2\nu}$ für $\nu\geq 30$.

5 Approximative Tests

Im Folgenden werden zwei approximative Gauß-Tests und ein Test über eine Wahrscheinlichkeit vorgestellt.

Nachteil: Tests basieren auf Zentralem Grenzwertsatz der Statistik \Longrightarrow Approximationsfehler für endlichen Stichprobenumfang n; Approximationsfehler wird mit zunehmendem n zwar kleiner, verschwindet aber nur asymptotisch $(n \to \infty)$

Vorteil: keine normalverteilte Grundgesamtheit als Voraussetzung erforderlich

Voraussetzungen:

- Die Verteilung von Y hat den Erwartungswert $\mu \stackrel{\mathrm{def}}{=} E(Y)$ und die Varianz $0 < \sigma^2 \stackrel{\mathrm{def}}{=} Var(Y) < \infty$.
- Es liegt eine einfache Zufallsstichprobe (iid-Stichprobe) vom Umfang n zu Y vor, d. h. die X_i sind unabhängig und identisch verteilt mit Erwartungswert $\mu = E(X_i)$ und Varianz $\sigma^2 = Var(X_i)$ für $i = 1, \ldots, n$.

Die approximativen Gauß-Tests sind Tests über den Erwartungswert μ bei bekannter oder unbekannter Varianz σ^2 . Der Test über eine Wahrscheinlichkeit ist ein Test über den Parameter p einer Bernoulli-Verteilung.

5.1 Approximativer Gauß-Test bei bekannter Varianz

Zweck: Test über den Erwartungswert μ einer Grundgesamtheit bei bekannter Varianz σ^2

Voraussetzung: Die X_i sind unabhängig und identisch verteilt (iid) mit Erwartungswert $\mu = E(X_i)$ und Varianz $\sigma^2 = Var(X_i)$ für i = 1, ..., n.

Gegeben: Signifikanzniveau $\alpha \in]0,1[$, Varianz $\sigma^2>0$, $\mu_0\in\mathbb{R}$

Der auf der Prüfgröße

$$T(X) \stackrel{\text{def}}{=} \frac{\bar{X} - \mu_0}{\sigma} \sqrt{n} \tag{5}$$

beruhende Gauß-Test aus Abschnitt 4.1 ist approximativ gültig. D. h. falls $\mu=\mu_0$, dann ist die Prüfgröße (5) für große Stichprobenumfänge n approximativ standardnormalverteilt, so dass für die **Testverteilung** gilt:

$$T(X) \stackrel{\mu=\mu_0}{\approx} N(0,1).$$

Als Faustregel gilt $n \geq 30$. Der Approximationsfehler besteht darin, dass das vorgegebene Signifikanzniveau α nur approximativ eingehalten wird. Hypothesen, Ablehnungsbereiche und Testentscheidungen stimmen mit denen der exakten Gauß-Tests aus Abschnitt 4.1 überein.

5.2 Approximativer Gauß-Test bei unbekannter Varianz

Zweck: Test über den Erwartungswert μ einer Grundgesamtheit bei unbekannter Varianz σ^2

Voraussetzung: Die X_i sind unabhängig und identisch verteilt (iid) mit Erwartungswert $\mu = E(X_i)$ und Varianz $\sigma^2 = Var(X_i)$ für i = 1, ..., n.

Gegeben: Signifikanzniveau $\alpha \in]0,1[$, $\mu_0 \in \mathbb{R}$

Ist die Varianz σ^2 unbekannt aber endlich, dann kann σ in Prüfgröße (5) durch den Schätzer S(X) ersetzt werden und man erhält die modifizierte **Prüfgröße**

$$T(X) \stackrel{\text{def}}{=} \frac{\bar{X} - \mu_0}{S(X)} \sqrt{n}.$$

Falls $\mu = \mu_0$, dann ist diese modifizierte Prüfgröße für große Stichprobenumfänge n approximativ standardnormalverteilt, so dass für die **Testverteilung** gilt:

$$T(X) \stackrel{\mu=\mu_0}{\approx} N(0,1).$$

Als Faustregel gilt $n \geq 30$. Der Approximationsfehler besteht darin, dass das vorgegebene Signifikanzniveau α nur approximativ eingehalten wird. Hypothesen, Ablehnungsbereiche und Testentscheidungen stimmen mit denen der exakten Gauß-Tests aus Abschnitt 4.1 überein.

5.3 Test über eine Wahrscheinlichkeit

Zweck: Test über den Parameter p einer Bernoulli-Verteilung

Voraussetzung: $X_i \overset{\text{i.i.d.}}{\sim} B(1,p) \text{ mit } 0$

Gegeben: Signifikanzniveau $\alpha \in]0,1[$, $p_0 \in]0,1[$

Null- und Gegenhypothese:

$$H_0: p=p_0$$
 vs. $H_1: p \neq p_0$ $H_0: p=p_0$ oder $p \geq p_0$ vs. $H_1: p < p_0$

$$H_0: p = p_0 \text{ oder } p \le p_0 \qquad \text{vs.} \qquad H_1: p > p_0$$

Prüfgröße:
$$T(X) \stackrel{\text{def}}{=} \frac{\bar{X} - p_0}{\sqrt{p_0(1 - p_0)}} \sqrt{n}$$

Testverteilung:
$$T(X) \stackrel{p=p_0}{\approx} N(0,1)$$

Falls $p=p_0$, dann ist die Prüfgröße für große Stichprobenumfänge n approximativ standardnormalverteilt. Als Faustregel gilt $np_0(1-p_0)>9$. Ablehnungsbereiche und Testentscheidungen stimmen mit denen des exakten Gauß-Tests aus Abschnitt 4.1 überein.