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APPENDIX A: Proofs

Proof of Proposition 2. .
Equation (4) guarantees convergence of the empirical tail copula

√
kZΛ̂Z(x(1),

x(2)),Z = X,Y, for (x(1), x(2)), (v(1), v(2)) ∈ R2
+. Define

∆̂(x(1), x(2), v(1), v(2)) =

√
kXkY
kX + kY

(
Λ̂X(x(1), x(2))− Λ̂Y(v(1), v(2))

)
Then

Π̂(x(1), x(2), v(1), v(2)) =

√
kY

kX + kY

√
kX

(
Λ̂X(x(1), x(2))− ΛX(x(1), x(2))

)
−
√

kX
kX + kY

√
kY

(
Λ̂Y(v(1), v(2))− ΛY(v(1), v(2))

)
It directly follows from Equation (4) and kX

kX+kY
→ λ that

Π̂(x(1), x(2), v(1), v(2))
w→
√

1− λGΛ̂,X(x(1), x(2))−
√
λGΛ̂,Y(v(1), v(2)).

Therefore by continuous mapping theorem, it holds that∫
Im

Π̂(φ, 1− φ, φ, 1− φ))2 dφ w→ Sm
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for m = 1, . . .M/2, and also due to symmetry in the limiting process, we get∫
Im

Π̂(φ, 1− φ, 1− φ, φ))2 dφ w→ Sm

for m = M/2 + 1, . . .M under both, the null and the alternative.
Though, ∆̂ and Π̂ coincide if and only if the null hypothesis holds true. Thus

we get under the null that
Ŝm

w→ Sm

while otherwise
Ŝm →∞

for all m = 1, . . . ,M .

Proof of Proposition 2. . The statement directly follows from Theorem 3.4. in
Bücher and Dette (2013).

Proof of Proposition 4. .
We show that individual tests are asymptotically undersized. Due to this,

grid-specific p-values need not to be perfectly dependent.
For Test 1 with Mj subsets, denote the test statistic corresponding to the mi-

nimal p-value by S∗j , and the denote the factor of S∗j by υj := (kX,j +kY,j)/(kX,jkY,j),
where kX,j, kY,j denote the realized effective sample sizes of X and Y in the sub-
interval corresponding to p∗j . Obviously,

υj ≤ υ := (kX + kY)/(kXkY),

and υj decreases in both kX,j and kY,j, while kZ,j, kY,j both decrease in the fine-
ness of the grid (j → ∞): The finer the grid, the smaller kZ,j, i.e. less observa-
tions are in each subinterval. For υ, a test against copula equality would be
asymptotically exact, i.e. P(p ≤ α|H0)→ α, under (A1S)-(A4S).

Realize that – under the null – the test statistic integrates over squared dif-
ferences of centralized normal variables. We may approximate the right tail of
the null distribution by a centered χ2 distribution with, say, $j > 0, degrees
of freedom; see Beran (1975). Hence, for x large enough, test size can be ap-
proximated as αj := P(S̃∗j > x|H0) ∼ χ2($j), j = 1, ..., J, where S̃∗j denotes the
theoretical test statistic corresponding to the adjusted p-value p̃∗j . Also, for the
variance of the test statistic, it holds that V(S̃j) = O(υ2

j ), i.e. the variance incre-
ases as grid fineness increases (j ↓) and less observations enter the estimation
(kX,j, kY,j ↓, υi ↑). According to the Markov inequality, with fixed critical values xj,

αj := P(S̃∗j ≥ xj|H0) ≤
E(S̃∗j )

xj
=

V(S̃∗j )/2

xj
) = O(V(S̃∗j )),

i.e. under the null, realized test sizes αj decrease with rate υ2
j . Furthermore,

grid-specific p-values are continuous and uniformly distributed. Now, Sklar’s
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Theorem implies their dependence under the null can be characterized by a
copula, Cα, say, i.e. Cα(u) = P(p̃∗1 ≤ u(1), ..., p̃∗J ≤ u(J)|H0). Under the null, the
FWER in terms of the copula Cα, is given by

P(∪Jj=1p̃
∗
j ≤ α|H0) = 1− Cα(1− α1, ..., 1− αJ), . (1)

For illustration, let nearly any observations at all fall in relevant subintervals,
i.e. ∀j : υj ≈ 0,

1− Cα(1− α1(υ1), ..., 1− αJ(υJ)) ↓ 1− Cα(1, ..., 1) = 0,

and Test 2 naturally obeys the α-limit in this unrealistic case. In all other cases,
as J →∞, for FWER control P(∪Jj=1p

∗
j ≤ α|H0) ≤ α, it must hold that

1− Cα(1− α1(υ1), ..., 1− αJ(υJ))↗ α?(υ?),

where α? := max(α1(υ1), ..., αJ(υJ)) → 0. This means, for FWER control, the co-
pula Cα must approach its upper bound – (α1, ..., αJ) must be nearly perfectly
dependent – but the upper bound does not need to be exactly obtained due to
αj → 0, j = 1, ..., J.

APPENDIX B: Details on Specifications and Additio-
nal Simulation Results

Details on Specifications of the Simulations

DGP1 and DGP2 are based on the tail factor model. Bivariate return vectors
Z = (Z(1), Z(2)),Z = X,Y, follow a bivariate factor model with r factors V (j), j =
1, ..., r, and loadings aij, i = 1, 2, j = 1, ..., r, when

Z(i) =
r∑
j=1

aijV
(j) + ε(i), i = 1, 2, (2)

where factors are i.i.d. Fréchet with ν = 1, independent of the error term ε(i)

which feature thinner tails than V (j); we set ε(i) as Fréchet with νε = 2. In this
way, the matrix of factor loadings A = (aij) directly determines the tail copula
of Z. In particular, the (upper) tail copula of Z is equivalent to the tail copula of
the max factor model Z̄(i) = maxj=1,...,r(aijV

(j)), which is

ΛU(x(1), x(2)) = x(1) + x(2) −
r∑
j=1

max

(
a1j∑r
j=1 a1j

x(1),
a2j∑r
j=1 a2j

x(2)

)
,
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see ? for further details. DGP1 consists of X,Y both resulting from a factor
model as in Equation (2), but with loading matrix A1 = [ 2 1 0

0 1 2 ] . Here, the first
factor only influences X(1) (Y (1)), the second factor influences both X(1) (Y (1))
and X(2) (Y (2)), and the third factor only influences X(2) (Y (2)). That is, A1

amounts to intra-tail symmetry and to tail equality between X and Y, and thus
the null is true. See Figure 3, first from the left, for Λ(x(1), 1−x(1)), x(1) ∈ [0, 1]. For
DGP2, both X and Y stem from a factor model as in Equation (2) with A2 = [ 1 0

1 2 ] ,
where the second factor only influences X(2) (Y (2)), causing the tail copula to
become intra-tail asymmetric, Λ(x(1), x(2)) 6= Λ(x(2), x(1)), and consequently tail
copulas of X and Y coincide only when x(1) = x(2), see Figure (3), second from
the left. DGP2 thus represents the class of intra-tail asymmetric copulas which
violate the null according to Proposition (1).

For the GARCH-type time series specification we use the following algorithm:
In a first step, we simulate observations ηt,Z according to DGPs 1 to 4. Conse-
quently, we transform simulated errors to pseudo-observations by means of
the marginal empirical cumulative distribution, F̂η,Z,i(η

(i)
t,Z), i = 1, 2. Finally, we

apply the quantile function of the t-distribution function with 10 degrees of
freedom to the pseudo-observations. Thus, the final errors are linked by the
copulas of DGPs 1 to 4 with fat-tailed t-marginals. Those are used to generate
the GARCH series for X and Y, and standardized residuals obtained from esti-
mation by quasi maximum likelihood. Note, monotone transformations, such
as the quantile transformation, do not alter the tail dependence structure, and
should not alter test results. However, t-transformed error distributions are a
more realistic approximation of asset returns.

Additional Simulation Results

The simulation results in Figure 1 Appx below confirm that the key Condition
7 for the consistency of the aggregated Test (2) in Proposition 4 appears to be
satisfied in standard settings. We find Test 2 consistently obeys the α-limit due
to individual undersizedness of Test 1 and nearly perfect dependence between
grid-minimal p-values Figure 1 Appx shows p-values of one specific setting,
which illustrates that both these points hold; results of other settings are in
line, but not reported. We see that individual test sizes are consistently below α,
and decrease in the number of marginal hypotheses. Furthermore, correlation
between minimal p-values of different grids is close to one, indicating nearly
perfect (linear) dependence. Hence, we find Test 2 is appropriate.

Table (1 Appx) provides additional simulation results for the smaller sample
size n = 750. The same set-up and specifications as for Table 1 in the paper are
used and empirical test rejections are reported.

Additionally for time series, we investigate the performance of the tapered
multiplier bootstrap for tail copulas in comparison to the GARCH filter appro-
ach. For simulated GARCH time series with error terms linked by the Clayton
copula with θ = 0.5, and the Factor copula with loading matrix A1, we estimate
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Figure 1 Appx: Exemplary p-values from the simulation study for Test 1 with
j = 1, ..., 13 (GARCH marginals equipped with a Factor model, k = 0.1n, n = 1500,
tapered bootstrap). In this case, test size is estimated with 500 repetitions. Left:
Scatterplots of p-values for all grid pairs. Middle: J, the fineness of the grids,
is plotted against estimated test sizes according to Test 1. Right: Histogram of
estimated correlations between all pairs of grid-minimal p-values.
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the tail copula with the underlying i.i.d. data, (correctly) GARCH filtered data,
and we apply the tapered bootstrap to unfiltered data. Table (2 Appx) shows
bias and variance for all three approaches. While the tapered bootstrap exhi-
bits a higher variance, its bias is consistently smaller. Thus, we find the tapered
bootstrap approach successfully approximates the tail copula in the presence
of GARCH effects.

APPENDIX C: Tail Asymmetries in the US Stock Mar-
ket with GARCH Filtering

The U.S. stock market application in Section 5 of the paper only reports test
results for the tapered multiplier bootstrap. For completeness, we here provide
results for an adaptive GARCH filter in combination with the standard multi-
plier bootstrap. For each stock sector, and in each period, we fit ARMA(p1, q1)-
APARCH(p2, q2)-models, p1, q1 = 0, 1, 2, p2, q2 = 0, 1 with Skew Student-t error term
distributions. We choose an optimal model according to the AIC. Standardized
residuals are used for the test. This approach captures potential asymmetric
GARCH-effects, Ding et al. (1993). Figure (2 Appx) shows the test results.

Trajectories strongly resemble those of the tapered multiplier approach (Fi-
gure (5)), except for the financial crisis 2007-09 when results diverge. GARCH-
filtered data exhibits more tail inequalities. This also adds to the unique, ano-
malous nature of this crisis as eliminating GARCH-effects induces additional
heterogeneity between the tails. Thus, results confirm that the use of the direct
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Table 1 Appx: Empirical rejection probabilities as in Table (1), but with a sample
size of n = 750.

k/n DGP1 DGP2 DGP3 DGP4

TDC BD13 BS16 TDC BD13 BS16 TDC BD13 BS16 TDC BD13 BS16
18 6 TA2 18 6 TA2 18 6 TA2 18 6 TA2

iid
5% 4.6 4.8 3.6 3.8 5.6 2.6 4.4 97.8 100 99.8 3.4 4.0 3.6 3.2 6.2 43.2 57.8 44.6 52.2 60.8
10% 3.2 2.8 2.6 2.2 5.0 5.4 5.8 100 100 100 3.4 3.6 2.8 3.2 6.0 65.2 79.6 69.6 75.8 82.4
15% 4.0 4.2 3.2 2.8 7.2 4.2 5.6 100 100 100 4.0 5.8 2.8 3.4 8.0 76.4 86.2 81.0 83.6 88.6
tap.
5% 5.0 6.2 4.2 4.6 6.8 4.4 3.8 98.0 78.6 99.8 11.6 15.2 13.8 13.8 20.4 26.6 39.4 33.4 37.0 44.8
10% 4.4 5.4 3.0 4.4 7.2 4.8 6.2 100 100 100 8.0 12.6 12.4 12.2 19.4 48.2 61.4 55.8 57.8 66.2
15% 2.4 4.2 3.2 3.6 5.6 6.2 6.4 100 100 100 8.2 9.8 7.6 8.0 13.8 62.0 75.4 69.6 73.2 79.6

Table 2 Appx: Integrated squared bias and variance for i.i.d. and GARCH filte-
red data, and the tapered bootstrap approach. Simulations have been repeated
500 times with n = 1500 and k ∼ U [0.05n, 0.15n]. For the Clayton copula, we
choose θ = 0.5, and the factor model was parametrized by Results are scaled by
loading matrix A1. 10−2.

i.i.d. filter tapered i.i.d. filter tapered

Clayton Factor

bias2 1.374 1.297 0.710 0.050 0.048 0.002
variance 0.039 0.040 0.083 0.010 0.010 0.049

tapered multiplier bootstrap specification in the paper works and that obtained
results can be safely interpreted.

APPENDIX D: Tests for Tail Asymmetries in the US
Stock Market

The difference in found asymmetries between our test and BD13 (see Figure 5
of the paper) suggests some degree of intra-tail asymmetry among all pairs. The
simulation study demonstrated that the power of the two tests differs mainly in
intra-tail asymmetric cases, see Table 1 in the paper, but also Table 1 Appx.

Here, we apply two formal tests against intra-tail symmetry (Kojadinovic
and Yan (2012); Bormann (2017)) in order to fully quantify the importance of
intra-tail asymmetries for tail asymmetries. Both test check the (tail) copula
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Figure 2 Appx: Dynamics of the percentage of detected tail asymmetries among
all pairs. Data has been filtered using an adaptive GARCH filter, using a rolling
window of size n = 1500, and a step size of 250 trading days for the TDC test
(dashed), BD13 test (dotted) and our test (solid), respectively.
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against non-exchangeability with Cramér-von Mises tests, while the latter tests
explicitly accounts for serial dependence, and is thus more appropriate here.
We use a significance level of α = 0.05. For periods with the smallest and the
largest discrepancy in the number of test rejections between our test and the
BD13 and the TDC test, respectively, we test for intra-tail asymmetries. Table
3 Appx contains the test results. Intra-tail asymmetry of a sector implies one
sector’s extremes are more likely to trigger extreme events of the other sector.
This demands special care in hedging as anticipation of (conditional) extremes
is uneven. For small (large) discrepancies, we expect no (a) significant portion
of test rejections. When our test does not find substantially more tail asym-
metries than BD13 during 1975–81 (TDC during 1977-83), we detect only 4.1%
(3.5%) intra-tail asymmetric pairs. On the other hand, this share rises to 12.5%
(9.13%) when our test is more powerful with respect to detecting tail asymme-
try (BD13 during 1938–1943, TDC during 1945–51). Although the share of
found intra-tail asymmetries is relatively small, this supports the conjecture
that intra-tail asymmetry explains the differences in test results.

APPENDIX E: Tail Inequalities of Foreign Exchange
Rates

To supplement the empirical study on tail asymmetries on stock markets in
Section 5, we now analyze tail equality in pairs of six main foreign exchange ra-
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Table 3 Appx: ITA test results. We test against ITA in periods when results of
our test and competing tests are most (least) similar, i.e. when the shares of
test rejections is the largest (the closest). See also Figure 5. In such periods, we
report the share of bivariate tails that the test identifies as intra-asymmetric.

BD13 TDC
test results period ITA period ITA

similar
1975-81 4.1% 1977-83 3.5%

maximally different
1938-43 12.5% 1945-51 9.13%

tes, namely Euro (EUR), British Pound (GBP), Canadian Dollar (CAD), Japanese
Yen (JPY), New Zealand Dollar (NZD) and Swiss Franc (CHF), all nominated in
USD. Time series data are standard exchange rates from Bloomberg. The sam-
ple consists of returns of daily closing prices covering the period 01/05/2001 to
02/01/2016. As foreign exchange rates are the most frequently traded finan-
cial security with an average daily trading volume of more than five trillion in
April 2013 (Rime and Schrimpf (2013)), investors and regulators have a natural
interest in a comparison of extreme co-movements of foreign exchange rates.
We again apply a rolling window analysis, now with a window size of n = 1000
and step size of 50 days to draw a finer picture of the tail (in)equality dynamics.
For any pair comparison trading days with missing data or zero returns are
discarded. The effective sample size is fixed k = 0.2n which is backed by the
results of the simulation study. We conduct the following tail pair comparisons

H
(L−L)
0 : ΛL

X = ΛL
Y, H

(L−U)
0 : ΛL

X = ΛU
Y , H

(U−U)
0 : ΛU

X = ΛU
Y ,

for all 15 bivariate pairs, amounting to 4 ·
(

6
2

)
= 420 tests in each period. Note,

this also implies the null hypotheses H
(U−L)
0 : ΛU

X = ΛL
Y. Figure (4 Appx) shows

the share of tail inequalities among all possible comparisons. The fraction of
rejected tail equalities, ranging from 45% to 75%, suggests bivariate tail depen-
dence of foreign exchange rates systematically differ. We observe a steady incre-
ase of tail inequalities from 2006 to 2008 which coincides with a major depre-
ciation of the USD with respect to the EUR. This evolution is reversed when the
USD appreciates during the European Sovereign Crisis (2013 onwards). Thus,
in the last decade, a strong (weak) USD (EUR) came along with more (less) tail
equality within the foreign exchange rates market.

Figure (5 Appx) displays a dynamic ranking for all 15 pairs based on the TDC
and the summary statistic

∫ 1

0
Λ(φ, 1−φ)dφ which was introduced in the last sub-

section. A careful inspection of all four plots shows there is only little difference
between the TDC-based and the tail copula-based ranking. Tail dependence of
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appreciations and depreciations of EUR and CHF with respect to the USD tends
to be the strongest throughout the sample. While the pair GBP-EUR exhibits
strong tail dependence for joint upper tails (depreciations), the lower tails show
a strong tail link only in the last five years (as well as until 2007). Also, JPY-
CAD (upper tail) and CAD-NZD (both tails) feature comparably strongly con-
nected tails. The pairs JPY-NZD, JPY-CAD and GBP-JPY feature the weakest
tail dependence in both tails.

The pair EUR-CHF dominates tail comparisons throughout, which is pro-
bably due to the fixed exchange rate regime until 01/2015 with a EUR:CHF
minimum rate of 1:1.20. Also, the tight economic linkage between both parties
may attribute to the relatively strong tail dependence. On 01/15/2015, the
Swiss Central Bank unpegged its currency from the Euro. This policy change
caused the CHF to appreciate by 20% with regards to the EUR within a single
day.

We now test whether the break of the CHF-EUR currency peg had a signi-
ficant impact on the tail dependence between both currencies. This would be
the case if the TC had changed after 15/01/2015. Unfortunately, the sample
contains only 273 observations after the policy change and we thus compare
TCs for overlapping time periods, that is 01/01/2006 - 14/01/2015 (ΛT1) and
01/01/2006 - 16/01/2016 (ΛT1,T2). The null is

H0 : ΛW,T1
CHF−EUR = ΛW,T1+T2

CHF−EUR,W = U,L (3)

However, the tapered block multiplier bootstrap has to be adjusted to account
for the dependence of both samples. For the tail copula of the entire period
(T1 + T2), we use the multiplier vector ξT1+T2 = (ξ1, ..., ξT1, ξT1+1, ..., ξT1+T2); for the
tail copula of the first subperiod, we only use the first T1 entries of ξT1+T2. We
execute the test for 15 different values of the effective sample size, namely kT i =
0.02nTi, 0.04nT i, ..., 0.3nT i, i = 1, 2, where nT i denotes the sample size of the first
subperiod (T1) and the entire period (T2), respectively. Table (4 Appx) contains
p-values of Test (2). To this date, there is no evidence for a structural change
in neither the lower nor the right tail.

Table 4 Appx: P-values corresponding to the null hypothesis of constant tail de-
pendence between EUR and CHF (see Equation (3)) for varying effective sample
sizes.

k/n
tails

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30

L-L 4.4 10.6 37.2 30.8 17.9 19.9 22.4 35.6 52.0 61.5 46.2 33.6 46.0 56.1 63.7
U-U 99.2 7.4 98.0 87.2 99.9 87.8 44.7 80.2 98.6 99.6 95.7 96.1 99.8 99.6 96.6
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Figure 3 Appx: Foreign exchange rates nominated in US Dollars during
01/2001 - 02/2016.
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Figure 4 Appx: Dynamics of the percentage of detected tail inequalities among
all pairs, comparing the following tails: Upper-upper, upper-lower, lower-lower.
The window size is n = 1000 with a step size of 50 trading days, and rejections
based on the TDC test (BD13 test, our test) correspond to the dashed (dotted,
solid) line.
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